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1. Introduction

Semirings have significant applications in theory of automata, optimization theory, and in
theoretical computer sciences (see [1-3]). A group of Russian mathematicians was able to create
novel probability theory based on additive inverse semirings, called idempotent analysis (see [4, 5])
having interesting applications in quantum physics. Javed et al. [6] identified a proper subclass of
semirings known as MA-Semirings. The development of commutator identities and Lie type theory of
semirings [6—10] and derivations [6—8, 11, 12] make this class quite interesting for researchers. To
investigate commuting conditions for rings through certain differential identities and certain ideals are
still interesting problems for researchers in ring theory (see for example [13—-19]) and some of them
are generalized in semirings (see [6,8-11,20]). In this paper we investigate commuting conditions of
prime MA-semirings through certain differential identities and Jordan ideals (Theorems 2.5-2.8) and
also study differential identities with the help of Jordan ideals (Theorem 2.3, Theorem 2.4, Theorem
2.10). In this connection we are able to generalize a few results of Oukhtite [21] in the setting of
semirings. Now we present some necessary definitions and preliminaries which will be very useful
for the sequel. By a semiring S, we mean a semiring with absorbing zero ‘0’ in which addition is
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commutative. A semiring S is said to be additive inverse semiring if for each s € S there is a unique
s € Ssuchthat s+ s +s = sand s + s+ s = s, where s denotes the pseudo inverse of s. An
additive inverse semiring S is said to be an MA-semiring if it satisfies s + s € Z(S),Vs € S, where
Z(S) 1s the center of S. The class of MA-semirings properly contains the class of distributive lattices
and the class of rings, we refer [6, 8, 11, 22] for examples. Throughout the paper by semiring S we
mean an MA-semiring unless stated otherwise. A semiring S is prime if aSb = {0} implies that a = 0
or b = 0 and semiprime if aSa = {0} implies that a = 0. S is 2-torsion free if for s € S, 25 = 0 implies
s = 0. An additive mapping d : § — § is a derivation if d(st) = d(s)t + sd(t). The commutator is
defined as [s,7] = st + ¢ s. By Jordan product, we mean s o t = st + ts for all s, € S. The notion of
Jordan ideals was introduced by Herstein [23] in rings which is further extended canonically by
Sara [20] for semirings. An additive subsemigroup G of § is called the Jordan ideal if s o j € G for all
s€S,jeG. Amapping f : § — S 1s commuting if [f(s),s] =0, Vs € S. Amapping f : S — S is
centralizing if [[f(s),s].r] = 0, Vs,r € S. Next we include some well established identities of
MA-semirings which will be very useful in the sequel. If 5,7,z € S and d is a derivation of §, then
[s, st] = s[s,t], [st,2] = slt,z] + [s,2]t, [s,12] = [s, 8]z + t[s,z), [s, 6] + [t,s] = t(s + ) = s(t + 1),
(st) =st=st,[s,1] =[s,f]=1[s,1], s0(+2) =sot+soz d(s) = (d(s) . To see more, we
refer [6,7].
From the literature we recall a few results of MA-semirings required to establish the main results.

Lemma 1. [/1] Let G be a Jordan ideal of an MA-semiring S. Then for all j € G (a). 2[S,S]G € G
(b). 2G[S,S1C G (c). 4j*S CG (d). 4Sj* C G (e). 4jSjC G.

Lemma 2. [11] Let S be a 2-torsion free prime MA-semiring and G a Jordan ideal of S. If aGb = {0}
thena =0orb =0.

In view of Lemma 1 and Lemma 2, we give some very useful remarks.

Remark 1. [11]
a). If r,s,t € S,u € G, then 2[r, stlu € G.
b). If aG = {0} or Ga = {0}, then a = 0.

Lemma 3. [I2] Let G be a nonzero Jordan ideal and d be a derivation of a 2-torsion free prime
MA-semiring S such that for allu € G, du?*) = 0. Then d = 0.

