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1. Introduction

In this paper, we consider the impact oscillator of the form
x′′ + f (t, x) = 0, for x(t) > 0;
x(t) ≥ 0;
For any t0, if x(t0) = 0 then x′(t0+) = −x′(t0−).

(1.1)

We assume that f : R × R+ → R is continuous and 2π-periodic in the first variable.
From the perspective of mechanics, the system (1.1) simulates the motion of a particle attached to

a nonlinear spring and bouncing elastically against the barrier described by x = 0. Thus, it serves
as a model of dynamical system with discontinuities [16]. Systems of this type are special cases
of vibro-impact systems(see, e.g., [2, 3, 8, 24]). There are also interesting relations with the Fermi
accelerator [17], dual billiards [5] and certain models used in celestial mechanics [9]. Although it’s
important and some results are known (see, e.g., [4, 17, 18, 23, 25–29]), comparing with the second
order equation without impact, even for one-degree-of-freedom linear oscillators or asymptotically
linear oscillators with impacts, the dynamics of system (1.1) is far from being understood.
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Our purpose in this paper is to investigate the existence of nontrivial subharmonic bouncing
solutions with prescribed number of impacts for sublinear impact oscillators. As is known to us, the
existence of subharmonics of arbitrary order is usually a hint of a complex dynamics, although their
connection needs further study. The following definition clarifies the concept of bouncing solution we
mention here.

Definition 1.1. A continuous function x : R → R is a bouncing solution to problem (1.1) if the
following conditions hold.

(i) x(t) ≥ 0 for all t ∈ R.
(ii) the impact set W = {t : x(t) = 0} is discrete and not empty.
(iii) elastic impact condition x′(t0+) = −x′(t0−) holds for any t0 ∈ W.
(iv) given an interval I, if I ∩W = ∅, then x ∈ C2(I,R+) and it is a classical solution of

x′′ + f (t, x) = 0. (1.2)

We note that a grazing orbit also satisfies the above definition of bouncing solution, that is, an
“impact” with zero velocity. A grazing impact indicates a bifurcation or pass to a different type
of dynamical behaviour, see, e.g., [19, 20, 31] and the references therein. Also, another interesting
physical phenomenon is the chattering, when there is an accumulation of impacts, that is, an infinite
number of impacts occurring in a finite time, see, e.g., [6,7]. In our next setting grazing and chattering
phenomenons are not present, but they play an important role in models coming from mechanical
engineering. The researches of grazing and chattering phenomenons need different approaches, we
will not mention here. In the following, we will focus on the existence and multiplicity of “regular”
periodic bouncing solutions, that is the bouncing solution without zero velocity at impact.

There are several interesting mathematical researches on the existence and multiplicity of periodic
bouncing solutions for impact oscillators. We recall that Bonheure and Fabry proved in [4] the
existence of 2π-periodic bouncing solutions for a linear impact oscillator ( f (t, x) = λx− p(t)) by means
of an approximation approach. They considered the linear impact oscillator as the limitation of some
second order equations without impact. Later, Qian and Torres proved in [26] and [27] the existence
of 2π-periodic bouncing solutions for some nonlinear equation which has an attractive singularity at
the origin and for Hill’s equation ( f (t, x) = a(t)x − p(t)), respectively. The approach in [26] and [27]
is based on the successor map. In addition, Lazer and McKenna proved [18] the existence of large
amplitude periodic bouncing solutions with one impact during one period for impact oscillators with
damping. Their result was extended to the existence of periodic bouncing solutions with multiple
impacts during one period by Qian [25].

In this paper, we consider the existence of infinitely many large subharmonic bouncing solutions
for sublinear impact oscillator (1.1). We recall that in [10], Ding and Zanolin proved the existence
and multiplicity of subharmonic solutions for sublinear oscillator (1.2) without impact by using the
Poincaré-Birkhoff theorem.

In order to apply Poincaré-Birkhoff theorem for sublinear oscillator (1.2), one needs to consider the
iterates of the Poincaré map of Eq (1.2) to show that the twist condition is fulfilled at the boundary
of a given annulus in the phase-plane. Thus, the trajectories of the equivalent system staring from the
boundary of the annulus may pass the origin, which leads to a bad evaluation of the rotations. Hence
in [10], some careful phase-plane analysis of the dynamics of the solutions is performed.
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Let x0(t) be a 2π-periodic solution of Eq (1.2) (the existence of 2π-periodic solution to sublinear
oscillators can be easily realized by topological degree arguments). By the transformation z = x− x0(t),
Eq (1.2) can be written as the form

z′′ + f (t, z + x0(t)) − f (t, x0(t)) = 0.

