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1. Introduction

The wighted version of Hadamard inequality known as Fejér-Hadamard inequality was established
by Fejér in 1906. It is stated as follows:

Theorem 1. [1] Let ψ : [a, b] → R be a convex function. Further, let η : [a, b] → R be integrable
non-negative function which is symmetric about a+b

2 . Then we have

ψ

(
a + b

2

) ∫ b

a
η(x)dx ≤

∫ b

a
ψ(x)η(x)dx ≤

ψ(a) + ψ(b)
2

∫ b

a
η(x)dx. (1.1)

The Hadamard inequality is obtained if we consider η(x) = 1 in the inequality (1.1). The following
definition of “convex function with respect to a strictly monotone function” is the key factor of this
paper.
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Definition 1. [2] If ϕ is strictly monotone function, then ψ is called convex with respect to ϕ if ψoϕ−1

is a convex function.

Alternatively the Definition 1 can be taken as follows:
Let I, J be intervals in R and ψ : I → R be the convex function, also let ϕ : J ⊂ I → R be strictly
monotone function. Then ψ is called convex with respect to ϕ if

ψ
(
ϕ−1 (tx + (1 − t)y)

)
≤ tψ

(
ϕ−1(x)

)
+ (1 − t)ψ

(
ϕ−1(y)

)
, (1.2)

for t ∈ [0, 1], x, y ∈ Range(ϕ), provided Range(ϕ) is convex set. Therefore Definition 1 is equivalently
defined by inequality (1.2).
Examples: [3] 1. Let ϕ(x) = x. Then ϕ−1(x) = x, the inequality (1.2) takes the form

ψ (tx + (1 − t)y) ≤ tψ(x) + (1 − t)ψ(y). (1.3)

2. Let ϕ(x) = ln x. Then ϕ−1(x) = exp x, the inequality (1.2) takes the form

ψ
(
exp (tx + (1 − t)y)

)
≤ tψ

(
exp(x)

)
+ (1 − t)ψ

(
exp(y)

)
. (1.4)

By replacing x with ln x and y with ln y in (1.4), we get

ψ
(
xty1−t

)
≤ tψ(x) + (1 − t)ψ(y). (1.5)

3. Let ϕ(x) = 1
x . Then ϕ−1(x) = 1

x , the inequality (1.2) takes the form

ψ
(
(tx + (1 − t)y)−1

)
≤ tψ

(
1
x

)
+ (1 − t)ψ

(
1
y

)
. (1.6)

By replacing x with 1
x and y with 1

y in (1.6), we get

ψ

(
xy

ty + (1 − t)x

)
≤ tψ (x) + (1 − t)ψ (y) . (1.7)

4. Let ϕ(x) = xp, p > 0. Then ϕ−1(x) = x
1
p , the inequality (1.2) takes the form

ψ
(
(tx + (1 − t)y)

1
p
)
≤ tψ

(
x

1
p
)

+ (1 − t)ψ
(
y

1
p
)
. (1.8)

By replacing x with xp and y with yp in (1.8), we get

ψ
(
(txp + (1 − t)yp)

1
p
)
≤ tψ (x) + (1 − t)ψ (y) . (1.9)

5. By replacing x with ϕ(x), y with ϕ(y), the inequality (1.2) takes the form

ψ
(
ϕ−1 (tϕ(x) + (1 − t)g(y))

)
≤ tψ(x) + (1 − t)ψ(y). (1.10)

Inequalities (1.3), (1.5), (1.7) and (1.9) give convexity, GA-convexity, harmonic convexity and
p-convexity given in [4–6]. Hence these independently defined notions are actually examples of a
convex function with respect to a strictly monotone function.
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Definition 2. [7] A function ψ will be called symmetric with respect to a strictly monotone function h
about h(a)+h(b)

2 , a, b ∈ Domain(h), if

ψ(h−1(h(a) + h(b) − x) = ψ(h−1(x)) (1.11)

holds for all x ∈ Rang(h).

The notions of symmetric, harmonically symmetric, p-symmetric, geometrically symmetric are
examples of Definition 2. These are defined explicitly in [8–10].
We have obtained the following versions of the Fejér-Hadamard inequality for convex function with
respect to a strictly monotone function.