2. Main results
Lemma 4. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-semiring S. If a € S such

that for all g € G, [a,g*] = 0. Then [a, s] = 0,Vs € S and hence a € Z(S).

Proof. Define a functiond, : S — S by d,(s) = [a, s], which is an inner derivation. As every inner
derivation is derivation, therefore in view of hypothesis d,, is derivation satisfying d,(g?) = [a,g*] =
0,Yg € G. By Lemma 3, d, = 0, which implies that d,(s) = [a,s] = O, for all s € S. Hence
a € Z(S). O

Lemma S. Let S be a 2-torsion free prime MA-semiring and G a nonzero Jordan ideal of S. If S is
noncommutative such that for all u,v € G andr € §

alr,uv]b =0, 2.1
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thena=0o0rb =0.

Proof. In (2.1) replacing r by ar and using MA-semiring identities, we obtain
aalr,uv]b + ala,uv]rb = 0 (2.2)

Using (2.1) again, we get ala, uv]S b = 0. By the primeness of S, we have either b = 0 or a[a, uv] = 0.
Suppose that

ala,uv] =0 (2.3)
In view of Lemma 1, replacing v by 2v[s,#] in (2.3) and using 2-torsion freeness of S, we get
0 = ala,uv[s,t]] = auvla,[s,t]] + ala,uv][s,t]. Using (2.3) again auv|a,[s,t]] = 0 and therefore
auGla,[s,t]] = {0}. By the Lemma 2, we have either aG = {0} or [a,[s,t]] = 0. By Remark 1,
aG = {0} implies a = 0. Suppose that

[a,[s,t]] =0 2.4)
In (2.4) replacing s by sa, we get [a, s[a, t]] + [a, [s, t]a] = 0 and therefore [a, s[a, t]] + [a, [s,t]]a = 0.
Using (2.4) again, we get [a, s][a,t] = 0. By the primeness of S, [a, s] = 0 and therefore a € Z(S).
Hence from (2.2), we can write aS [r, uv]b = {0}. By the primeness of S, we obtain a = 0 or

[r,uvlb =0 (2.5)

In (2.5) replacing r by rs and using (2.5) again, we get [r, uv]S b = {0}. By the primeness of S, we have
either b = 0 or [r, uv] = 0. Suppose that
[r,uv] =0 (2.6)

In (2.6) replacing y by 2v[s, t] and using (2.6) again, we obtain 2[r, uv[s, t]] = 0. As S is 2-torsion free,
[r, uv[s, t]] = 0 which further gives uGlr, [s,t]] = {0}. As G # {0}, by Lemma 2 [, [s,?]] = 0 which
shows that S is commutative, a contradiction. Hence we conclude thata = 0 or b = 0. m]

Theorem 1. Let S be a 2-torsion free prime MA-semiring and G a nonzero Jordan ideal of S. If d,
and d, are derivations of S such that for all u € G,

did>(u) =0 2.7)

then either dy = 0 or d, = 0.

Proof. Suppose that d, # 0. We will show that d; = 0. In view of Lemma 1, replacing u by 4u’v,v € G
in (2.7), we obtain d,d,(4u*v) = 0 and by the 2-torsion freeness of S, we have d,d>(u*>v) = 0. Using
(2.7) again, we obtain

(), (v) + dy (u*)da(v) = 0 (2.8)

By lemma 1, replacing v by 2[r, jk]v, j,k € G in (2.8), we get

dy(u)dy 21, jkIv) + dy(u)dr(2[r, jk]v) = O

and
2d (), jk1di(v) + 2do(u?)dy ([, jKN)V + 2dy (u?)]r, jKlda(v) + 2dy (u*)da([r, jK])v = 0
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Using (2.8) again and hence by the 2-torsion freeness of S, we obtain
do(uP)[r, jkldi(v) + dy(WP)[r, jkldar(v) = 0 (2.9)
In (2.9), replacing v by 4v%t,¢ € S and using (2.9) again, we obtain
Ady(uP)[r, jKIVPdi () + 4dy (uP)r, jkIVida(t) = 0
As S is 2-torsion free, therefore
o), jKIVdi(t) + diuP)[r, jkIVdy(1) = 0 (2.10)
In (2.10), taking t = d»(g), g € G and using (2.7), we obtain
di(u?)[r, jk1Vdx(dr(g)) = 0 (2.11)

In (2.11) writing a for d(u*) and b for v’d,(d,(g)), we have a[r, jk]b = 0,¥r € S, j,k € G.

