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1. Introduction

Recently, the varying coefficient partially nonlinear model (VCPNLM) has received a great deal of
attention because of the flexibility of the semiparametric models, it has the following form:

Y = XTθ(U) + g(Z,β) + ε,
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where Y is a response variable, X, U and Z are the covariates, X ∈ Rq,U ∈ R, Z ∈ Rr, θ(·) =

(θ1(·), · · · , θq(·))T is a q-dimensional vector of unknown coefficient functions, g(·, ·) is a given nonlinear
function with unknown parameter vector β = (β1, . . . , βp)T , the covariate Z doesn’t necessarily have
the same dimension as the unknown parameter vector β in g(Z,β), ε is the random error with E(ε |
X,U,Z) = 0 and Var(ε | X,U,Z) = σ2.

This model which was first proposed by Li and Mei [1] contains many important submodels such
as varying coefficient model, nonlinear model, partially nonlinear model and varying coefficient
partially linear model, and it is valuable and meaningful to do some statistical researches on
VCPNLMs. In Li and Mei [1], they proposed a profile nonlinear least squares estimation approach for
the parameter vector β and coefficient function vector θ(U). Yang and Yang [2] proposed a two-stage
estimation by employing an orthogonality-projection-based method for parametric coefficient
estimation, then developed a variable selection procedure for the coefficient functions based on
smooth-threshold estimating equations. Qian and Huang [3] considered the corrected profile least
squares estimation procedure with measurement errors for the nonparametric part, and a generalized
likelihood ratio test to check whether the coefficient functions are a constant or not. Zhou, Zhao and
Wang [4] applied the empirical likelihood technique to obtain the confidence regions for the unknown
parameter vector and the nonparametric vector. In Jiang, Ji and Xie [5], a robust estimation procedure
based on exponential squared loss function was proposed. Xiao and Chen [6] developed a
bias-corrected profile least squares estimation procedure with additive measurement errors and the
likelihood ratio test approach for VCPNLM. Recently, Wang, Zhao and Du [7] studied statistical
inferences for this model with missing covariates, first they proposed an inverse probability weighted
profile nonlinear least squares technique for estimating the unknown parameter and the nonparametric
function, then they considered empirical likelihood inferences for the unknown parameter and
nonparametric function.

To our best knowledge, there is no literature to study the inferences for VCPNLM with missing
responses. In fact, missing responses is common in opinion polls, mail enquiries, market research
surveys, medical studies, socioeconomic investigations and other scientific experiments. In such
circumstances, the early method to deal with missing responses at random is complete data method,
please refer to Little and Rubin [8]. However, this method may lose plenty of information by simply
ignoring the missing data. To improve the accuracy of the estimators, a natural method is to impute a
value for each missing response in order to achieve a full data set, see Cheng [9], Wang and
Rao [10, 11], Wang, Linton and Hardle [12], but not confined these. In Xue [13, 14], the weighted
imputation method was used to construct weighted-corrected empirical likelihood ratio for the
parameters of interest when the regression model is linear and nonparametric. Further, Wang, Chen
and Lin [15] generalized the weighted corrected method to estimating equation and defined the
weighted-corrected estimating function, then proved an empirical log-likelihood ratio based on the
weighted-corrected estimating function to be a standard chi-square distribution asymptotically under
some suitable conditions. Inspired by Xue [13, 14] and Wang, Chen and Lin [15], in this paper we
extend the weighted imputation method to VCPNLM with missing responses. Firstly, the profile
nonlinear least squares inference of the complete data method and the asymptotic normality properties
of the resulting estimators are finished, then based on estimators of the complete data, we impute a
value for each missing response by the inverse probability weighted method, the asymptotic normality
and confidence regions are established. In addition, due to the advantages of the empirical likelihood
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method introduced by Owen [16, 17] in constructing confidence region, we apply empirical likelihood
method to the imputed data, the confidence regions for the parameter and the response mean, the
point-wise confidence intervals for coefficient function are also obtained. From simulation studies, we
find that the empirical likelihood based on the weighted imputation method outperforms the profile
nonlinear least squares estimation based on the weighted imputation method.

The rest of this paper is organized as follows. In Section 2, the profile nonlinear least squares
estimation of the complete data method and the weighted imputation method for β and θ(U) are
proposed. In Section 3, empirical likelihood inferences based on the weighted imputation method for
the unknown parameter and nonparametric function are suggested. The response mean estimation is
considered in Section 4. In Section 5, some simulation studies and real data analysis are conducted to
assess the performance of two methods. Discussion is made in Section 6 and technical proofs are
provided in Section 7.

2. The estimation based on the profile nonlinear least squares

Suppose that {Yi,Xi,Ui,Zi, i = 1, 2, · · · , n} is a random sample from the following varying
coefficient partially nonlinear model

Y = XTθ(U) + g(Z,β) + ε,

where {(Xi,Ui,Zi), i = 1, 2, . . . , n} is completely observable, the response Yi is missing at random
(MAR). Introducing the indicator variable δi, when Yi is observed, then δi = 1 , otherwise δi = 0.

The response probability, also called the propensity score or selection probability function under
MAR assumption, is given by

P(δi = 1|Yi,Xi,Ui,Zi) = P(δi = 1|Xi,Ui,Zi) = π(Xi,Ui,Zi).

It is essential to estimate the completely unknown propensity score function before we construct
estimators for β and θ(·). We posit the following logistic model for π(Xi,Ui,Zi), that is

π(Vi,ω) =
exp(ω0 + ωT

1 Xi + ω2Ui + ωT
3 Zi)

1 + exp(ω0 + ωT
1 Xi + ω2Ui + ωT

3 Zi)
,

where Vi = (XT
i ,Ui,ZT

i )T , and ω = (ω0,ω
T
1 , ω2,ω

T
3 )T is an unknown parameter vector. Naturally, ω

can be estimated by maximizing the log-likelihood function:

lnL(ω) =

i=n∑
i=1

{δilnπ(Vi,ω) + (1 − δi)ln[1 − π(Vi,ω)]},

then the estimator of π(Vi,ω) is π(Vi, ω̂), for details, please refer to Chen, Feng and Xue [18].

2.1. The least squares estimation of the complete data method

The following model
δiYi = δiXT

i θ(Ui) + δig(Zi,β) + δiεi, (2.1)
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is complete case, for u in a small neighborhood of u0, applying the Taylor expansion for θ j(u) gives
θ j(u) ≈ θ j(u0) + θ′j(u0)(u − u0), j = 1, 2, · · · , q. Suppose that β is known in advance, we employ the
local linear method and minimize the following objective function to estimate the varying coefficient
functions θ(u),

n∑
i=1

δi{Yi − g(Zi,β) −
q∑

j=1

[θ j(u0) + θ′j(u0)(Ui − u0)]Xi j}
2K1,h1(Ui − u0), (2.2)

where K1,h1(·) = K(·/h1)/h1 is the kernel function with bandwidth h1.
Denote

Y = (Y1, · · · ,Yn)T , g(Z,β) = (g(Z1,β), · · · , g(Zn,β))T ,M = (XT
1 θ(U1), · · · ,XT

n θ(Un))T ,

Ψ(u0) = (θT (u0), h1θ
′T (u0))T ,W1(u0) = diag(K1,h1(U1 − u0), · · · ,K1,h1(Un − u0)),∆ = diag(δ1, · · · , δn),

and

Xh1(u0) =


XT

1 h−1
1 (U1 − u0)XT

1
...

...

XT
n h−1

1 (U1 − u0)XT
n

 .
Then the solution of the weighted least squares problem (2.2) can be expressed as

Ψ̂c(u0,β) = [XT
h1

(u0)W1(u0)∆Xh1(u0)]−1XT
h1

(u0)W1(u0)∆[Y − g(Z,β)],

the estimator of the coefficient function vector θ(u) at u0 is

θ̂c(u0,β) = (Iq×q, 0q×q)[XT
h1

(u0)W1(u0)∆Xh1(u0)]−1XT
h1

(u0)W1(u0)∆[Y − g(Z,β)].

Let

M̂ =


XT

1 θ̂c(U1,β)
...

XT
n θ̂c(Un,β)

 =̂Sh1[Y − g(Z,β)],

where

Sh1 =


(XT

1 01×q)[XT
h1

(U1)W1(U1)∆Xh1(U1)]−1XT
h1

(U1)W1(U1)∆
...