Theorem 2. [7] Let I, J be intervals in R and ψ : [a, b] ⊂ I → R be a convex function, also let
ϕ : J ⊃ [a, b] → R be a strictly monotone function. Further, let ψ be convex with respect to ϕ, and
η : [a, b] → R be non-negative integrable and symmetric with respect to ϕ about ϕ(a)+ϕ(b)

2 . Then the
following inequality holds:

ψ

(
ϕ−1

(
ϕ(a) + ϕ(b)

2

)) ∫ ϕ(b)

ϕ(a)
η
(
ϕ−1(t)

)
dξ ≤

∫ ϕ(b)

ϕ(a)
ψ

(
ϕ−1(t)

)
η
(
ϕ−1(t)

)
dξ (1.12)

≤
ψ(a) + ψ(b)

2

∫ ϕ(b)

ϕ(a)
η
(
ϕ−1(t)

)
dξ.

The aim of this paper is to give two Riemann-Liouville fractional versions of the Fejér-Hadamard
inequality for convex function with respect to a strictly monotone function by using symmetricity with
respect to strictly monotone function. These Fejér-Hadamard inequalities for specific strictly monotone
functions will give results for convex, geometric convex, harmonically convex and p-convex functions
published by different authors in [5, 7–16]. The following definition gives the left as well as right
Riemann-Liouville fractional integral operators:

Definition 3. [17] Let µ > 0 and ψ ∈ L1[a, b]. Then Riemann-Liouville fractional integral operators
of order µ are defined by:

Iµa+ψ(x) :=
1

Γ(µ)

∫ x

a

ψ(t)
(x − t)1−µdt, x > a (1.13)

Iµb−ψ(x) :=
1

Γ(µ)

∫ b

x

ψ(t)
(t − x)1−µdt, x < b, (1.14)

where Γ(.) is notation for the gamma function.

The following theorem gives first fractional version of the Hadamard inequality for
Riemann-Liouville fractional integrals.

Theorem 3. [15] Let ψ : [a, b] → R be a positive function with 0 ≤ a < b and ψ ∈ L[a, b]. If ψ is a
convex function on [a, b], then the following fractional integral inequality holds:

ψ

(
a + b

2

)
≤

Γ(µ + 1)
2(b − a)µ

[
Iµa+ψ(b) + Iµb−ψ(a)

]
≤
ψ(a) + ψ(b)

2
, (1.15)

with µ > 0.
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Another version of the Hadamard inequality for Riemann-Liouville fractional integrals is given in
the following theorem.

Theorem 4. [16] Under the assumptions of Theorem 3, the following fractional integral inequality
holds:

ψ

(
a + b

2

)
≤

2µ−1Γ(µ + 1)
(b − a)µ

[
Iµ
( a+b

2 )+ψ(b) + Iµ
( a+b

2 )−
ψ(a)

]
≤
ψ(a) + ψ(b)

2
, (1.16)

with µ > 0.

We have obtained the following fractional versions of the Hadamard inequality for
Riemann-Liouville fractional integrals of convex function with respect to a strictly monotone
function.

Theorem 5. [7] Let I, J be intervals in R and ψ : [a, b] ⊂ I → R be a convex function, also let
ϕ : J ⊃ [a, b] → R be a strictly monotone function. Further, let ψ be convex with respect to ϕ. Then
for µ > 0 the following inequality holds for Riemann-Liouville fractional integrals:

ψ

(
ϕ−1

(
ϕ(a) + ϕ(b)

2

))
≤

Γ(µ + 1)
2 (ϕ(b) − ϕ(a))µ

(
Jµϕ(a)+ψ(b) + Jµϕ(b)−ψ(a)

)
(1.17)

≤
ψ(a) + ψ(b)

2
.

Theorem 6. [7] Under the assumptions of Theorem 5, the following inequality holds for Riemann-
Liouville fractional integrals:

ψ

(
ϕ−1

(
ϕ(a) + ϕ(b)

2

))
≤

2µ−1Γ(µ + 1)
(ϕ(b) − ϕ(a))µ

(
Jµ
ϕ(a)+ϕ(b)

2
+ψ(b) + Jµ

ϕ(a)+ϕ(b)
2

−ψ(a)
)

(1.18)

≤
ψ(a) + ψ(b)

2
.