Firstly suppose that S is not commutative. By Lemma 5, we have a = 0 or b = 0. If d;(u*) = a = 0,
then by Lemma 3, d; = 0. Secondly suppose that S is commutative. In (2.7) replacing u by 2u?,
we obtain 0 = dd,(2u?) = 2d,d>(u?) = 4d,(ud»(u)) = 4(d,(u)d>»(u) + ud,d>(u)). Using (2.7) and the
2-torsion freeness of S, we obtain d(u)d>(u) = 0. By our assumption S is commutative, therefore
di(u)S dr(u) = {0}. By the primeness of S, we have either d;(G) = {0} or d>(G) = {0}. By Theorem 2.4
of [11], we have d; = 0 or d, = 0. But d, # 0. Hence d; = 0 which completes the proof. O

Theorem 2. Let S be a 2-torsion free prime MA-semiring and G a nonzero Jordan ideal of S. If d,
and d, are derivations of S such that for all u € G

di(dy(u) +u) =0, (2.12)

then d, = 0.

Proof. Firstly suppose that S is commutative. Replacing u by 2u? in (2.12) and using (2.12) again, we
obtain d;(u)d,(u) = 0 which further implies d;(u)S d>(u) = {0}. In view of Theorem 2.4 of [11], by the
primeness of S we have d; = O ord, = 0. If d, = 0, then from (2.12), we obtain d,(u) = 0,Yu € G
and hence by Lemma 3, we conclude d; = 0. Secondly suppose that S is noncommutative. Further
suppose that d, # 0. We will show that d; = 0. In (2.12) replacing u by 4u*v,v € G, and using (2.12)
again, we obtain 2(d>(u?)d,(v) + d;(u?)d>(v)) = 0. As S is 2-torsion free, therefore

dry ()i (v) + dy (u?)do(v) = 0 (2.13)
In (2.13) replacing v by 2[r, jklv,r € S, j, k,v € G, we obtain
o)y 2[r, jK) + 2do(uP)[r, jkld\(v) + di (u*)do 2, jK])V + 2d, (u?)[r, jklda(v) = 0

As by MA-semiring identities, 2[r, jk] = 2j[r, k] + 2[r, jlk, by Lemma 1 2[r, jk] € G. Therefore using
(2.13) again and the 2-torsion freeness of S, we obtain

dy ()1, jKldr (v) + dy ()], jK)da(v) = O (2.14)
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In (2.14) replacing v by 4v*¢,t € S and using (2.14) again, we get
o (iP)[r, jKIV?dy (1) + dy(uP)]r, jkIVdy(1) = 0 (2.15)
In (2.15) taking t = t(d>(w) + W), w € G, we get
o)1, k1 di(e(da(w) + W) + dy (), jKIV d(t(da(w) + w') = 0
and therefore
dy(u?)[r, jEIV2di (D) da(W) + w') + da(u?)[r, jKIV1d) ((do(W) + W)
+d u)r, JKIVdy(0)(da(w) + W) + di (@)1, jk1vtdo(do(w) +w') = 0
Using (2.12) and (2.15) in the last expression, we obtain
(di@)r, jK1(Ptdy(dr(w) + w)) = 0 (2.16)

Applying Lemma 5 on (2.15), we get either d,(u?) = 0 or V’tdy(dr(w) + w') = 0. If d;(u?) = 0 then
by Lemma 3, d; = 0. If v’Sd,(d>(w) + w') = {0}, the by the primeness of S, we have v> = 0 or
dr(dry(w) +w') = 0. If v* = 0, Vv € G, then G = {0}, a contradiction. Suppose that for all w € G

dr(dy(w) +w) =0 2.17)
In (2.17)replacing w by 4z%u, z,u € G, and using (2.17) again, we obtain
do(2)da(u) = 0 (2.18)