(XT
n 01×q)[XT

h1
(Un)W1(Un)∆Xh1(Un)]−1XT

h1
(Un)W1(Un)∆

 ,
then, minimizing the following profile nonlinear least squares function with respect to β

Qc(β) =

n∑
i=1

δi[Yi − XT
i θ̂c(Ui,β) − g(Zi,β)]2

= [Y − g(Z,β)]T (In − Sh1)
T∆(In − Sh1)[Y − g(Z,β)]

yields the profile nonlinear least squares estimator β̂c of the complete data method. Then, substituting
β̂c into θ̂c(u0,β) , we obtain the estimator θ̂c(u0, β̂c) of θ̂c(u0,β).

We define some necessary notations as follows:

µ1, j =

∫
µ jK1,h1(u)du, ν1, j =

∫
µ jK2

1,h1
(u)du, g′(Z,β) = ∂g(Z,β)/∂β,
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Γ(u) = E(π(V)XXT |U = u), Φ(u) = E[π(V)Xg′(Z,β0)T |U = u].

Theorem 2.1.1 Suppose that the conditions C1−C8 in Section 7 hold, and β0 is the true parameter
vector of β, then

√
n(β̂c − β0)

D
−→ N(0, σ2Σ−1),

where ”
D
−→” stands for the convergence in distribution, Σ = E[π(V)g′(Z,β0)g′(Z,β0)T ]−

E[Φ(U)TΓ−1(U)Φ(U)].
Theorem 2.1.2 Suppose that the conditions C1 −C8 in Section 7 hold. For any u0 ∈ Ω, we have√

nh1

[
Ψ̂c(u0, β̂c) −Ψ0(u0) −

1
2

h2
1µ1,2

(
θ′′0 (u0)

0

)]
D
−→ N(0,Σ1),

where Σ1 = σ2 f −1(u0)Γ−1(u0) ⊗
(
ν1,0 0
0 ν1,2µ

−2
1,2

)
, and ⊗ denotes the Kronecker product. In particular,

we have √
nh1[θ̂c(u0, β̂c) − θ0(u0) −

1
2

h2
1µ1,2θ

′′
0 (u0)]

D
−→ N(0, σ2ν1,0 f −1(u0)Γ−1(u0)).

2.2. The least squares estimation based on the weighted imputation method

Although the implementation of the complete case method is simple, it may result in an inefficient
estimator and the loss of a great of information by simply ignoring the missing data. In this section,
we introduce a weighted imputation method to deal with the problems.

Let
Y̆i =

δi

π̂(Vi)
Yi + (1 −

δi

π̂(Vi)
)[XT

i θ̂c(Ui, β̂c) + g(Zi, β̂c)], (2.3)

where π̂(Vi) denotes π(Vi, ω̂), the estimator of π(Vi,ω). According to the profile nonlinear least squares
method similar to section 2.1, we can obtain

Ψ̂I(u0,β) = [XT
h2

(u0)W2(u0)Xh2(u0)]−1XT
h2

(u0)W2(u0)[Y̆ − g(Z,β)],

θ̂I(u0,β) = (Iq×q, 0q×q)[XT
h2

(u0)W2(u0)Xh2(u0)]−1XT
h2

(u0)W2(u0)[Y̆ − g(Z,β)],

where

Xh2(u0) =


XT

1 h−1
2 (U1 − u0)XT

1
...

...

XT
n h−1

2 (U1 − u0)XT
n

 , Y̆ = (Y̆1, · · · , Y̆n)T , W2(u0) = diag(K2,h2(U1 − u0), · · · ,K2,h2(Un −

u0)), K2,h2(·) = K(·/h2)/h2 is the kernel function with bandwidth h2. Minimizing the following function
with respect to β

Q(β) =

n∑
i=1

[Y̆i − XT
i θ̂I(Ui,β) − g(Zi,β)]2,

we can obtain the profile nonlinear least squares estimator β̂I of the weighted imputation method. Then,
substituting β̂I into θ̂I(u0,β) gives the estimator θ̂I(u0, β̂I) of θ̂I(u0,β).

Denote A⊗2 = AAT for a vector or matrix A, µ2, j =
∫
µ jK2,h2(u)du, ν2, j =

∫
µ jK2

2,h2
(u)du,

Γ∗(u) = E(XXT |U = u), Φ∗(u) = E[Xg′(Z,β)T |U = u].
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The following Theorem 2.2.1 and Theorem 2.2.2 give the asymptotic normality of β̂I and θ̂I(u0, β̂I),
respectively.

Theorem 2.2.1 Suppose that the conditions C1 −C8 in Section 7 hold and β0 is the true parameter
vector of β, then

√
n(β̂I − β0)

D
−→ N(0,Σ−1

3 Σ4Σ
−1
3 ),

where Σ3 = E[g′(Z,β0)g′(Z,β0)T ]−E[Φ∗(U)TΓ∗(U)−1Φ∗(U)], Σ4 = E[π−1(V)ε2g′(Z,β0)g′(Z,β0)T ]−
E[π−1(V)ε2Φ∗(U)TΓ∗(U)−1Φ∗(U)].

Remark 1: As a consequence of Theorem 2.2.1, we can construct the normal approximated 1 − α
confidence region based on the weighted imputation method (INA) for β :

CINA(α) = {β : n(β̂I − β)T (Σ̂−1
3 Σ̂4Σ̂

−1
3 )−1(β̂I − β) ≤ χ2

1−α(p)},

where Σ̂3 = 1
ng′(Z, β̂I)T (In−Sh2)

T (In−Sh2)g′(Z, β̂I), Σ̂4 = 1
n [g′(Z, β̂I)T (In−Sh2)

T (In−Sh2)(Y̆−g(Z, β̂I))]⊗2

and

Sh2 =


(XT

1 01×q)[XT
h2

(U1)W2(U1)Xh2(U1)]−1XT
h2

(U1)W2(U1)
...

(XT
n 01×q)[XT

h2
(Un)W2(Un)Xh2(Un)]−1XT

h2
(Un)W2(Un)

 .
Theorem 2.2.2 Suppose that the conditions C1 −C8 in Section 7 hold. For any u0 ∈ Ω, we have√

nh2

[
Ψ̂I(u0, β̂I) −Ψ0(u0) −

1
2

h2
2µ2,2

(
θ′′0 (u0)

0

)]
D
−→ N(0,Σ5),

where Σ5 = f −1(u0)Γ∗(u0)−1E[π−1(V)ε2XXT |U = u0]Γ∗(u0)−1 ⊗

(
ν2,0 0
0 ν2,2µ

−2
2,2

)
. In particular, we have

√
nh2[θ̂I(u0) − θ0(u0) −

1
2

h2
2µ2,2θ

′′
0 (u0)]

D
−→ N(0, f −1(u0)Γ∗(u0)−1ν2,0E[π−1(V)ε2XXT |U = u0]Γ∗(u0)−1),

where θ̂I(u0) denotes θ̂I(u0, β̂I).

3. The empirical likelihood based on the weighted imputation method

3.1. The empirical likelihood for the unknown parametric vector

Let
∂Q(β)
∂β

= −2
n∑

i=1

g̃′(Zi,β)[Ỹi − g̃(Zi,β)],

where Ỹi = Y̆i −
∑n

k=1 S h2,ikY̆k, g̃(Zi,β) = g(Zi,β) −
∑n

k=1 S h2,ikg(Zk,β), g̃′(Zi,β) = g′(Zi,β)−∑n
k=1 S h2,ikg′(Zk,β), g′(Zi,β) =

∂g(Zi,β)
∂β

, S h2,ik is the (i, k)-th element of matrix Sh2 . Thus the auxiliary
random vector of β can be introduced as

ηi(β) = g̃′(Zi,β)[Ỹi − g̃(Zi,β)].

Therefore, we can define the empirical log-likelihood ratio function for β as follows

L(β) = max{
n∑

i=1

log(npi)|pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piηi(β) = 0}.
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By using the Lagrange multiplier method, L(β)) can be expressed as

L(β) = −

n∑
i=1

log(1 + λTηi(β)),

where λ is the lagrange multiplier and satisfies 1
n

∑n
i=1

ηi(β)
1+λTηi(β) = 0. The maximum empirical likelihood

estimator (MELE) β̂E of β can be obtained by

β̂E = arg max
β

L(β).

The following Theorem 3.1.1 gives the asymptotic behavior of −2L(β).
Theorem 3.1.1 Suppose that the conditions C1−C8 in Section 7 hold, and β0 is the true parameter

vector of β, then
−2L(β0)

D
−→ χ2(p).

Remark 2: As a consequence of Theorem 3.1.1, for any 0 < α < 1, the empirical likelihood
confidence region of β based on the weighted imputation method (IEL) can be constructed as

CIEL(α) = {β : −2L(β) ≤ χ2
1−α(p)}.