Moreover, we consider the above equation as the following equivalent system

z′ = w, w′ = − f (t, z + x0(t)) + f (t, x0(t)). (1.3)

Then x(t) is a solution of Eq (1.2) if and only if (z(t), z′(t)) is a solution of system (1.3). Furthermore,
(0, 0) is the unique solution of system (1.3) passing the origin. Hence, any trajectory of system (1.3)
staring from the boundary of the suitable annulus doesn’t pass the origin, which will help to construct
some annulus with the twist condition at it’s boundary.

But the approach in [10] is not valid for impact oscillator since we don’t know if there is such 2π-
periodic bouncing solution x0(t) of impact oscillator (1.1) (topological degree arguments is not suitable
for impact oscillator). In addition, even if one can find such x0(t), yet after transformation z = x− x0(t),
the impact condition

“For any t0, if z(t0) = 0 then z′(t0+) = −z′(t0−)”

will not be satisfied.
Therefore, in this paper, we use the “successor map” approach as in [23], [26] and [27]. There

is a difference here. In [26], oscillatory properties of the Hill’s equation are used to ensure that the
successor map is well defined. In this paper, we will analyse the spiral property of the solutions for
sublinear impact oscillator to prove that the successor map is well defined (see Lemma 2.1).

In the following, we assume, without loss of generality, that f (t, x) is locally Lipschitzian in the
x-variable, in order that uniqueness for the associated Cauchy problems is guaranteed. Otherwise we
can use the approximation approach as in [10].

Then, for any τ and v > 0, there exists a unique solution x(t; τ, v) of impact oscillator (1.1) with
initial conditions

x(τ; τ, v) = 0, x′(τ; τ, v) = v > 0.

Furthermore, x(t; τ, v) is continuous with respect to (τ, v) (see, e.g., [14]). Moreover, if x(t; τ, v) vanishes
at some time τ̂ > τ, then τ̂ is the time of the next impact. As the bouncing is elastic, the velocity after
this impact is

v̂ = −x′(τ̂; τ, v).

If v̂ is finite and positive, the map

S : R × R+ → R × R+, S(τ, v) = (τ̂, v̂)

is well defined, continuous, and one to one. According to [1, 21–23], this function is called successor
map. The iteration of the successor map is denoted by Sn(τ, v) = (τ̂n(τ, v), v̂n(τ, v)) and we will use
τ̂n = τ̂n(τ, v), v̂n = v̂n(τ, v) for short.

We assume that f (t, x) satisfies the following condition
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(H0) f : R × R+ → R is continuous, 2π-periodic in the first variable and locally Lipschitzian in
the second variable. Moreover, it satisfies the Landesman-Lazer condition∫ 2π

0
lim inf

x→+∞
f (t, x)dt > 0.

In this paper, we will prove, by using hypothesis (H0), that for any n ∈ N the iteration of the
successor map Sn(τ, v) is well defined for v sufficiently large, that is the next n-th impact exists and has
non-zero velocity. Moreover, let

T n
∗ (v) = inf{ τ̂n(τ, v) − τ : τ ∈ R }.

Our main result can be stated as the following theorem.

Theorem 1.1. Assume (H0) and there exists a sequence {vk} with vk → +∞ as k → +∞, such that

(T0) lim
k→+∞

T n
∗ (vk) = +∞,

then for any n ∈ N, there is mn ∈ N such that for m ≥ mn, there exists at least one 2mπ-periodic
bouncing solution xn,m(t) of (1.1) with exactly n impacts in [0, 2mπ). Moreover, max{|x′n,m(τ̂w−)| : τ̂w ∈

[0, 2mπ), w = 1, . . . , n are impact times of xn,m(t)} → +∞ as m → ∞, and if m and n are relatively
prime, then xn,m(t) is a 2mπ-periodic solution which is not 2lπ-periodic, for every l ∈ {1, 2, · · · ,m − 1}.

Remark 1.1. Hypothesis (T0) means that there exists a sequence {vk} with vk → +∞ as k → +∞,
such that the time for next n-th impact of x(t; τ, vk) tends to infinity with the increase of initial velocity
vk. This leads to infinitely many twists in the phase plane if the successor map S is well defined. But
hypothesis (T0) is not easy to check. Later, we will give some explicit sufficient conditions of assumption
(T0) as the corollaries of Theorem 1.1 for application. Our theorem can be applied to the following
interesting classes of impact models (The details see Remarks 1.3 and 1.5).
1. Sublinear impact equation, that is f (t, x) satisfies sublinear growth condition

lim
x→+∞

f (t, x)
x

= 0, uniformly for t ∈ [0, 2π]. (1.4)

As a typical case of sublinear impact osillctor, we can apply our theorem to periodically forced
pendulum with impact

x′′ + sin x = p(t), where
∫ 2π

0
p(t)dt < −1. (1.5)

2. “Sublinearity” in a more general sense. For example, let f (t, x) = g(x) + p(t), where
∫ 2π

0
p(t)dt < 0

and g is of the form

g(x) =

x3 sin2 x, for x ∈ [x2k−1, x2k],
0, for x ∈ [x2k, x2k+1],

where xk → +∞ as k → +∞, such that for G(x) =
∫ x

0
g(s)ds we have

G(x2k+1)
x2

2k+1

≤
1
4k
,

G(x2k)
x2

2k

≥ k, for k = 1, 2, · · · .