In (2.18), replacing u by 4xz%, x € G and using (2.18) again, we obtain d,(z>)Gd,(z*) = {0}. By Lemma
2, d>(z*) = 0 and hence by Lemma 3, we conclude that d, = 0. Taking d, = 0 in the hypothesis to
obtain d;(u) = 0 and hence by Theorem 2.4 of [11], we have d; = 0. O

Theorem 3. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-semiring S and d, and d,
be derivations of S such that for all u,v € G

[d (), dy(V)] + [u,v] =0 (2.19)

Then S is commutative.

Proof. If di = 0 or d, = 0, then from (2.19), we obtain [G,G] = {0}. By Theorem 2.3 of [11] § is
commutative. We assume that both d; and d, are nonzero. In (2.19) replacing u by 4uw? and using

MA-semiring identities and 2-torsion freeness of S, we get
di@)2w?, ()] + ([dy (), dx ()] + [, v])2w* + u([di (2w?), da(v)]

+[2w? v]) + [u, o (V)i 2w?) = 0
Using (2.19) again, we get

di(w)[2w?, dy(v)] + [u, dy(v)1d, 2w?) = 0
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and by the 2-torsion freeness of S, we have
di(w?, dy()] + [u, dy(v)ldy(W?) = 0 (2.20)

Replacing u by 2u[r, jk] in (2.20) and using it again, we obtain

di(r, JKIW?, dy()] + [u, (W)L, jkld,(w?) = 0 (2.21)
In (2.21) replacing u by 4su* and using (2.21) again, we obtain

dy()uP[r, jkIw?, da(v)] + s, da(V)]u*[r, jkld;(w?) = 0 (2.22)

In (2.22) replacing s by d»(v)s and then using commutator identities, we get
didy(v)su’[r, jK][W?, dy(»)] = O (2.23)

Therefore d;d,(v)S u?[r, jkl[w?, d»(v)] = {0}. By the primeness of §, we obtain either d,d,(v) = 0 or
u*[r, jk1[w?, d>(v)] = 0. Consider the sets

G = {V eG: d]dz(V) = 0}

and
G, = (v e G : u’[r, jkl[w*, dy(v) = 0}

We observe that G = G U G,. We will show that either G = G| or G = G,. Suppose that v; € G; \ G,
and v, € G, \ G;. Thenv; +v, € G; + G, € G; UG, = G. We now see that 0 = did,(v; + ) =
d,d»(v,), which shows that v, € Gy, a contradiction. On the other hand 0 = 1?[r, jk][w?, d>(v| + v»)] =
u*[r, jk1[w?, d>(v1)], which shows that v, € G,, a contradiction. Therefore either G|, C G, or G, C G|,
which respectively show that either G = G| or G = G,. Therefore we conclude that for all v € G,
did>(v) = 0 or u*[r, jk][w?,d,(v)] = 0. Suppose that did>(v) = 0,v € G. then by Lemma 2, d;, = 0
or d» = 0. Secondly suppose that u?[r, jk][w?, dr(v)] = O,u,v,w, j,k € G,r € S. By Lemma 5, we
have either > = 0 or [w?,d>(v)] = 0. But u?> = 0 leads to G = {0} which is not possible. Therefore
[w?,d>(v)] = 0 and employing Lemma 4, [d,(v), s] = 0,s € S. Hence by Theorem 2.2 of [22], S is
commutative. O

Theorem 4. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-semiring S and d, and d,
be derivations of S such that for all u,v € G

diWdr(v) + [u,v] =0 (2.24)

Then d, = 0 or d, = 0 and thus S is commutative.