The following Theorem 3.1.2 gives the asymptotic behavior of β̂E, which shows that β̂E is
asymptotically equivalent to β̂I obtained in Theorem 2.2.1.

Theorem 3.1.2 Suppose that the conditions C1−C8 hold in Section 7, and β0 is the true parameter
vector of β, then

√
n(β̂E − β0)

D
−→ N(0,Σ−1

3 Σ4Σ
−1
3 ).

3.2. The empirical likelihood for the nonparametric vector

If β is known in advance, we notice E{X[Y̆− g(Z,β)−XTθ(u)]} f (u) = 0 , where f (u) is the density
function of U. Thus, an auxiliary random vector for θ(u) can be given by

ζi(θ(u)) = Xi[Y̆i − g(Zi,β) − XT
i θ(u)]K2,h2(Ui − u).

Noting that E[ζi(θ(u))] = o(1), i = 1, · · · , n, the empirical log-likelihood ratio for θ(u) can be
introduced by

l(θ(u)) = max{
n∑

i=1

log(npi)|pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piζi(θ(u)) = 0}.

Because β is unknown, we can replace β with its MELE β̂E, then obtain an estimated auxiliary random
vector

ζ̃i(θ(u)) = Xi[Y̆i − g(Zi, β̂E) − XT
i θ(u)]K2,h2(Ui − u).

The corresponding empirical log-likelihood ratio for θ(u) is

l̃(θ(u)) = max{
n∑

i=1

log(npi)|pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piζ̃i(θ(u)) = 0}.
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But the distribution of l̃(θ(u)) is not a standard chi-square distribution except under the case of
undersmoothing. Following Zhou, Zhao and Wang [4], we also propose the residual adjusted
auxiliary random vector as follows

ζ̂i(θ(u)) = Xi{Y̆i − g(Zi, β̂E) − XT
i θ(u) − XT

i [θ̂I(Ui, β̂I) − θ̂I(u, β̂I)]}K2,h2(Ui − u),

where θ̂I(·) is the profile nonlinear least squares estimator of the weighted imputation method.
Therefore, a residual adjusted estimated empirical log-likelihood ratio for θ(u) can be defined as

l̂(θ(u)) = max{
n∑

i=1

log(npi)|pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piζ̂i(θ(u)) = 0}.

By using the Lagrange multiplier method, l̂(θ(u)) can be expressed as

l̂(θ(u)) = −

n∑
i=1

log(1 + γT ζ̂i(θ(u))),

where γ is the solution of the following equation

1
n

n∑
i=1

ζ̂i(θ(u))
1 + γT ζ̂i(θ(u))

= 0.

Theorem 3.2.1 Suppose that the conditions C1 −C8 in Section 7 hold, θ0(u) is the true function of
θ(u), then

−2l̂(θ0(u))
D
−→ χ2(q).

Remark 3: As a consequence of Theorem 3.2.1, for any 0 < α < 1, the empirical likelihood
confidence region of θ(u) based on the weighted imputation method (IEL) can be constructed as

CIEL(α) = {θ(u) : −2l̂(θ(u)) ≤ χ2
1−α(q)}.

4. The response mean estimation

4.1. The normal approximated confidence interval of the response mean

Sometimes E(Y) = µ is the parameter we’re interested in. We propose the weighted imputation
method to estimate the response mean, so µ is estimated by

µ̂ =
1
n

n∑
i=1

{
δi

π̂(Vi)
Yi + (1 −

δi

π̂(Vi)
)[XT

i θ̂c(Ui, β̂c) + g(Zi, β̂c)]}.

The asymptotic normality of µ̂ is given in the following theorem.
Theorem 4.1.1 Suppose that the conditions C1 − C8 hold in Section 7, µ0 is the true parameter of

µ, then
√

n(µ̂ − µ0)
D
−→ N(0,Λ),

where Λ = E[ σ2

π(V) ] + Var[XTθ(U) + g(Z,β)],V = (X,U,Z)T ,Var(ε|V) = σ2.
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Remark 4: As a consequence of Theorem 4.1.1, we can construct the normal approximated 1 − α
confidence interval based on the weighted imputation method (INA) for µ :

CINA(α) =

µ̂ − z1− α2

√
Λ̂

n
, µ̂ + z1− α2

√
Λ̂

n

 ,
where Λ̂ = 1

n

∑
(Y̆i − µ̂)2, Y̆i = δi

π̂(Vi)
Yi + (1 − δi

π̂(Vi)
)[XT

i θ̂c(Ui, β̂c) + g(Zi, β̂c)].

4.2. The empirical likelihood confidence interval of the response mean

To construct the empirical likelihood ratio of µ, we introduce the auxiliary random vector

Y∗i =
δi

π(Vi)
Yi + (1 −

δi

π(Vi)
)[XT

i θc(Ui,βc) + g(Zi,βc)].

When the response is missing at random, we have E(Y∗i ) = µ. Since Y∗i is unknown, we need to
replace it by its estimators

Y̆i =
δi

π̂(Vi)
Yi + (1 −

δi

π̂(Vi)
)[XT

i θ̂c(Ui, β̂c) + g(Zi, β̂c)].

Then we can define the empirical log-likelihood ratio function for µ as follows

R(µ) = max{
n∑

i=1

log(npi)|pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piY̆i = µ}.

By using the Lagrange multiplier method, R(µ) can be expressed as

R(µ) = −

n∑
i=1

log(1 + ρ(Y̆i − µ)),

where ρ = ρ(µ) is the lagrange multiplier and satisfies 1
n

∑n
i=1

Y̆i−µ

1+ρ(Y̆i−µ)
= 0.

The following Theorem 4.2.1 gives the asymptotic distribution of −2R(µ).
Theorem 4.2.1 Suppose that the conditions C1 − C8 in Section 7 hold, µ0 is the true parameter of

µ, then
−2R(µ0)

D
−→ χ2(1).

Remark 5: As a consequence of Theorem 4.2.1, for any 0 < α < 1, the empirical likelihood
confidence interval of µ based on the weighted imputation method (IEL) can be constructed as

CIEL(α) = {µ : −2R(µ) ≤ χ2
1−α(1)}.

5. Simulation study

5.1. Numerical simulation

We conducted simulation studies to assess the performance of the estimation methods in Sections
2, 3 and 4. Assume the data come from the following varying coefficient partially nonlinear model,
which is also considered in Li and Mei [1], Zhou, Zhao and Wang [4], Wang, Zhao and Du [7],

Y = Xθ(U) + g(Z1,Z2; β1, β2) + ε,
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where θ(U) = sin(2πU) and g(Z1,Z2; β1, β2) = exp{Z1β1 + Z2β2} with β1 = 1, β2 = 2, X ∼ N(0, 1),
U ∼ U(0, 1), Z1 ∼ U(0, 1), Z2 ∼ U(0, 1), ε ∼ N(0, 0.5). Throughout this section, the kernel function
is taken as the Epanechnikov kernel K(u) = 0.75(1 − u2)+, the bandwidth h1 and h2 are taken by the
leave-one-sample-out method in the cross-validation criterion, namely, we can get the bandwidth by
minimizing the following formula,

CV(h) =
1
n

n∑
i=1

[Yi − g(Zi, β̃
[i]) − XT

i θ̃
[i](Ui)]2,

where β̃[i], θ̃[i](Ui) are the leave-one-out estimators of β and θ(·), respectively, which are computed with
the data, but the i-th observation is deleted. Three selection probability functions are chosen as:

π1(x, u, z) = P(δ = 1|X = x,U = u,Z = (z1, z2)) = [1 + exp(−1 + 0.8x − 1.5u + 0.5z1 − z2)]−1,

π2(x, u, z) = P(δ = 1|X = x,U = u,Z = (z1, z2)) = [1 + exp(−1 + 0.8x − 1.7u + 2z1 − z2)]−1,

π3(x, u, z) = P(δ = 1|X = x,U = u,Z = (z1, z2)) = [1 + exp(−0.7 − x + 0.5u − 0.3z1 + 0.25z2)]−1.

The missing data are generated by the method described in Section 4 in Wang, Chen and Lin [15],
the average missing probability of Y for above three cases is about 15%, 25%, 40%. In the following,
the sample size n is taken to be 100, 200, 300, respectively, and 1000 replications for each case.

5.1.1. The performance of parametric confidence regions

For parameter components, we consider two confidence regions of β = (β1, β2)T with nominal level
95%: the normal approximated confidence region of the weighted imputation method (INA) based
on Theorem 2.2.1, and the empirical likelihood confidence region of the weighted imputation method
(IEL) based on Theorem 3.1.1. The confidence regions of β = (β1, β2)T for above three selection
probability functions are presented in Figure 1.