Obviously, we have

lim inf
x→+∞

g(x)
x

= 0 and lim sup
x→+∞

g(x)
x

= +∞.
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Remark 1.2. In Theorem 1.1, when f (t, x) is 2π-least periodic in t and m and n are relatively prime,
then xm(t) is a 2mπ-least periodic solution, that is xm(t) is a m-subharmonic solution. When m and n
have a common factor d ∈ N, d > 1, then xm(t) may be a m/d-subharmonic solution.

Recall that the Landesman-Lazer condition in assumption (H0) can be written as the following
equivalent statment (see, [12], Lemma 1): there exist a constant d0 > 0 and a L1-function ψ : [0, 2π]→
R, such that for x ≥ d0, f (t, x) ≥ ψ(t) and ψ̄ = 1

2π

∫ 2π

0
ψ(t)dt > 0. Then, denoting f̃ (t, x) = f (t, x) −

ψ(t)+ ψ̄ and Ψ(t) = −
∫ t

0
ψ(s)ds+ tψ̄, the equation (1.2) has a equivalent 2π-periodic system of the form

x′ = y + Ψ(t), y′ = − f̃ (t, x). (1.6)

Moreover, f̃ (t, x) ≥ ψ̄ for x ≥ d0.
As the first corollary of the above theorem, we can prove the existence and multiplicity of

subharmonic bouncing solutions for sublinear impact oscillator which is a generalization of the main
theorem in [10] to impact oscillator.

Corollary 1.1. Assume (H0) and there is a continuous function g, such that

f̃ (t, x) ≤ g(x) for t ∈ [0, 2π] and x ≥ d0.

Moreover, for G(x) =
∫ x

0
g(s)ds, we have

(G0) lim
c→+∞

∫ c

0

1
√

G(c) −G(s)
ds = +∞.

Then for any n ∈ N, there is mn ∈ N such that for m ≥ mn, there exists at least one 2mπ-periodic
bouncing solution of (1.1) with exactly n impacts in [0, 2mπ).

Remark 1.3. If f (t, x) satisfies sublinear growth condition (1.4), we can choose g(x) = max{ f̃ (t, x) :
t ∈ [0, 2π]}. Then f̃ (t, x) ≤ g(x) for t ∈ [0, 2π], x > 0 and

lim
x→+∞

g(x)
x

= 0,

which implies that∫ c

0

1
√

G(c) −G(s)
ds ≥

∫ c

c/2

1
√

G(c) −G(s)
ds ≥

√
2ξ√

g(ξ)
→ +∞ as c→ +∞.

Hence, Corollary 1.1 can be applied to sublinear impact equation. Now we consider following
periodically forced pendulum with impact

(Eλ) x′′ + sin x = λp(t), where
∫ 2π

0
p(t)dt < −1.

When λ ≥ 1, we can use Corollary 1.1 to prove the existence of m-subharmonic solution xn,m(t)
for m being sufficiently large. Moreover, we know xn,m(t) has exactly n impacts in [0, 2mπ) and
max{|x′n,m(τ̂w−)| : τ̂w ∈ [0, 2mπ), w = 1, . . . , n are impact times of xn,m(t)} → +∞ as m → ∞. When
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λ = 0, then the solution of (E0) satisfies that (x′(t))2/2 = cos x(t)+C for x(t) ≥ 0, where C is a constant.
Thus, for v > 2, the solution x(t; τ, v) of (E0) satisfies that x′(t; τ, v) does not vanish at any time t > τ.
Moreover, x(t; τ, v) is not a periodic solution. If m is sufficiently large, we have ε0 > 0 such that (Eλ)
has no 2mπ-periodic solution x(t; τ, v) with v > 2 for λ ∈ [0, ε0] by using the continuous dependence
theorem of solutions for parameters.

When (1.1) is a forced impact oscillator, i.e. f (t, x) = g(x) + p(t), with g, p being continuous
functions and p being 2π-periodic, we have the following corollary of Theorem 1.1 in which hypothesis
(G0) is substituted by a more explicit and general hypothesis

(G1) lim inf
x→+∞

G(x)/x2 = 0.

Corollary 1.2. Assume (H0) and (G1). Then for any n ∈ N, there is mn ∈ N such that for m ≥ mn, there
exists at least one 2mπ-periodic bouncing solution of (1.1) with exactly n impacts in [0, 2mπ).

Remark 1.4. The condition similar to (G1) is firstly introduced in [11] to guarantee the existence of
2π-periodic solution.