In the upcoming section we establish two versions of the Fejér-Hadamard inequality for convex
function with respect to a strictly monotone function by using Riemann-Liouville fractional integrals.
These inequalities generate new inequalities by selecting different strictly increasing and decreasing
functions of our choice. Several results published in [5, 7–16, 18, 19] are deducible from the results
presented in this paper.

2. Riemann-Liouville fractional integral Fejér-Hadamard inequality for convex function with
respect to a strictly monotone function

First we prove the following lemma:

Lemma 1. Let ψ be symmetric with respect to strictly monotone function ϕ about ϕ(a)+ϕ(b)
2 , and ϕ ∈

L[a, b]. Then the following identity holds for Riemann-Liouville fractional integrals:

Iµϕ(a)+ψ(b) = Iµϕ(b)−ψ(a) =
Iµϕ(a)+ψ(b) + Iµϕ(b)−ψ(a)

2
. (2.1)
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Proof. From definition of Riemann-Liouville fractional integrals we have

Iµϕ(a)+ψ(b) = Iµϕ(a)+ψ
(
ϕ−1(ϕ(b))

)
=

1
Γ(µ)

∫ ϕ(b)

ϕ(a)

ψ
(
ϕ−1(u)

)
du

(ϕ(b) − u)1−µ . (2.2)

By setting ϕ(a) + ϕ(b) − u = z in (2.2) we get

Iµϕ(a)+ψ(b) =
1

Γ(µ)

∫ ϕ(b)

ϕ(a)

ψ
(
ϕ−1(ϕ(a) + ϕ(b) − z)

)
dz

(z − ϕ(a))1−µ . (2.3)

By using symmetricity of ψ with respect to strictly monotone function ϕ about ϕ(a)+ϕ(b)
2 , we get

Iµϕ(a)+ψ(b) = Iµϕ(b)−ψ
(
ϕ−1(ϕ(a))

)
and hence (2.1) is obtained. �

Remark 1. (i) By setting ϕ(x) = 1
x in (2.1), we get [20, Lemma 2].

(ii) By setting ϕ(x) = xp, p , 0 in (2.1), we get [21, Lemma 1].

By using Lemma 1 we prove the following Riemann-Liouville fractional Fejér-Hadamard inequality
for convex function ψ with respect to a strictly monotone function ϕ.

Theorem 7. Let I, J be intervals in R and ψ, η : [a, b] ⊂ I → R be real valued functions. Let ψ
be convex and w be the positive and symmetric about ϕ(a)+ϕ(b)

2 . Let ϕ : J ⊃ [a, b] → R be a strictly
monotone function. If ψ is convex with respect to ϕ, then the following inequality holds for Riemann-
Liouville fractional integrals:

ψ

(
ϕ−1

(
ϕ(a) + ϕ(b)

2

)) (
Iµϕ(a)+η(b) + Iµϕ(b)−η(a)

)
(2.4)

≤ Iµϕ(a)+(ψ.η)(b) + Iµϕ(b)−(ψ.η)(a)

≤
ψ(a) + ψ(b)

2

(
Iµϕ(a)+η(b) + Iµϕ(b)−η(a)

)
.

Proof. Let K be the interval with end points ϕ(a) and ϕ(b). Since ψ is convex with respect to ϕ, for all
x, y ∈ K, the inequality

ψ
(
ϕ−1

( x + y
2

))
≤
ψ(ϕ−1(x)) + ψ(ϕ−1(y))

2
(2.5)

holds. By setting x = ξϕ(a) + (1 − ξ)ϕ(b), y = (1 − ξ)ϕ(a) + ξϕ(b), ξ ∈ [0, 1], we find the following
inequality:

2ψ
(
ϕ−1

(
ϕ(a) + ϕ(b)

2

))
(2.6)

≤ ψ(ϕ−1(ξϕ(a) + (1 − ξ)ϕ(b))) + ψ(ϕ−1((1 − ξ)ϕ(a) + ξϕ(b))).