From Figure 1, we have the following conclusions for parametric confidence regions. In the case of
the same missing rate, the confidence regions of IEL and INA will become smaller with the increase of
sample size, but the confidence regions of IEL are always smaller than that of INA. In addition, in the
case of the same sample size, the confidence regions of IEL and INA will be larger with the increase
of the missing rate, but the IEL confidence regions always keep smaller than that of INA. In one word,
the results in Figure 1 illustrate that the IEL method performs better than the INA method.

5.1.2. The performance of nonparametric confidence regions

For the nonparametric component θ(u), we also consider two confidence regions with nominal
level 95% using two methods: the normal approximated confidence region (INA) based on Theorem
2.2.2 , and the empirical likelihood confidence region (IEL) based on Theorem 3.2.1. The pointwise
confidence intervals for θ(u) are shown in Figure 2.

From Figure 2, we can obtain that, for the same missing rate and sample size, the associated
pointwise confidence intervals of IEL method have uniformly shorter average lengths than that of the
INA method for θ(u), which is similar to the parametric components.
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Figure 1. The 95% confidence regions for the parametric component based on the INA
method (dashed curves) and IEL method (dotted curves) for three selection probability
functions and sample sizes.

5.1.3. The performance of the response mean

For the response mean, we also consider two methods: the normal approximated confidence
intervals based on Theorem 4.1.1, and the empirical likelihood confidence intervals based on
Theorem 4.2.1. The average lengths and empirical coverage probabilities of the confidence intervals
with a nominal level 1 − α = 0.95 for above three selection probability functions and samples are
presented in Table 1.
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Figure 2. The 95% pointwise confidence intervals for the nonparametric components based
on the INA method (dashed curves) and IEL method (dotted curves) for three selection
probability functions and sample sizes, where the solid curve is the real curve.

From Table 1, we can have the following findings:
(1) When the missing rate and sample size are the same, the average lengths of the confidence

intervals under the IEL method are always shorter than that under the INA method, and the IEL method
maintains a higher coverage probabilities than the INA method;

(2) In the case of the same missing rate, with the increase of the sample size, the lengths of the
confidence intervals of INA and IEL methods will become shorter and the coverage probabilities will
become larger, but IEL method has always maintained a shorter confidence intervals and higher
coverage probabilities than INA method;
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Table 1. The 95% confidence intervals average lengths (AL) and coverage probabilities
(CP) for the response mean based on the INA method and IEL method for three selection
probability functions and sample sizes.

AL (Average lengths) CP (Coverage probabilities)
INA IEL INA IEL

15% missing rate
n = 100 1.4443 1.2189 0.944 0.945
n = 200 1.0235 0.9896 0.948 0.954
n = 300 0.8344 0.8303 0.957 0.960

25% missing rate
n = 100 1.4512 1.2222 0.940 0.942
n = 200 1.0298 0.9934 0.947 0.951
n = 300 0.8437 0.8378 0.953 0.955

40% missing rate
n = 100 1.4611 1.2264 0.936 0.939
n = 200 1.0424 1.0029 0.945 0.950
n = 300 0.8508 0.8442 0.946 0.952

(3) In the case of the same sample size, with the increase of the missing rate, the average lengths of
the confidence intervals of INA and IEL will become larger and the coverage rate will become smaller,
however, IEL method also keeps shorter confidence interval and higher coverage than INA method.

The simulation results show that IEL method has better advantages than INA method in terms of
average lengths and coverage probabilities of confidence intervals. In addition, in the case of the same
sample size, with the change of the missing rate, the average lengths of the confidence intervals of INA
and IEL only slightly changes, which shows that the weighted imputation method is very effective.

From Figures 1, 2 and Table 1, we can conclude that IEL method outperforms INA method, so we
propose IEL method to the following real data example.

5.2. A real data example

In this section, we illustrate the application of the proposed method by analyzing the Boston housing
price data which consists of 506 observations from Boston Standard Metropolitan Statistical Area in
1970. This data have also been studied in Li and Mei [1], Zhou, Zhao and Wang [4], and Wang, Zhao
and Du [7]. To illustrate the proposed method, we analyze this data by using the following varying
coefficient partially nonlinear model:

Y = θ0(U) + X1θ1(U) + X2θ2(U) + X3θ3(U) + X4θ4(U) + exp(Z1β1 + Z2β2) + ε,

where the response variable Y denotes the median value of owner-occupied homes in $1000, X1 denotes
the per capita crime rate by town, X2 denotes the average number of rooms per dwelling, X3 denotes
the full value property tax per $10, 000, X4 denotes the nitrogen oxide concentration in parts per 10
million, Z1 denotes the pupil−teacher ratio by town school district, Z2 denotes the proportion of owner-
occupied homes built prior to 1940, and U denotes the square root of the proportion of population that
is in the lower status.
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We assume that the missing rate of Y is about 20% , and δ is randomly generated in simulation by
the method mentioned in Section 4 in Wang, Chen and Lin [15], the kernel function is taken as the
Epanechnikov kernel K(u) = 0.75(1 − u2)+, the bandwidth h1 and h2 are also taken by the leave-one-
sample-out method in the cross-validation criterion, and the run number is 1000.

Based on our IEL method, the estimator of β = (β1, β2)T is (−0.3029, 0.0598)T , whose signs is
consistent with that obtained in Zhou, Zhao and Wang [4], but the estimator value is slightly different
because 20% Y is imputed by the weighted imputation method. The confidence region of
β = (β1, β2)T and the pointwise confidence intervals for the nonparametric component θ0(u) ∼ θ4(u)
with nominal level 95% are shown in Figures 3 and 4, respectively. It can be seen from Figure 4 that,
the estimated coefficient functions for each nonparametric components based on IEL are very similar
to the Figure 5 in Zhou, Zhao and Wang [4], however, the latter was obtained without missing data.
We also calculated the 95% confidence interval of the response mean, it is (21.7773, 23.3864), whose
length is 1.6090, and the estimator of the response mean is 22.5528. This further confirms that the
proposed IEL method with missing responses is preferable in real data analysis.
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Figure 3. Application to Boston housing price data with 20% Y missing. The 95%
confidence region for the parametric components (β1, β2).

6. Discussion

In this article, we have proposed a weighted imputation method based on the profile nonlinear
least squares and empirical likelihood to the varying coefficient partially nonlinear model with missing
responses. The asymptotic properties of our proposals have been obtained under certain conditions.
Our simulation studies reveal that empirical likelihood of the weighted imputation method has better
advantages than the profile nonlinear least squares.

At last, we put forward some further research topics. First, in this paper, we only focus on estimation
of VCPNLM, variable selection and model averaging procedures with missing response are also the
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Figure 4. Application to Boston housing price data with 20% Y missing. The 95% pointwise
confidence intervals for the nonparametric component θ0(u) ∼ θ4(u), which are presented in
figures (a) ∼ (e) respectively. Here, the solid curve is the estimated coefficient functions, and
the dashed curve is the corresponding 95% pointwise confidence intervals.

directions for future work. Second, when the missing mechanism is not missing at random, or the
data has a heavy tailed or skewed distribution, how to use the method proposed in Wang, Song and
Lin [21] and Wang, Song and Zhang [22] to VCPNLM is deserved further study. Third, the logistic
model for the selection probability function is assumed in our article, when the selection probability is
misspecified, how to utilizes the covariate information suggested in Sun, Luan and Jiang [23] to derive
a robust estimation of the selection probability is worth further study. At last, how to generalize our
method to optimal reinsurance problems of Fang, Cheng and Qu [24] and Fang, Wang, Liu and Li [25]
is also an interesting topic.

7. Proofs

The Assumptions required in this paper are following, which can also be found in Li and Mei
[1], Zhou, Zhao and Wang [4], Xiao and Chen [6], Wang, Zhao and Du [7] and other missing data
literatures.

C1: The covariate U has a bounded support Ω, its density function f (u) is Lipschitz continuous and
bounded away from 0 on its support Ω.

C2: All the coefficient functions {θ j(U), j = 1, · · · , q} have continuous second derivatives in U ∈ Ω.
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C3: For any Z, g(Z,β) is a continuous function of β, and the second derivatives of g(Z,β) with
respect to β are all continuous.

C4: There is an s > 2.5 such that E(||X||2s) < ∞ and E(||g′(Z,β)||2s) < ∞, and for some 0 < δ <

2 − s−1, there is n2δ−1h1 → ∞, n2δ−1h2 → ∞, where|| · || represents Euclidean norm.
C5: The matrices E[g′(Z,β)⊗2], E[E(g′(Z,β)|U)⊗2] and E[(Vech{g′′(Z,β)}|U)⊗2] are all bounded

in a neighborhood of β. E‖g′(Z,β)‖4 < ∞ and E‖Vechg′′(Z,β)‖4 < ∞.
C6: The kernel functions K1(·) and K2(·) are symmetric density functions with compact support.