Remark 1.5. Assumption (G0) implies (G1). Actually, if (G0) holds but

lim inf
x→+∞

G(x)/x2 = 2α > 0,

then
lim

x→+∞
(G(x) − αx2) = +∞,

which implies that there is a sequence {xk} with xk → +∞ as k → +∞, such that

G(xk) −G(s) ≥ α(x2
k − s2) for s ∈ (0, xk], for k = 1, 2, · · · .

Thus, ∫ xk

0
(G(xk) −G(s))−1/2ds ≤ (

√
α)−1

∫ xk

0
(x2

k − s2)−1/2ds = (2
√
α)−1π,

for k = 1, 2, · · · , which contradicts to (G0). It is easy to see that Corollary 1.2 can be applied to the
models in Remark 1.1.

The rest of the paper is organized as follows. In Section 2, the proof of Theorem 1.1 is given.
Sections 3 and 4 are used to prove Corollaries 1.1 and 1.2, respectively. Section 5 is an appendix,
which contains the proof of a key lemma in Section 2.

2. Existence of periodic bouncing solutions

In order to prove the existence of periodic bouncing solutions of impact oscillators (1.1), we will
apply the Poincaré-Birkhoff twist theorem to the successor mapS. In this paper, we adopt the following
version of the Poincaré-Birkhoff twist theorem.
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Theorem 2.1. Let A be an annulus in the plane, whose boundaries Γi, i = 1, 2 are starlike closed
curves around the origin O ∈ D1, where D1 is the bounded region confined by the inner boundary Γ1.
Suppose

f : A → B

is an area-preserving homeomorphism homotopic to the inclusion such that A ⊂ B and f (A) ⊂ B,
where B is an annulus and f (A) ∩ ∂B = ∅. Moreover, f possesses a continuous lift

f̃ : (r, θ)→ (h(r, θ), φ(r, θ))

satisfying the boundary twist condition, that is φ(r, θ) − θ − 2 j0π > 0 (or < 0), for (r, θ) ∈ Γ̃1;
φ(r, θ) − θ − 2 j0π < 0 (or > 0), for (r, θ) ∈ Γ̃2

for some j0 ∈ Z, where Γ̃i is the lift of Γi, i = 1, 2, respectively. In addition, the areas of the two
connected components of the complement of f (A) in B are the same as the areas of the corresponding
connected components of the complement ofA in B, respectively.

Then, f has at least two geometrically distinct fixed points (ri, θi) for i = 1, 2, which satisfy

φ(ri, θi) − θi = 2 j0π, i = 1, 2.

Remark 2.1. The proof of this theorem can be obtained in [27], one can also refer to [30]. Its
proof basically combines the proofs of the classic form of the Poincaré-Birkhoff twist theorem and
a geometric lemma mentioned in [13] by Franks.

Next, we will discuss the properties of the successor map in order to apply the above Poincaré-
Birkhoff twist theorem.

First, we will prove that the successor map S is well defined where v is sufficiently large.

Lemma 2.1. Assume (H0) holds. Then for any n ∈ N, there exists v(n) > 0, such that Sn(τ, v) is well
defined for v ≥ v(n) and τ ∈ R.

The proof of Lemma 2.1 will be given in Section 5.
From the uniqueness of the solution of (1.1) with respect to the initial condition, we know that the

successor map S
S : (τ, v) 7→ (τ̂, v̂)

is well defined, one to one, and continuous in its domain R × [v0,+∞), where v0 is sufficiently large.
Moreover, it satisfies

S(τ + 2π, v) = S(τ, v) + (2π, 0).

Thus, we can interpret τ and v as polar coordinates and S is an embedding homeomorphism on S1 ×

[v0,+∞).

Lemma 2.2. S is an area-preserving map with the area element vdvdτ. Moreover, S is area-preserving
homotopic to the inclusion, and for any annuli A ⊂ B ⊂ S1 × R+ with S(A) ⊂ int(B), the areas of
the two connected components of the complement of S(A) in B are the same as the areas of the
corresponding components of the complement ofA in B, respectively.
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The proof of this lemma is similar to the proof of Lemma 1 in [15].
It is easy to show that for any n,m ∈ N, a fixed point of the Sn − (2mπ, 0) corresponds to a 2mπ-

periodic bouncing solution of the equation (1.1) with n impacts in each period.
Now, we apply Theorem 2.1 to the successor map S.
First, denote T ∗n(v) = sup{ τ̂n(τ, v) − τ : τ ∈ R }, then T n

∗ (v) ≤ T ∗n(v). From Lemma 2.1, Sn is well
defined and continuous in τ ∈ [0, 2π] and v ≥ v(n), same as τ̂n. Then, for fixed n and v, τ̂n(τ, v) − τ is
well defined. Thus, T ∗n(v) must be limited by the finite covering theorem. Thus, there exists mn ∈ N,
such that T ∗n(v(n)) < 2mnπ. For m > mn, m ∈ N, we have T ∗n(v(n)) < 2mπ, that is