By multiplying with ξµ−1η(ϕ−1(ξϕ(a) + (1 − ξ)ϕ(b))) on both sides of (2.6) and then integrating
over [0, 1], the following inequality is obtained:

2ψ
(
ϕ−1

(
ϕ(a) + ϕ(b)

2

)) ∫ 1

0
ξµ−1η(ϕ−1(ξϕ(a) + (1 − ξ)ϕ(b))dξ (2.7)
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≤

∫ 1

0
ξµ−1(ψ.η)(ϕ−1(ξϕ(a) + (1 − ξ)ϕ(b)))dξ

+

∫ 1

0
ξµ−1ψ(ϕ−1((1 − ξ)ϕ(a) + ξϕ(b)))η(ϕ−1(ξϕ(a) + (1 − ξ)ϕ(b)))dξ.

Now setting again u = ξϕ(a) + (1 − ξ)ϕ(b) that is ξ =
ϕ(b)−u

ϕ(b)−ϕ(a) and v = (1 − ξ)ϕ(a) + ξϕ(b) that is
ξ =

v−ϕ(a)
ϕ(b)−ϕ(a) in (2.7), we find the following inequality:

2ψ
(
ϕ−1

(
ϕ(a) + ϕ(b)

2

)) ∫ ϕ(b)

ϕ(a)

η
(
ϕ−1(u)

)
du

(ϕ(b) − u)1−µ ≤

∫ ϕ(b)

ϕ(a)

(ψ.η)
(
ϕ−1(u)

)
du

(ϕ(b) − u)1−µ

+

∫ ϕ(b)

ϕ(a)

ψ
(
ϕ−1(v)

)
η
(
ϕ−1(ϕ(a) + ϕ(b) − v)

)
dv

(v − ϕ(a))1−µ .

From which by using symmericity of w with respect to ϕ, one can get the first inequality of (2.4). On
the other hand by using convexity of ψ with respect to ϕ, the following inequality can be derived:

ψ(ϕ−1(ξϕ(a) + (1 − ξ)ϕ(b))) + ψ(ϕ−1((1 − ξ)ϕ(a) + ξϕ(b))) ≤ ψ(a) + ψ(b), ξ ∈ [0, 1]. (2.8)

By multiplying with ξµ−1η(ϕ−1(ξϕ(a) + (1 − ξ)ϕ(b))) on both sides of (2.8) and then integrating
over [0, 1], the following inequality is obtained:∫ 1

0
ξµ−1(ψ.η)(ϕ−1(ξϕ(a) + (1 − ξ)ϕ(b)))dξ (2.9)

+

∫ 1

0
ξµ−1ψ(ϕ−1((1 − ξ)ϕ(a) + ξϕ(b)))η(ϕ−1(ξϕ(a) + (1 − ξ)ϕ(b)))dξ

≤
[
ψ(a) + ψ(b)

] ∫ 1

0
ξµ−1η(ϕ−1(ξϕ(a) + (1 − ξ)ϕ(b)))dξ.

By making substitution u = ξϕ(a) + (1 − ξ)ϕ(b) and v = (1 − ξ)ϕ(a) + ξϕ(b) in first and second
integrals respectively of the left hand side of the inequality (2.9), and making substitution of u =

ξϕ(a) + (1 − ξ)ϕ(b) for integral appearing on right side of this inequality we obtain∫ ϕ(b)

ϕ(a)

ψ
(
ϕ−1(u)

)
du

(ϕ(b) − u)1−µ +

∫ ϕ(b)

ϕ(a)

ψ
(
ϕ−1(v)

)
η(ϕ−1(ϕ(a) + ϕ(b) − v))dv

(v − ϕ(a))1−µ (2.10)

≤
ψ(a) + ψ(b)

2

∫ ϕ(b)

ϕ(a)

η
(
ϕ−1(u)

)
du

(ϕ(b) − u)1−µ .

From which by using symmericity of w with respect to ϕ, one can get the second inequality of (2.4). �

In the following we give consequences the above theorem.

Corollary 1. The following Fejér-Hadamard inequality holds for GA-convex function:

ψ
(√

ab
) (

Iµln a+η(b) + Iµln b−η(a)
)
≤ Iµln a+(ψ.η)(b) + Iµln b−(ψ.η)(a) (2.11)

≤
ψ(a) + ψ(b)

2

(
Iµln a+η(b) + Iµln b−η(a)

)
.
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Proof. Let ϕ(x) = exp x. Then ϕ−1(x) = ln x, the inequality (2.4) reduces to (2.11) for GA-convex
functions. �

Corollary 2. The following Fejér-Hadamard inequality holds for ψ ◦ ln-convex function:

ψ

(
ln

(
exp (a) + exp (b)

2

)) (
Iµexp (a)+η(b) + Iµexp (b)−η(a)

)
(2.12)

≤ Iµexp (a)+(ψ.η)(b) + Iµexp (b)−(ψ.η)(a)

≤
ψ(a) + ψ(b)

2

(
Iµexp (a)+η(b) + Iµexp (b)−η(a)

)
.