Furthermore, they both satisfy the Lipschitz condition. The functions u3Ki(u) and u3K′i (u) are bounded
and

∫
u4Ki(u)du < ∞, i = 1, 2. The bandwidths hi satisfy nh8

i → 0, nh2
i /(logn)2 → ∞, hi → 0,

nhi → ∞, i = 1, 2, as n→ ∞.
C7: The q × q matrix Γ(U) and Γ∗(U) are nonsingular for each U ∈ Ω. The matrices Γ(U), Γ∗(U),

Γ(U)−1 Γ∗(U)−1, Φ(U), Φ∗(U) are all Lipschitz continuous.
C8: Under the support of (Xi,Ui,Zi), π(·) is bounded away from 0 and has a continuous two order

partial derivative.
Lemma 1. Let (X1,Y1), · · · , (Xn,Yn) be i.i.d. random vectors, where Yi is scalar random variable.

Further assume that E|Yi|
s < ∞ and supx

∫
|y|s f (x, y)dy < ∞, where f (., .) denotes the joint density

of (X,Y). Let K(·) be a bounded positive function with a bounded support, satisfying the Lipschitz
condition. Give that n2δ−1h→ ∞ for some δ < 1 − s−1, then

sup
x
|
1
n

n∑
i=1

{Kh(Xi − x)Yi − E[Kh(Xi − x)Yi]}| = Op({
log(1/h)

nh
}

1
2 ).

Proof: This Lemma follows from the result that was obtained by Mack and Silverman [19].
Lemma 2. Suppose that Conditions C1 −C8 hold, then as n −→ ∞, we have

1
n

Xh1(u)T W1(u)∆Xh1(u) = f (u)Γ(u) ⊗
(
1 0
0 µ1,2

)
[1 + Op(cn)], (7.1)

1
n

Xh1(u)T W1(u)∆g′(Z,β0) = f (u)Φ(u) ⊗ (1, 0)T [1 + Op(cn)], (7.2)

1
n

Xh1(u)T W1(u)∆M0 = Γ(u)θ0(u) f (u) ⊗ (1, 0)T [1 + Op(cn)], (7.3)

1
n

Xh1(u)T W1(u)∆ε = Op({
log(1/h1)

nh1
}

1
2 ), (7.4)

where cn = h2
1 + {

log(1/h1)
nh1
}

1
2 .

Proof: It is easy to obtain the following result

1
n

Xh1(u)T W1(u)∆Xh1(u) =

( 1
n

∑n
i=1 δiXiXT

i K1,h1(Ui − u) 1
n

∑n
i=1 δiXiXT

i (Ui−u
h1

)K1,h1(Ui − u)
1
n

∑n
i=1 δiXiXT

i (Ui−u
h1

)K1,h1(Ui − u) 1
n

∑n
i=1 δiXiXT

i (Ui−u
h1

)2K1,h1(Ui − u)

)
.

(7.5)
By Lemma 1 and the law of iterated expectations, we can easily derive

1
n

n∑
i=1

δiXiXT
i K1,h1(Ui − u) = Γ(u) f (u) + O(h2

1) + Op({
log(1/h1)

nh1
}

1
2 ) = Γ(u) f (u)[1 + Op(cn)]. (7.6)
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Similar to the proof of Eq (7.6), we have

1
n

n∑
i=1

δiXiXT
i (

Ui − u
h1

)K1,h1(Ui − u) = O(h2
1) + Op({

log(1/h1)
nh1

}
1
2 ),

1
n

n∑
i=1

δiXiXT
i (

Ui − u
h1

)2K1,h1(Ui − u) = Γ(u) f (u)µ1,2[1 + Op(cn)].

Hence, Eq (7.1) have been proofed. Similarly, Eqs (7.2), (7.3) and (7.4) can be proved.
Lemma 3. Suppose that Conditions C1 −C8 hold, we have

1
n

g′(Z,β0)T (In − Sh1)
T∆(In − Sh1)g

′(Z,β0) = Σ{1 + op(1)}, (7.7)

where Σ = E[π(V)g′(Z,β0)g′(Z,β0)T ] − E[Φ(U)TΓ(U)−1Φ(U)],

1
n

g′(Z,β0)T (In − Sh1)
T∆(In − Sh1)[Y − g(Z,β0)] = ξn + Op(c2

n), (7.8)

where ξn = 1
n

∑n
i=1 δi{g′(Zi,β0) − E[g′(Zi,β0)XT

i |U = Ui]Γ(Ui)−1Xi}εi.
Proof: By combining (7.1) with (7.2), we deduce that

(XT , 0)[Xh1(u)T W1(u)∆Xh1(u)]−1Xh1(u)T W1(u)∆g′(Z,β0) = XTΓ(U)−1Φ(u)[1 + Op(cn)].

By the weak law of large numbers and above formula, we have

1
n

g′(Z,β0)T (In − Sh1)
T∆(In − Sh1)g

′(Z,β0) = Σ(1 + op(1)) + Op(c2
n)E[Φ(U)TΓ(U)−1Φ(U)][1 + op(1)].

Under the condition C6, c2
n = op(1), hence, Eq (7.7) holds.

Next we prove the Eq (7.8), let M0 = (XT
1 θ0(U1), · · · ,XT

n θ0(Un))T , with the help of Eqs (7.1) and
(7.3), we have

(XT , 0)[Xh1(u)T W1(u)∆Xh1(u)]−1Xh1(u)T W1(u)∆M0 = XTθ0(u)[1 + Op(cn)],

so
1
n

g′(β0)T (In − Sh1)
T∆(In − Sh1)M0 = E[Φ(U)Tθ0(U)][1 + op(1)]Op(c2

n) = Op(c2
n).

By Eqs (7.1), (7.4) and E(ε|V) = 0, we can derive

(XT , 0)[Xh1(u)T W1(u)∆Xh1(u)]−1Xh1(u)T W1(u)∆ε = Op(cn).

Then
1
n

g′(Z,β0)T (In − Sh1)
T∆(In − Sh1)ε = ξn + Op(c2

n).

So

1
n

g′(Z,β0)T (In−Sh1)
T∆(In−Sh1)[Y−g(Z,β0)] =

1
n

g′(Z,β0)T (In−Sh1)
T∆(In−Sh1)(M0+ε) = ξn+Op(c2

n).
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Hence Eq (7.8) is completed.
The proof of Theorem 2.1.1. We first prove the consistency of β̂c. It suffices to prove that for any

sufficiently small a,
lim
n→∞

P[sup
||t||=a

Qc(β0 + t) > Qc(β0)] = 1. (7.9)

With Taylor expansion to Qc(β0), we have Qc(β0 + t) − Qc(β0) = Q′c(β0)T t + 1
2 tT Q′′c (β∗)t, where

β∗ ∈ (β0,β0 + t), Q′c(β0) is the first derivative of Qc(β) at β0, and Q′′c (β∗) is the second derivative at
β∗, then we can prove tT Q′′c (β∗)t = 2n{tTΣt + Op(||t||3)}, this proof process is similar to the proof of
Theorem 1 in Li and Mei [1], we omit it here. Next we prove the asymptotic normality of β̂c.
Note that

Qc(β) =

n∑
i=1

δi[Yi − XT
i θ̂c(Ui,β) − g(Zi,β)]2 = [Y − g(Z,β)]T (In − Sh1)

T∆(In − Sh1)[Y − g(Z,β)],

and
Q′c(β0) = −2g′(Z,β0)T (In − Sh1)

T∆(In − Sh1)[Y − g(Z,β0)],

by Eq (7.8), we can show

1
n

Q′c(β0) = −
2
n

g′(Z,β0)T (In − Sh1)
T∆(In − Sh1)[Y − g(Z,β0)] = −2ξn + Op(c2

n).

It follows from the Taylor’s expansion that

0 = Q′c(β̂c) = Q′c(β0) + Q′′c (β∗)(β̂c − β0),
1
2n

Q′′c (β∗) = Σ{1 + op(1)}.

Thus,
√

nΣ{1 + op(1)}(β̂c − β0) =
√

nξn + Op(
√

nc2
n) =

√
nξn + op(1).

Note that,
√

nξn = 1
√

n

∑n
i=1 δi{g′(Zi,β0) − E[g′(Zi,β0)XT

i |U = ui]Γ(Ui)−1Xi}εi.