τ̂n(τ, v(n)) − τ < 2mπ, τ ∈ [0, 2π]. (2.1)

On the other hand, for the above m, there exits km under (T0), such that T n
∗ (vkm) > 2mπ, that is

τ̂n(τ, vkm) − τ > 2mπ, τ ∈ [0, 2π]. (2.2)

LetA denote the annulus bounded by S1 × {v(n)} and S1 × {vkm} and B denote the annulus bounded
by S1 × {v∗} and S1 × {v∗}. Then we can prove, when v∗ > 0 is sufficiently small and v∗ is sufficiently
large, P(A) ⊂ int(B), where P : A → B is defined as follows

P(τ, v) = Sn(τ, v) − (2mπ, 0).

(2.1) and (2.2) show that the lift P̃ possesses the boundary twist condition on A. Moreover, Lemma
2.2 implies that P meets all the other conditions of Theorem 2.1. Thus the conclusion of Theorem
1.1 is generated by a direct application of Theorem 2.1. Specifically, if the number of bouncing n
is greater than or equal to 2, the two fixed points provided by Theorem 2.1 may correspond to the
same bouncing solution xn,m(t), so we can only assure the existence of the two different 2mπ- periodic
bouncing solutions when there is only one impact in each period. Moreover, T ∗n(v) is continuous with
respect to v. So T ∗n(v) is bounded for v ∈ D, where D is compact. This implies that max{|x′n,m(τ̂w−)| :
τ̂w ∈ [0, 2mπ), w = 1, . . . , n are impact times of xn,m(t)} → +∞ as m→ ∞.

Theorem 1.1 is thus proved. �

3. Subharmonic bouncing solutions of sublinear impact oscillator

In this section, we prove Corollary 1.1 by Theorem 1.1. Let x(t; τ, v) be the solution of Eq (1.1) with
the initial conditions

x(τ; τ, v) = 0, x′(τ; τ, v) = v > 0.

For v > 0, we know that there exists τ1 > 0 such that x(t; τ, v) > 0 for t ∈ (τ, τ1). Moreover, x(t; τ, v)
is a classical solution of Eq (1.2) for t ∈ (τ, τ1). Let y(t; τ, v) = x′(t; τ, v) − Ψ(t), then for t ∈ (τ, τ1),
(x(t; τ, v), y(t; τ, v)) satisfies the system (1.6). Without loss of generality, we suppose that

d0 > 2Ψ0 = 2 max
t∈[0,2π]

{|Ψ(t)|} > 0.

From assumption (H0) and Lemma 2.1, we know that the successor map S(τ, v) = (τ̂, v̂) is well
defined when v is sufficiently large. Moreover, there exist α(τ, v), β(τ, v) ∈ (τ, τ̂) such that x(α(τ, v)) =

d0, y(β(τ, v)) = d0 and

x(t; τ, v) ≥ d0, y(t; τ, v) ≥ d0, for t ∈ [α(τ, v), β(τ, v)].

Next we will prove
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Lemma 3.1. Assume (H0) and (G0), then

lim
v→+∞

(β(τ, v) − α(τ, v)) = +∞, uniformly for τ ∈ R.

Proof. In the proof, we will use α = α(τ, v), β = β(τ, v) for short. Define

H+(x, y) =
y2

4
+ G(x).

Then

H′+(x(t), y(t)) =
1
2

yy′ + g(x)x′ = −
y
2

f̃ (t, x) + g(x)(y + Ψ)

=
y
2

[g(x) − f̃ (t, x)] +

(y
2

+ Ψ

)
g(x).

Hence,
H′+(x(t), y(t)) > 0, for t ∈ (α, β).

It implies
G(x(t)) + y2(t)/4 < H+(x(β), y(β)), for t ∈ (α, β).

Then
x′(t) = y(t) + Ψ(t) < d0 + 2

√
d2

0/4 + G(x(β)) −G(x(t)), for t ∈ (α, β).

Through simple calculation and integrating on [α, β], we have

β − α >

∫ x(β)

d0

ds

d0 + 2
√

d2
0/4 + G(x(β)) −G(s)

. (3.1)

On the other hand, from the condition g(x) ≥ f̃ (t, x) ≥ ψ̄ for x ≥ d0, we have a L > 0 such that

d0 + 2
√

d2
0/4 + G(c) −G(s) ≤ 4

√
G(c) −G(s) for s ∈ [d0, c − L],

where c � 1. Moreover ∫ c

c−L

ds
√

G(c) −G(s)
=

∫ c

c−L

ds√
g(ξ)(c − s)

≤ 2

√
L
d0
.