Proof. Let ϕ(x) = ln x. Then ϕ−1(x) = exp x, the inequality (2.4) reduces to (2.12) for GA-convex
functions. �

Remark 2. (i) By choosing η(x) = 1, Theorem 5 is obtained.
(ii) By choosing ϕ(x) = 1

x , [20, Theorem 5] is obtained.
(iii) By choosing η(x) = 1 and ϕ(x) = x, Theorem 3 is obtained.
(iv) By choosing η(x) = 1 and ϕ(x) = 1

x , [12, Theorem 4] is obtained.
(v) By choosing η(x) = 1 and ϕ(x) = xp, µ = 1, [11, Theorem 6] is obtained.
(vi) By choosing η(x) = 1 and ϕ(x) = 1

x , µ = 1, [5, Theorem 2.4] is obtained.
(vii) By choosing ϕ(x) = xp, µ = 1, [9, Theorem 5] is obtained.
(viii) By choosing η(x) = 1 and ϕ(x) = ln x, µ = 1, [10, Theorem 2.2] is obtained.
(ix) By choosing η(x) = 1 and ϕ(x) = x, µ = 1, the classical Hadamard inequality is obtained.

Lemma 2. Let ψ be symmetric with respect to strictly monotone function ϕ about ϕ(a)+ϕ(b)
2 , and ϕ ∈

L[a, b]. Then the following identity holds for Riemann-Liouville fractional integrals:

Iµ
ϕ(a)+ϕ(b)

2
+ψ(b) = Iµ

ϕ(a)+ϕ(b)
2

−ψ(a) =

Iµ
ϕ(a)+ϕ(b)

2
+ψ(b) + Iµ

ϕ(a)+ϕ(b)
2

−ψ(a)

2
. (2.13)

Proof. From definition of Riemann-Liouville fractional integrals we have

Iµ
ϕ(a)+ϕ(b)

2
+ψ(b) = Iµ

ϕ(a)+ϕ(b)
2

+ψ
(
ϕ−1(ϕ(b))

)
=

∫ ϕ(b)

ϕ(a)+ϕ(b)
2

ψ
(
ϕ−1(u)

)
du

(ϕ(b) − u)1−µ . (2.14)

By setting ϕ(a) + ϕ(b) − u = z in (2.14) we get

Iµ
ϕ(a)+ϕ(b)

2
+ψ(b) =

∫ ϕ(a)+ϕ(b)
2

ϕ(a)

ψ
(
ϕ−1(ϕ(a) + ϕ(b) − z)

)
dz

(z − ϕ(a))1−µ . (2.15)

By using symmetricity of ψ with respect to strictly monotone function ϕ about ϕ(a)+ϕ(b)
2 , we get

Iµ
ϕ(a)+ϕ(b)

2
+ψ(b) = Iµ

ϕ(a)+ϕ(b)
2

−ψ
(
ϕ−1(ϕ(a))

)
and hence (2.13) is obtained. �

Remark 3. (i) By setting ϕ(x) = 1
x in (2.13), we get [14, Lemma 2].

(ii) By setting ϕ(x) = xp, p , 0 in (2.13), we get the identity for p-symmetric functions.
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In the next theorem we establish another version of the Fejér-Hadamard inequality for convex
function with respect to a strictly monotone function.

Theorem 8. Under the assumptions of Theorem 7, the following inequality holds for
Riemann-Liouville fractional integrals:

ψ

(
ϕ−1

(
ϕ(a) + ϕ(b)

2

)) (
Iµ
ϕ(a)+ϕ(b)

2
+η(b) + Iµ

ϕ(a)+ϕ(b)
2

−η(a)
)

(2.16)

≤ Iµ
ϕ(a)+ϕ(b)

2
+(ψ.η)(b) + Iµ

ϕ(a)+ϕ(b)
2

−(ψ.η)(a)

≤
ψ(a) + ψ(b)

2

(
Iµ
ϕ(a)+ϕ(b)

2
+η(b) + Iµ

ϕ(a)+ϕ(b)
2

−η(a)
)
.