By the Slutsky theorem and the central limit theorem, we have

√
n(β̂c − β0)

D
−→ N(0, σ2Σ−1).

The proof of Theorem 2.1.2. By the definition of Ψ̂c(u0, β̂c) , we obtain

Ψ̂c(u0,βc) = [XT
h1

(u0)W1(u0)∆Xh1(u0)]−1XT
h1

(u0)W1(u0)∆[Y − g(Z, β̂c)]

= [XT
h1

(u0)W1(u0)∆Xh1(u0)]−1XT
h1

(u0)W1(u0)∆{M0 + ε − [g(Z, β̂c) − g(Z,β0)]}
= [XT

h1
(u0)W1(u0)∆Xh1(u0)]−1XT

h1
(u0)W1(u0)∆M0

+ [XT
h1

(u0)W1(u0)∆Xh1(u0)]−1XT
h1

(u0)W1(u0)∆ε

− [XT
h1

(u0)W1(u0)∆Xh1(u0)]−1XT
h1

(u0)W1(u0)∆[g(Z, β̂c) − g(Z,β0)]
=̂ I1 + I2 − I3.

First, we calculate I3,

I3 = [XT
h1

(u0)W1(u0)∆Xh1(u0)]−1XT
h1

(u0)W1(u0)∆[g′(Z,β0)(β̂c − β0) + Op||β̂c − β0||
2]

= Γ−1(u0){Φ(u0) ⊗ (1, 0)T + E(X|U = u0)Op(n−
1
2 )}[1 + Op(cn)]Op(n−

1
2 )
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= Op(n−
1
2 ).

Next we consider I1, since,

XT
h1

(u0)W1(u0)∆M0

= XT
h1

(u0)W1(u0)∆



XT

1 θ0(u0) + (U1 − u0)XT
1 θ
′
0(u0) + 1

2 (U1 − u0)2XT
1 θ
′′
0 (u0)

...

XT
n θ0(u0) + (Un − u0)XT

n θ
′
0(u0) + 1

2 (Un − u0)2XT
n θ
′′
0 (u0)

 + o(h2
1)


= XT

h1
(u0)W1(u0)∆Xh1(u0)Ψ0(u0) +

1
2

h2
1XT

h1
(u0)W1(u0)∆A(u0) + XT

h1
(u0)W1(u0)∆Ino(h2

1),

where

A(u0) =


(U1−u0

h1
)2XT

1 θ
′′
0 (u0)

...

(U1−u0
h1

)XT
n θ
′′
0 (u0)

 ,
and

XT
h1

(u0)W1(u0)∆A(u0) = n f (u0)Γ(u0) ⊗ (µ1,2, 0)T [1 + Op(cn)]θ′′(u0),

XT
h1

(u0)W1(u0)∆Ino(h2
1) = n f (u0)E(π(V)X|U = u0) ⊗ (1, 0)T [1 + Op(cn)]o(h2

1).

Then,

I1 = [XT
h1

(u0)W1(u0)∆Xh1(u0)]−1XT
h1

(u0)W1(u0)∆Xh1(u0)Ψ0(u0)

+
1
2

h2
1[XT

h1
(u0)W1(u0)∆Xh1(u0)]−1n f (u0)Γ(u0) ⊗ (µ1,2, 0)T [1 + Op(cn)]θ′′(u0)

+ [XT
h1

(u0)W1(u0)∆Xh1(u0)]−1n f (u0)E(π(V)X|U = u0) ⊗ (1, 0)T [1 + Op(cn)]o(h2
1)

= Ψ0(u0) +
1
2

h2
1µ1,2

(
θ′′0 (u0)

0

)
+ op(h2

1).

Hence, Ψ̂c(u0, β̂c) = Ψ0(u0) + 1
2h2

1µ1,2

(
θ′′0 (u0)

0

)
+ o(h2

1) + I2 + Op(n−
1
2 ).

Namely,
√

nh1

[
Ψ̂c(u0, β̂c) −Ψ0(u0) − 1

2h2
1µ1,2

(
θ′′0 (u0)

0

)]
=
√

nh1I2 + Op(
√

nh5
1 +
√

h1).

It is easy to derive

I2 =
1
n

f −1(u0)Γ−1(u0) ⊗
(
1 0
0 µ−1

1,2

)
[1 + Op(cn)]−1XT

h1
(u0)W1(u0)∆ε.

Since 1
nXT

h1
(u0)W1(u0)∆ε =

( 1
n

∑n
i=1 δiεiXiK1,h1(Ui − u0)

1
n

∑n
i=1 δiεiXi

Ui−u0
h1

K1,h1(Ui − u0)

)
,

and
√

nh1
1
nXT

h1
(u0)W1(u0)∆ε

D
−→ N(0,Σ∗), where Σ∗ = σ2Γ(u0) f (u0) ⊗

(
ν1,0 0
0 ν1,2

)
.
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Lastly, we can obtain√
nh1I2 = f −1(u0)Γ−1(u0) ⊗

(
1 0
0 µ−1

1,2

)
[1 + Op(cn)]−1

√
nh1

1
n

XT
h1

(u0)W1(u0)∆ε

D
−→ N(0, σ2 f −1(u0)Γ−1(u0) ⊗

(
ν1,0 0
0 ν1,2µ

−2
1,2

)
).

Now, the proof of Theorem 2.1.2 is completed.
Lemma 4. Suppose that Conditions C1 −C8 hold, then as n −→ ∞, we have

1
n

Xh2(u)T W2(u)Xh2(u) = f (u)Γ∗(u) ⊗
(
1 0
0 µ2,2

)
[1 + Op(c∗n)], (7.10)

1
n

Xh2(u)T W2(u)g′(Z,β0) = f (u)Φ∗(u) ⊗ (1, 0)T [1 + Op(c∗n)], (7.11)

1
n

Xh2(u)T W2(u)M0 = Γ∗(u)θ0(u) f (u) ⊗ (1, 0)T [1 + Op(c∗n)], (7.12)

1
n

Xh2(u)T W2(u)ε = Op({
log(1/h2)

nh2
}

1
2 ), (7.13)

1
n

Xh2(u)T W2(u)∆∗ε = Op({
log(1/h2)

nh2
}

1
2 ), (7.14)

where c∗n = h2
2 + {

log(1/h2)
nh2
}

1
2 .

Proof: The proof of Lemma 4 can be done in a similar way to Li and Mei [1], and we omit it here.
Lemma 5. Let T1, · · · ,Tn be independent and identically distributed random variables. If E|Ti|

s is
bounded for s > 1, then max1≤i≤n |Ti| = o(n1/s)a.s..

Proof: The proof of Lemma 5 can be referred to Shi and Lau [20].
Lemma 6. Let τi = (1,XT

i ,Ui,ZT
i )T , λmin denotes the minimum eigenvalue of

∑n
i=1 τiτ

T
i under the

condition that supi≥1 ||τi|| < ∞ and λmin → ∞, the quasi-likelihood estimation ω̂ = (ω̂0, ω̂
T
1 , ω̂2, ω̂

T
3 )T of

ω = (ω0,ω
T
1 , ω2,ω

T
3 )T satisfies

√
n(ω̂ − ω) = A−1n−

1
2

n∑
i=1

τi(δi − πi) + op(1),

where A = E[τ1τ
T
1 π1(1 − π1)].

Proof: This Lemma can be found in Chen, Feng and Xue [18].
Lemma 7. Let ∆∗ = diag{ δ1

π(V1) , · · · ,
δn

π(Vn) }, ∆̂
∗ = diag{ δ1

π̂(V1) , · · · ,
δn

π̂(Vn) }, then

||∆̂∗ − ∆∗|| = op(n−
1
2 + 1

2s ).

Proof: With the help of Lemma 5, Lemma 6 and Chen, Feng and Xue [18], Lemma 7 is easily
proved, we omit the details here.

Lemma 8. Suppose that Conditions C1 −C8 hold, we have

1
n

g′(Z,β0)T (In − Sh2)
T (In − Sh2)g

′(Z,β0) = Σ3{1 + op(1)}, (7.15)
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where Σ3 = E[g′(Z,β0)g′(Z,β0)T ] − E[Φ∗(U)TΓ∗(U)−1Φ∗(U)],

1
n

g′(Z,β0)T (In − Sh2)
T (In − Sh2)[Y̆ − g(Z,β0)] = ξ∗n + Op((c∗n)2). (7.16)

where ξ∗n = 1
n

∑n
i=1

δi
π(Vi)
{g′(Zi,β0) − E[g′(Zi,β0)XT

i |U = Ui]Γ∗(Ui)−1Xi}εi.
Proof: Eq (7.15) is similar to the proof of Eq (7.7), we omit the details here.