Then ∫ c−L

d0

ds

d0 + 2
√

d2
0/4 + G(c) −G(s)

≥

∫ c−L

d0

ds
4
√

G(c) −G(s)

≥

∫ c

d0

ds
4
√

G(c) −G(s)
− 2

√
L
d0
→ +∞

as c→ +∞ by (G0).
Finally, from the estimation (5.7) in Section 5, we have

lim
v→+∞

x(β(τ, v)) = +∞, uniformly for τ ∈ R.

Lemma 3.1 is thus proved with (3.1). �
Lemma 3.1 implies that (T0) holds, so we obtain the conclusion of Corollary 1.1 by Theorem 1.1.
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4. Subharmonic bouncing solutions of the forced impact oscillator with weak sub-quadratic
potential

In this section, we prove Corollary 1.2. Consider the forced impact oscillator of the form
x′′ + g(x) = p(t), for x(t) > 0;
x(t) ≥ 0;
If there exists t0 such that x(t0) = 0 then x′(t0+) = −x′(t0−).

(4.1)

In this case, (H0) can be expressed as the following

(H′0) g : R+ → R is continuous, and p : R→ R is continuous, 2π-periodic.
Moreover, there is d0 > 0 such that

g(x) > p̄ =
1

2π

∫ 2π

0
p(s)ds, for x ≥ d0.

Let x(t; τ, v) be the solution of (4.1) with initial conditions

x(τ; τ, v) = 0, x′(τ; τ, v) = v > 0.

For v > 0, we know that there exists τ1 > 0 such that x(t; τ, v) > 0 for t ∈ (τ, τ1). Let y(t; τ, v) =

x′(t; τ, v) − P(t), where P(t) =
∫ t

0
(p(s) − p̄)ds. Then for t ∈ (τ, τ1), (x(t; τ, v), y(t; τ, v)) satisfies the

following system
x′ = y + P(t), y′ = −g(x) + p̄. (4.2)

Furthermore, there exists δ0 > 0 such that

g(x) − p̄ ≥ δ0, for x ≥ d0.

Without loss of generality, we suppose that

d0 > 2P0 = 2 max
t∈[0,2π]

{|P(t)|} > 0.

By assumption (H′0) and the method similar to that used in Lemma 2.1, we can prove that the
successor map S(τ, v) = (τ̂, v̂) is well defined for v being sufficiently large. Moreover, there exists
α(τ, v) and β(τ, v) ∈ (τ, τ̂) such that

x(α(τ, v)) = d0, y(β(τ, v)) = d0

and (x(t; τ, v), y(t; τ, v)) moves from (d0, y(α(τ, v))) to (x(β(τ, v)), d0).
Next we will prove

Lemma 4.1. Assume (H′0) and (G1) hold, then there exists a sequence {vk} with vk → +∞ as k → +∞,
such that

lim
k→+∞

(β(τ, vk) − α(τ, vk)) = +∞, uniformly for τ ∈ R. (4.3)
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Proof. In the proof, we will use α = α(τ, v), β = β(τ, v) for short. Define

I±(x, y) = G̃(x) + (y ± d0)2/2,

where G̃(x) = G(x) − p̄x. It is easy to verify that

I′+(x(t), y(t)) < 0, I′−(x(t), y(t)) > 0, for t ∈ (α, β),

which imply that

G̃(x(t)) + (y(t) − d0)2/2 < G̃(x(β)) < G̃(x(t)) + (y(t) + d0)2/2, for t ∈ (α, β). (4.4)

Then

x′(t) = y(t) + P(t) < 2d0 +

√
2(G̃(x(β)) − G̃(x(t))), for t ∈ (α, β),

and therefore, through simple computations and an integration on [α, β], we obtain

β − α >

∫ x(β)

d0

ds

2d0 +

√
2(G̃(x(β)) − G̃(s))

:= Λ(x(β)). (4.5)

On the other hand, in view of (4.4), we have two positive constants K1 and K2 such that

y2(α)/2 − K1y(α) − K2 ≤ G̃(x(β)) ≤ y2(α)/2 + K1y(α) + K2.

Moreover, as the argument in Lemma 2.1, we have a positive constant K3 such that

v − K3 ≤ y(α) ≤ v + K3.

Then, for v being sufficiently large, we have a positive constant K4 such that

v2/2 − K4v ≤ G̃(x(β)) ≤ v2/2 + K4v. (4.6)

From the assumption (G1), we have a sequence {xk} with xk → +∞ as k → ∞, such that

lim
k→+∞

G(xk)
x2

k

= 0,

which implies

lim
k→+∞

G̃(xk)
x2

k

= lim
k→+∞

G(xk) − p̄xk

x2
k

= 0.

∀ε > 0, choose k0, such that
G̃(xk)

x2
k

< ε, for k ≥ k0.
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Let vk = K4 +

√
K2

4 + 2G̃(xk), that is v2
k/2 − K4vk = G̃(xk), then from (4.6), we have x(β) ≥ xk.