Proof. Let x =
ξ

2ϕ(a) +
2−ξ

2 ϕ(b), y =
2−ξ

2 ϕ(a) +
ξ

2ϕ(b), ξ ∈ [0, 1]. Then from (2.5) we get the following
inequality:

2ψ
(
ϕ−1

(
ϕ(a) + ϕ(b)

2

))
≤ ψ

(
ϕ−1

(
ξ

2
ϕ(a) +

2 − ξ
2

ϕ(b)
))

(2.17)

+ ψ

(
ϕ−1

(
2 − ξ

2
ϕ(a) +

ξ

2
ϕ(b)

))
.

By multiplying with ξµ−1η
(
ϕ−1

(
ξ

2ϕ(a) +
2−ξ

2 ϕ(b)
))

on both sides of (2.17) and then integrating
over [0, 1], the following inequality is obtained:

2ψ
(
ϕ−1

(
ϕ(a) + ϕ(b)

2

)) ∫ 1

0
ξµ−1η

(
ϕ−1

(
ξ

2
ϕ(a) +

2 − ξ
2

ϕ(b)
))

dξ (2.18)

≤

∫ 1

0
ξµ−1ψ

(
ϕ−1

(
ξ

2
ϕ(a) +

2 − ξ
2

ϕ(b)
))
η

(
ϕ−1

(
ξ

2
ϕ(a) +

2 − ξ
2

ϕ(b)
))

dξ

+

∫ 1

0
ξµ−1ψ

(
ϕ−1

(
2 − ξ

2
ϕ(a) +

ξ

2
ϕ(b)

))
η

(
ϕ−1

(
ξ

2
ϕ(a) +

2 − ξ
2

ϕ(b)
))

dξ.

Taking u =
ξ

2ϕ(a) +
2−ξ

2 ϕ(b) that is ξ =
2(ϕ(b)−u)
ϕ(b)−ϕ(a) and v =

2−ξ
2 ϕ(a) +

ξ

2ϕ(b) that is ξ =
2(v−ϕ(a))
ϕ(b)−ϕ(a) in (2.18),

we find the following inequality:

2ψ
(
ϕ−1

(
ϕ(a) + ϕ(b)

2

)) ∫ ϕ(a)+ϕ(b)
2

ϕ(a)

η
(
ϕ−1(u)

)
du

(ϕ(b) − u)1−µ

≤

∫ ϕ(a)+ϕ(b)
2

ϕ(a)

(ψ.η)
(
ϕ−1(u)

)
du

(ϕ(b) − u)1−µ +

∫ ϕ(a)+ϕ(b)
2

ϕ(a)

ψ
(
ϕ−1(v)

)
η
(
ϕ−1(ϕ(a) + ϕ(b) − v)

)
dv

(v − ϕ(a))1−µ .

From which by using symmericity of w with respect to ϕ, one can get the first inequality of (2.16).
Again by using convexity of ψ with respect to ϕ, the following inequality is derived for ξ ∈ [0, 1]:

ψ

(
ϕ−1

(
ξ

2
ϕ(a) +

2 − ξ
2

ϕ(b)
))

+ ψ

(
ϕ−1

(
2 − ξ

2
ϕ(a) +

ξ

2
ϕ(b)

))
≤ ψ(a) + ψ(b). (2.19)
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By multiplying with ξµ−1η
(
ϕ−1

(
ξ

2ϕ(a) +
2−ξ

2 ϕ(b)
))

on both sides of (2.8) and then integrating over [0, 1],
the following inequality is obtained:∫ 1

0
ξµ−1ψ

(
ϕ−1

(
ξ

2
ϕ(a) +

2 − ξ
2

ϕ(b)
))
η

(
ϕ−1

(
ξ

2
ϕ(a) +

2 − ξ
2

ϕ(b)
))

dξ (2.20)

+

∫ 1

0
ξµ−1ψ

(
ϕ−1

(
2 − ξ

2
ϕ(a) +

ξ

2
ϕ(b)

))
η

(
ϕ−1

(
ξ

2
ϕ(a) +

2 − ξ
2

ϕ(b)
))

dξ.