Next we consider (7.16), let M̂c =


XT

1 θ̂c(U1, β̂c)
...

XT
n θ̂c(Un, β̂c)

 ,
then,
1
ng′(Z,β0)T (In−Sh2)

T (In−Sh2)[Y̆−g(Z,β0)]

=
1
n

g′(Z,β0)T (In − Sh2)
T (In − Sh2){M0 + ∆̂∗ε + (In − ∆̂

∗)[g(Z, β̂c) − g(Z,β0)] + (In − ∆̂
∗)(M̂c −M0)}

=
1
n

g′(Z,β0)T (In − Sh2)
T (In − Sh2)M0

+
1
n

g′(Z,β0)T (In − Sh2)
T (In − Sh2)∆̂

∗ε

+
1
n

g′(Z,β0)T (In − Sh2)
T (In − Sh2)(In − ∆̂

∗)[g(Z, β̂c) − g(Z,β0)]

+
1
n

g′(Z,β0)T (In − Sh2)
T (In − Sh2)(In − ∆̂

∗)(M̂c −M0)

=̂ A1 + A2 + A3 + A4.

According to the similar proof to Eq (7.8), we obtain A1 = Op((c∗n)2).
It is easy to calculate

A2 =
1
n

g′(Z,β0)T (In − Sh2)
T (In − Sh2)(∆̂

∗ − ∆∗)ε

+
1
n

g′(Z,β0)T (In − Sh2)
T (In − Sh2)∆

∗ε

=̂ A21 + A22.

By Lemma 7 and condition C4,

||A21|| =
1
n
||g′(Z,β0)T (In − Sh2)

T (In − Sh2)(∆̂
∗ − ∆∗)ε|| = op(n−

1
2 ).

Using the similar arguments to the proof of Eq (7.8), we have

(XT , 0)[Xh2(u)T W2(u)Xh2(u)]−1Xh2(u)T W2(u)∆∗ε = Op(c∗n).

Then, A22 = ξ∗n + Op((c∗n)2). Thus A2 = A21 + A22 = ξ∗n + Op((c∗n)2).
Next, we consider A3, with the help of the proof method of I3 in the Theorem 2.1.2, we show

A3 =
1
n

g′(Z,β0)T (In − Sh2)
T (In − Sh2)(In − ∆

∗)[g(Z, β̂c) − g(Z,β0)]
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−
1
n

g′(Z,β0)T (In − Sh2)
T (In − Sh2)(∆̂

∗ − ∆∗)[g(Z, β̂c) − g(Z,β0)]

= Op(n−
1
2 ).

In the end, we derive

A4 =
1
n

g′(Z,β0)T (In − Sh2)
T (In − Sh2)(In − ∆

∗)Sh1[g(Z,β0) − g(Z, β̂c)]

−
1
n

g′(Z,β0)T (In − Sh2)
T (In − Sh2)(∆̂

∗ − ∆∗)Sh1[g(Z,β0) − g(Z, β̂c)]

= Op(n−
1
2 ).

Now, Eq (7.16) holds.
The proof of Theorem 2.2.1. Similar to the proof of Theorem 2.1.1 and the proof of Theorem 1

in Li and Mei [1], we have Q(β0 + t) − Q(β0) = Q′(β0)T t + 1
2 tT Q′′(β∗)t, where β∗ ∈ (β0,β0 + t). Due

to Q(β) =
∑n

i=1[Y̆i − XT
i θ̂(Ui,β) − g(Zi,β)]2 = [Y̆ − g(Z,β)]T (In − Sh2)

T (In − Sh2)[Y̆ − g(Z,β)], and
Q′(β0) = −2g′(Z,β0)T (In − Sh2)

T (In − Sh2)[Y̆ − g(Z,β0)], by Lemma 8, we can show

1
n

Q′(β0) = −
2
n

g′(Z,β0)T (In − Sh2)
T (In − Sh2)[Y̆ − g(Z,β0)] = −2ξ∗n + Op((c∗n)2).

With 0 = Q′(β̂I) = Q′(β0) + Q′′(β∗)T (β̂I − β0) and 1
2nQ′′(β∗) = Σ3{1 + op(1)} in hand, we have

√
nΣ3(1 + op(1))(β̂I − β0) =

√
nξ∗n + Op(

√
n(c∗n)2) =

√
nξ∗n + op(1).

Lastly, by the Slutsky theorem and the central limit theorem, we have

√
n(β̂I − β0)

D
−→ N(0,Σ−1

3 Σ4Σ
−1
3 ).

The proof of Theorem 2.2.2. After a series of calculations, we can obtain

Ψ̂I(u0, β̂I) = [Xh2(u0)T W2(u0)Xh2(u0)]−1Xh2(u0)T W2(u0)[Y̆ − g(Z, β̂I)]
= [Xh2(u0)T W2(u0)Xh2(u0)]−1Xh2(u0)T W2(u0)M0

+ [Xh2(u0)T W2(u0)Xh2(u0)]−1Xh2(u0)T W2(u0)∆̂∗ε
+ [Xh2(u0)T W2(u0)Xh2(u0)]−1Xh2(u0)T W2(u0)(In − ∆̂

∗)(In − Sh1)[g(Z, β̂c) − g(Z,β0)]
+ [Xh2(u0)T W2(u0)Xh2(u0)]−1Xh2(u0)T W2(u0)[g(Z, β̂I) − g(Z,β0)]
=̂ B1 + B2 + B3 + B4.

Similar to the proof of I1 in Theorem 2.1.2, we have

B1 = Ψ0(u0) +
1
2

h2
2µ2,2

(
θ′′0 (u0)

0

)
+ o(h2

2).

It is also easy for us to deduce

B2 = [Xh2(u0)T W2(u0)Xh2(u0)]−1Xh2(u0)T W2(u0)(∆̂∗ − ∆∗)ε
+ [Xh2(u0)T W2(u0)Xh2(u0)]−1Xh2(u0)T W2(u0)∆∗ε
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=̂ B21 + B22,

by Lemma 7 and Theorem 2.1.2, we can obtain

B21 = op(n−
1
2 + 1

2s ), B22 =
1
n

f −1(u0)Γ∗(u0)−1 ⊗

(
1 0
0 µ−1

2,2

)
[1 + Op(c∗n)]−1XT

h2
(u0)W2(u0)∆∗ε.

According to the central limit theorem, we get

√
nh2

1
n

XT
h2

(u0)W2(u0)∆∗ε =
√

nh2

 1
n

∑n
i=1

δi
π(Vi)

εiXiK2,h2(Ui − u0)
1
n

∑n
i=1

δi
π(Vi)

εiXi
Ui−u0

h2
K2,h2(Ui − u0)

 D
−→ N(0,Σ∗∗),

where

Σ∗∗ = E(ε2π−1(V)XXT |U = u0) f (u0) ⊗
(
ν2,0 0
0 ν2,2

)
.

So, √
nh2B2

D
−→ N(0, f −1(u0)Γ∗(u0)−1E(ε2π−1(V)XXT |U = u0)Γ∗(u0)−1 ⊗

(
ν2,0 0
0 ν2,2µ

−2
2,2

)
).

Next, we can calculate B3 = Op(n−
1
2 ), and B4 = Op(n−

1
2 ). With B1, B2, B3 and B4 in hand, we can get

the following equation

Ψ̂I(u0, β̂I) = Ψ0(u0) +
1
2

h2
2µ2,2

(
θ′′0 (u0)

0

)
+ B2 + Op(h2

2 + n−
1
2 ).

So, √
nh2

[
Ψ̂I(u0, β̂I) −Ψ0(u0) −

1
2

h2
2µ2,2

(
θ′′0 (u0)

0

)]

=
√

nh2B2 + Op(
√

nh5
2 +

√
h2)

D
−→ N(0, f −1(u0)Γ∗(u0)−1E(ε2π−1(V)XXT |U = u0)Γ∗(u0)−1 ⊗

(
ν2,0 0
0 ν2,2µ

−2
2,2

)
).