Moreover, through (4.5) and (4.6), we obtain

Λ(x(β)) =

∫ x(β)

d0

ds

2d0 +

√
2(G̃(x(β)) − G̃(s))

≥
x(β) − d0

2d0 +

√
2G̃(x(β))

·
xk√

G̃(xk)
·

√
G̃(xk)

x(β)

≥
xk√

G̃(xk)
·

√
v2

k/2 − K4vk

2d0 +

√
v2

k + 2K4vk

·
x(β) − d0

x(β)
.

Thus, for k ≥ k0, we have a positive constant K5 such that

Λ(x(β)) ≥ K5/
√
ε.

Therefore, by (4.5), we obtain

lim
k→+∞

(β(τ, vk) − α(τ, vk)) = +∞, uniformly for τ ∈ R. �

Lemma 4.1 implies that (T0) holds, so we can prove Corollary 1.2 by Theorem 1.1.

5. The proof of Lemma 2.1

The Landesman-Lazer condition in Assumption (H0) can be written in a different form. For
example: without loss of generality, we suppose that

d0 > 2Ψ0 = 2 max
t∈[0,2π]

{|Ψ(t)|} > 0,

where Ψ(t) = −
∫ t

0
ψ(s)ds + tψ̄ is 2π-periodic. Let

g−(x) := min
t∈[0,2π]

{ f̃ (t, x)}, g+(x) := max
t∈[0,2π]

{ f̃ (t, x)},

then g±(x) ≥ ψ̄ > 0 for x ≥ d0, which implies that

G±(x) =

∫ x

0
g±(s)ds→ +∞, as x→ +∞.

When v > 0, there exists τ1 > 0 such that x(t; τ, v) > 0 for t ∈ (τ, τ1). Moreover, x(t; τ, v) is a
solution of Eq (1.2). Let

y(t; τ, v) = x′(t; τ, v) − Ψ(t).

Then for t ∈ (τ, τ1), (x(t; τ, v), y(t; τ, v)) satisfies the system of the form

x′ = y + Ψ(t), y′ = − f̃ (t, x). (5.1)
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Denote by (x(t), y(t)) = (x(t; τ, v), y(t; τ, v)) and let

D1 = {(x, y) : 0 ≤ x ≤ d0, y ≥ d0}; D2 = {(x, y) : x ≥ d0, y ≥ d0};
D3 = {(x, y) : x ≥ d0, |y| ≤ d0}; D4 = {(x, y) : x ≥ d0, y ≤ −d0};
D5 = {(x, y) : 0 ≤ x ≤ d0, y ≤ −d0}.

Our proof will be divided into five steps.
Step 1. Let M0 = maxt∈[0,2π],x∈[0,d0]{| f̃ (t, x)|} and v ≥ M0 + 3d0. For t > τ, if 0 < x(t) ≤ d0, then
y(t) > 2d0. Otherwise, we have τ′ > τ such that y(τ′) = 2d0 and

0 < x(t) ≤ d0, y(t) > 2d0 for t ∈ (τ, τ′).

Then

|v − Ψ(τ) − y(τ′)| =

∣∣∣∣∣∣
∫ τ′

τ

(
− f̃ (s, x(s))

)
ds

∣∣∣∣∣∣ ≤ (τ′ − τ)M0,

which implies
τ′ − τ ≥ (v − 3d0)/M0.

Thus

|x(τ′) − x(τ)| =

∣∣∣∣∣∣
∫ τ′

τ

(y(s) + Ψ(s))ds

∣∣∣∣∣∣ > (τ′ − τ)d0 ≥ d0(v − 3d0)/M0,

that is
v < M0 + 3d0,

which leads to a contradiction.
Moreover, for t > τ and 0 < x(t) ≤ d0, we have

|y(t) − v − Ψ(τ)| =

∣∣∣∣∣∣
∫ x(t)

x(τ)

− f̃ (t, x)
y + Ψ

dx

∣∣∣∣∣∣ ≤ 2M0d0

3d0
=

2M0

3
. (5.2)

According to the continuation theorem (e.g., [14]), there exits t1 > τ, such that x(t1) = d0. Thus, (5.2)
implies

v − d0 − 2M0/3 ≤ y(t1) ≤ v + d0 + 2M0/3. (5.3)

Then
x′(t1) > 0.

Step 2. From Step 1, we have (x(t), y(t)) ∈ D2 for t > t1 and t being near t1. In order to describe the
motion of (x(t), y(t)) in D2, we define

H−(x, y) = y2 + G−(x), H+(x, y) = y2/4 + G+(x).