≤
[
ψ(a) + ψ(b)

] ∫ 1

0
ξµ−1

(
ϕ−1

(
ξ

2
ϕ(a) +

2 − ξ
2

ϕ(b)
))

dξ.

By making substitution u =
ξ

2ϕ(a) +
2−ξ

2 ϕ(b) and v =
2−ξ

2 ϕ(a) +
ξ

2ϕ(b) in first and second integrals
respectively of the left hand side of the inequality (2.20), and making substitution of u =

ξ

2ϕ(a)+ 2−ξ
2 ϕ(b)

in the integral appearing in the right hand side of this inequality we will get

∫ ϕ(a)+ϕ(b)
2

ϕ(a)

(ψ.η)
(
ϕ−1(u)

)
du

(ϕ(b) − u)1−µ +

∫ ϕ(a)+ϕ(b)
2

ϕ(a)

ψ
(
ϕ−1(v)

)
η
(
ϕ−1(ϕ(a) + ϕ(b) − v)

)
dv

(v − ϕ(a))1−µ (2.21)

≤
ψ(a) + ψ(b)

2

∫ ϕ(a)+ϕ(b)
2

ϕ(a)

η
(
ϕ−1(u)

)
du

(ϕ(b) − u)1−µ .

From which by using symmericity of w with respect to ϕ, one can get the second inequality of (2.16).
�

The consequences of above theorem are given in the following corollaries and remark.

Corollary 3. The following Fejér-Hadamard inequality holds for GA-convex function:

ψ
(√

ab
) (

Iµ
ln
√

ab+
η(b) + Iµ

ln
√

ab−
η(a)

)
≤ Iµ

ln
√

ab+
(ψ.η)(b) + Iµ

ln
√

ab−
(ψ.η)(a) (2.22)

≤
ψ(a) + ψ(b)

2

(
Iµ
ln
√

ab+
η(b) + Iµ

ln
√

ab−
η(a)

)
.

Proof. Let ϕ(x) = exp x. Then ϕ−1(x) = ln x, the inequality (2.16) reduces to (2.22) for GA-convex
functions. �

Corollary 4. The following Fejér-Hadamard inequality holds for ψ ◦ ln-convex function:

ψ

(
ln

(
exp (a) + exp (b)

2

)) (
Iµexp (a)+exp (b)

2
+η(b) + Iµexp (a)+exp (b)

2
−η(a)

)
(2.23)

≤ Iµexp (a)+exp (b)
2

+(ψ.η)(b) + Iµexp (a)+exp (b)
2

−(ψ.η)(a)

≤
ψ(a) + ψ(b)

2

(
Iµexp (a)+exp (b)

2
+η(b) + Iµexp (a)+exp (b)

2
−η(a)

)
.

Proof. Let ϕ(x) = ln x. Then ϕ−1(x) = exp x, the inequality (2.16) reduces to (2.23) for GA-convex
functions. �
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Remark 4. (i) By choosing η(x) = 1, Theorem 6 is obtained.
(i) By choosing η(x) = 1 and ϕ(x) = x, Theorem 4 is obtained.
(ii) By choosing η(x) = 1 and ϕ(x) = 1

x , [14, Theorem 4] is obtained.
(iii) By choosing η(x) = 1 and ϕ(x) = xp, p , 0, [13, Theorem 2.1] is obtained.
(iv) By choosing η(x) = 1 and ϕ(x) = 1

x , µ = 1, [5, Theorem 2.4] is obtained.
(v) By choosing η(x) = 1 and ϕ(x) = xp, p ,= 1, [11, Theorem 6] is obtained.

3. Conclusions

We have studied the Riemann-Liouville fractional integral versions of Fejér-Hadamard inequalities
for convex function with respect to strictly monotone function. The established inequalities provide
the Hadamard and Fejér-Hadamard inequalities for Riemann-Liouville fractional integrals of convex,
harmonically convex, p-convex and GA-convex functions. For specific increasing/decreasing functions
the reader can produce corresponding Fejér-Hadamard inequalities from results of this paper. Further,
we are investigating such results for other kinds of fractional integrals for future work.
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