Now, the proof of Theorem 2.2.2 is completed.
Lemma 9. Suppose that Conditions C1 −C8 hold, we have

1
√

n

n∑
i=1

ηi(β0)
D
−→ N(0,Σ4), (7.17)

1
n

n∑
i=1

ηi(β0)ηi(β0)T − Σ4 = op(1), (7.18)

max
1≤i≤n
||ηi(β0)|| = op(n

1
2 ), (7.19)
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||λ|| = Op(n−
1
2 ), (7.20)

1
n

n∑
i=1

||ηi(β0)||3 = op(n
1
2 ), (7.21)

where Σ4 = E[π−1(V)ε2g′(Z,β0)g′(Z,β0)T ] − E[π−1(V)ε2Φ∗(U)TΓ∗(U)−1Φ∗(U)].
Proof: First, we prove (7.17), by Lemma 8, we can get

1
√

n

n∑
i=1

ηi(β0) =
1
√

n

n∑
i=1

{g̃′(Zi,β0)[Ỹi − g̃(Zi,β0)]}

=
1
√

n
g′(Z,β0)T (In − Sh2)

T (In − Sh2)[Y̆ − g(Z,β0)]

=
√

n[ξ∗n + Op((c∗n)2)].

Combing E(ξ∗n) = 0 and
Cov(ξ∗n) = 1

n {E[π−1(V)ε2g′(Z,β0)g′(Z,β0)T ] − E[π−1(V)ε2Φ∗(U)TΓ∗(U)−1Φ∗(U)]}, (7.17) is proved.
(7.18) is also easy to be proved, we omit it here.

Next we prove (7.19), obviously, we can show

max
1≤i≤n
||ηi(β0)|| = max

1≤i≤n
||g̃′(Zi,β0)|| + max

1≤i≤n
||Ỹi − g̃(Zi,β0)||.

With condition C4, we have

max
1≤i≤n
||g̃′(Zi,β0)|| = o(n

1
2s ), max

1≤i≤n
||Ỹi − g̃(Zi,β0)|| = max

1≤i≤n
||εi|| = o(n

1
2s ).

Thus, (7.19) holds. By (7.17), (7.18) and owen [16,17], we can prove (7.20). By (7.18) and (7.19), we
can get (7.21).

The proof of Theorem 3.1.1 and Theorem 3.1.2 are similar to the proof of Theorem 2.1 and
Theorem 2.2 in Zhou, Zhao and Wang [4] respectively with Lemma 9 in hand, so here we omit the
details.

Lemma 10. Suppose that Conditions C1 − C8 hold, and θ0(u) is the true coefficient function of
θ(u), we have √

h2

n

n∑
i=1

ζ̂i(θ0(u))
D
−→ N(0,B), (7.22)

h2

n

n∑
i=1

ζ̂i(θ0(u))ζ̂i(θ0(u))T − B = op(1), (7.23)

max
1≤i≤n
||ζ̂i(θ0(u))|| = op(

√
n
h2

), (7.24)

||γ|| = Op(

√
h2

n
), (7.25)

1
n

n∑
i=1

||ζ̂i(θ0(u))||3 = op(
√

n
h2

), (7.26)
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where B = E(ε2π−1(V)XXT |U = u0) f (u0)ν2,0.
Proof: First, we prove (7.22), we can show√
h2

n

n∑
i=1

ζ̂i(θ0(u)) =

√
h2

n

n∑
i=1

Xi{Y̆i − g(Zi, β̂E) − XT
i θ0(u) − Xi[θ̂I(Ui, β̂I) − θ̂I(u, β̂I)]}K2,h2(Ui − u)

=

√
h2

n

n∑
i=1

δi

π̂(Vi)
XiεiK2,h2(Ui − u)

+

√
h2

n

n∑
i=1

Xi[1 −
δi

π̂(Vi)
][XT

i θ̂c(Ui, β̂c) − XT
i θ0(Ui)]K2,h2(Ui − u)

+

√
h2

n

n∑
i=1

Xi{[1 −
δi

π̂(Vi)
][g(Zi, β̂c) − g(Zi,β0)] − [g(Zi, β̂E) − g(Zi,β0)]}K2,h2(Ui − u)

+

√
h2

n

n∑
i=1

XiXT
i {θ0(Ui) − θ0(u) − [θ̂I(Ui, β̂I) − θ̂I(u, β̂I)]}K2,h2(Ui − u)

=̂ D1 + D2 + D3 + D4.

By Lemma 7, we can get

D1 =

√
h2

n

n∑
i=1

[
δi

π(Vi)
+ op(n−

1
2 + 1

2s )]XiεiK2,h2(Ui − u)

= D11 + op

n 1
2s

(
log(1/h2)

n

) 1
2
 .

With E(D11) = 0 , Cov(D11) = E(ε2π−1(V)XXT |U = u0) f (u0)ν2,0, and the central limit theorem,

we can deduce D1
D
−→ N(0,B). Next, we calculate D2 and D3,

D2 =

√
h2

n

n∑
i=1

Xi[1 −
δi

π(Vi)
+ op(n−

1
2 + 1

2s )]XT
i Op(n−

1
2 )K2,h2(Ui − u) = Op

(
log(1/h2)

n

) 1
2

,

D3 =

√
h2

n

n∑
i=1

Xi{[1 −
δi

π(Vi)
+ op(n−

1
2 + 1

2s )]Op(n−
1
2 ) − Op(n−

1
2 )}K2,h2(Ui − u) = Op

(
log(1/h2)

n

) 1
2

.

Applying Taylor expansion to θ0(Ui) and θ̂I(Ui) at u, respectively, we have

θ0(Ui) − θ0(u) − [θ̂I(Ui, β̂I) − θ̂I(u, β̂I)] = [θ′0(u) − θ̂′I(u, β̂I)](Ui − u) + op(Ui − u).

With
√

h2
n

∑n
i=1(Ui − u)K2,h2(Ui − u) = Op(1) and θ′0(u) − θ̂′I(u, β̂I) = op(1), then, we obtain D4 = op(1).

Finally, we have√
h2

n

n∑
i=1

ζ̂i(θ0(u)) = D11 + op

n 1
2s

(
log(1/h2)

n

) 1
2
 + Op

(
log(1/h2)

n

) 1
2

+ Op

(
log(1/h2)

n

) 1
2

+ op(1)
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D
−→ N(0,B).

With (7.22) in hand, (7.23), (7.24), (7.25) and (7.26) can be also easily proved, we omit the details
here. According to the same method as the proof of Theorem 3.1.1, together with Lemma 10, we can
easily prove Theorem 3.2.1, we also omit the details here.

The proof of Theorem 4.1.1 First, we can calculate

√
n(µ̂ − µ0) =

√
n{

1
n

n∑
i=1

{
δi

π̂(Vi)
Yi + (1 −

δi

π̂(Vi)
)[XT

i θ̂c(Ui, β̂c) + g(Zi, β̂c)]} − µ0}

=
1
√

n

n∑
i=1

{
δi

π̂(Vi)
εi + XT

i θ(Ui) + g(Zi,β) − µ0}

+
1
√

n

n∑
i=1

[
δi

π̂(Vi)
−

δi

π(Vi)
]εi

+
1
√

n

n∑
i=1

[1 −
δi

π̂(Vi)
][XT

i θ̂c(Ui, β̂c) − XT
i θ(Ui)]

+
1
√

n

n∑
i=1

[1 −
δi

π̂(Vi)
][g(Zi, β̂c) − g(Zi,β)]

=̂ S 1 + S 2 + S 3 + S 4.

By the central limit theorem, we have S 1
D
−→ N(0,Λ).

According to Lemma 7, we obtain

S 2 =
1
√

n

n∑
i=1

[
δi

π̂(Vi)
−

δi

π(Vi)
]εi = op(n−

1
2 + 1

2s ),

S 3 =
1
√

n

n∑
i=1

[1 −
δi

π(Vi)
][XT

i θ̂c(Ui, β̂c) − XT
i θ(Ui)] +

1
√

n

n∑
i=1

[
δi

π̂(Vi)
−

δi

π(Vi)
][XT

i θ̂c(Ui, β̂c) − XT
i θ(Ui)]

= Op(n−
1
2 ) + op(n−

1
2 + 1

2s )

= Op(n−
1
2 ),

S 4 =
1
√

n

n∑
i=1

[1 −
δi

π̂(Vi)
][g(Zi, β̂c) − g(Zi,β)] = Op(n−

1
2 ).

Now, the proof of Theorem 4.1.1 is completed.
The proof of Theorem 4.2.1 By Theorem 4.1.1, it is easy to derive

1
√

n

n∑
i=1

(Y̆i − µ0)
D
−→ N(0,Λ),

1
n

n∑
i=1

(Y̆i − µ0)2 − Λ = op(1),
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max
1≤i≤n
|Y̆i − µ0| = op(n

1
2 ).

With the help of Owen [16, 17], we can get

|ρ| = Op(n−
1
2 ),

1
n

n∑
i=1

(Y̆i − µ0)3 = op(n
1
2 ).

Using the similar mehtod to the proof of Theorem 2.1 in Zhou, Zhao and Wang [4], Theorem 4.2.1
can be also easily proved, we omit the details here.
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