Then
r =

√
x2 + y2 → +∞ ⇐⇒ H±(x, y)→ +∞. (5.4)

Moreover, it is easy to verify that

H′−(x(t), y(t)) < 0, H′+(x(t), y(t)) > 0, for (x(t), y(t)) ∈ D2,
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which implies that

H−(x(t), y(t)) < H−(x(t1), y(t1)), for (x(t), y(t)) ∈ D2, (5.5)

and
H+(x(t), y(t)) > H+(x(t1), y(t1)), for (x(t), y(t)) ∈ D2. (5.6)

From (5.4)-(5.6) and the continuation theorem, we know that (x(t), y(t)) will intersect with y = d0

at certain point t2 ∈ (t1, τ1). Moreover, by (5.3), (5.5) and (5.6), we have

M−
1 (v) < x(t2) < M+

1 (v), (5.7)

where
M−

1 (v) = G−1
+ (G+(d0) + (v − d0 − 2M0/3)2/4 − (d0)2/4)

and
M+

1 (v) = G−1
− [G−(d0) + (v + d0 + 2M0/3)2 − (d0)2].

Step 3. (5.7) implies that y′(t2) = − f̃ (t2, x(t2)) ≤ −ψ̄ < 0. Hence, for t > t2 and t being near t2, we have
(x(t), y(t)) ∈ D3. Moreover, there exists t3 ∈ (t2, τ1) such that y(t3) = −d0 and

|x(t) − x(t2)| < M2, |y(t)| < d0, for t ∈ (t2, t3), (5.8)

where M2 = 5(d0)2/ψ̄. Otherwise, according to the continuation theorem, there exists t′2 ∈ (t2, τ1) such
that |x(t′2) − x(t2)| = M2 and

|x(t) − x(t2)| ≤ M2, |y(t)| < d0, for t ∈ (t2, t′2].

Thus if v is sufficiently large, from (5.7), we have x(t) ≥ d0 for t ∈ (t2, t′2]. Then

M2 = |x(t′2) − x(t2)| =

∣∣∣∣∣∣
∫ y(t′2)

y(t2)

y + Ψ

− f̃ (t, x)
dy

∣∣∣∣∣∣ ≤ 4d2
0/ψ̄,

which leads to a contradiction.
Hence, by (5.8), we have

M−
1 (v) − M2 < x(t3) < M+

1 (v) + M2. (5.9)

Then
y′(t3) = − f̃ (t3, x(t3)) < 0.

Step 4. From Step 3, we have (x(t), y(t)) ∈ D4 for t > t3 and

H′−(x(t), y(t)) > 0, H′+(x(t), y(t)) < 0, for (x(t), y(t)) ∈ D4.

From similar argument as in Step 2, we know that (x(t), y(t)) will intersect with x = d0 at certain point
t4 ∈ (t3, τ1). Furthermore, there exist M±

3 (v) with

M±
3 (v)→ −∞ ⇐⇒ v→ +∞,
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such that
M−

3 (v) < y(t4) < M+
3 (v). (5.10)

Step 5. From Step 4, we have (x(t), y(t)) ∈ D5 for t > t4. Moreover,

y(t) < −2d0, when v being sufficiently large. (5.11)

Otherwise, suppose there exists t5, such that y(t5) = −2d0 and

0 < x(t) ≤ d0, y(t) > −2d0, t ∈ (t4, t5).

Then,

|y(t5) − y(t4)| =

∣∣∣∣∣∣
∫ t5

t4
− f̃ (s, x(s))ds

∣∣∣∣∣∣ ≤ M0(t5 − t4),

that is
t5 − t4 ≥

1
M0
|y(t5) − y(t4)| ≥

1
M0
|M+

3 (v) + 2d0|.

Hence,

d0 > |x(t5) − x(t4)| =

∣∣∣∣∣∣
∫ t5

t4
x′(s)ds

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ t5

t4
(y(s) + Ψ(s))ds

∣∣∣∣∣∣
> (t5 − t4)d0 ≥

d0

M0
|M+

3 (v) + 2d0|,

which leads to a contradiction.
The inequality (5.11) implies that x′(t) = y(t) + Ψ(t) < −3d0/2 and

|y(t) − y(t4)| =

∣∣∣∣∣∣
∫ t

t4
y′(s)ds

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ x(t)

x(t4)

y′

x′
dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ x(t)

x(t4)

− f̃ (t, x)
y + Ψ

dx

∣∣∣∣∣∣ ≤ 2M0d0

3d0
=

2M0

3
.

According to the continuation theorem, there exists τ̂ > t4 > τ such that x(τ̂) = 0.
Let v̂ = −(y(τ̂−) + Ψ(τ̂)). Then S : (τ, v) 7→ (τ̂, v̂) is well defined. Moreover,

|y(τ̂−) − y(t4)| =

∣∣∣∣∣∣
∫ τ̂

t4
y′(s)ds

∣∣∣∣∣∣ =
2M0

3
.

With (5.10), we have

M−
3 (v) −

2M0

3
< y(τ̂−) < M+

3 (v) +
2M0

3
.

Hence
v̂→ +∞ ⇐⇒ v→ +∞.

For any n ∈ N, we can define Sn by applying the above discussion recursively. Lemma 2.1 is thus
proved.
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