Proof. 1t is quite clear that if at least one of d; and d, is zero, then we obtain [G,G] = {0}. By
Theorem 2.3 of [11] and Theorem 2.1 of [22], S is commutative. So we only show that at least one of
the derivations is zero. Suppose that d, # 0. In (2.24), replacing v by 4vw?,w € G, we obtain
d; (w)do(4vw?) + [u, 4vw?] = 0 and therefore using MA-semirings identities, we can write

Ad, (u)yvdy(W?) + 4dy (W)dy(VW? + dv[u, w?] + 4[u,v] w?* = 0
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In view of Lemma 1 as 2w? € G, using (2.24) and the 2-torsion freeness of S, we obtain
di(uyvd,(w*) + v[u,w?] =0 (2.25)
In (2.25) replacing v by 2[s, f]v, s,t € S and hence by the 2-torsion freeness of S, we get
di(W)[s, lvdo(W?) + [, ][, w*] =0 (2.26)
Multiplying (2.25) by [s, t] from the left, we get
[s, £1d; (w)vd>(W?) + [s, t]v[u, w?] =0
and since S is an MA-semiring, therefore
[s, 11di wyvd>(W?) = [s, 1]v[u, w’] (2.27)
Using (2.27) into (2.26), we obtain d;(u)[s, {lvd,(w?) + [s,t] di(u)vd,(w?) = 0. By MA-semirings
identities, we further obtain [d; (), [s, t]1Gd>(W?) = {0}. By Lemma 2, we obtain either [d;(«), [s,t]] =
0 or dy(w?) = 0. If d,(w?) = 0, then by Lemma 3, d, = 0. On the other hand, if
[di(w), [5,7]1 = 0 (2.28)

In (2.28) replacing ¢ by st, we get [d,(u), s[s,t]] = 0 and using (2.23) again [d;(u), s][s,t] = 0 and
therefore [d;(u), s]S[s,t] = {0} and by the primeness of S, we get [S,S] = {0} and hence § is

commutative or [di(#),s] = 0. In view of Theorem 2.2 of [22] from [d;(u),s] = 0 we have
[S,S] = {0} which further implies S is commutative. Hence (2.19)becomes d;(u)d>(v) = 0. As above
we have either d; = 0 or d, = 0. m|

Theorem 5. Let S be a 2-torsion free prime MA-semiring and G a nonzero Jordan ideal of S. If dy, d,
and d; be nonzero. derivations such that for all u,v € G either

1). d;()di(w) + dr()d5(v) = 0 or

2). ds(V)dy(u) + dy(u')d3(v) + [u,v] = 0.

Then S is commutative and d, = d5.

Proof. 1). By the hypothesis for the first part, we have
ds()dy () + do(u )d5(v) = 0 (2.29)

which further implies
d3(V)di(u) = dy(u)d3(v) (2.30)

In (2.29) replacing u by 4uw?, we obtain
4dy(v)d, (W? + ddy(v)ud; (W) + ddo(u W ds(v) + 4 dy(W?)d3(v) = 0
and therefore by the 2-torsion freeness of S, we have
ds()dy (ww* + ds(V)ud;(W?) + da(u YW ds(v) + u dy(wHd3(v) = 0 (2.31)
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Using (2.30) into (2.31), we obtain
dy(W)[ds(v), w?] + [d3(v), uld;(w*) = 0 (2.32)
In (2.32) replacing u by 2ul[r, jkl,r € S, j,k € G, and using (2.32) again, we get

o)1, jKllds(v), w?] + [ds(v), ul[r, jkldi(w*) = 0 (2.33)

In (2.33) replacing u by 4tu?,t € S and using 2-torsion freeness and (2.33) again, we get
dy (i’ [r, jK)[d3(v), '] + [ds(v), Ju[r, jk1d,(w?) = O (2.34)
Taking ¢t = d3(v)t in (2.34) and using (2.34) again we obtain
dyds (V) [r, jK][d3(v), W] = 0 (2.35)

We see that equation (2.35) is similar as (2.23) of the previous theorem, therefore repeating the same
process we obtain the required result.
2). By the hypothesis, we have

d;(dy () + do(u)ds(v) + [u,v] =0 (2.36)

For d; = 0, we obtain [G,G] = {0} and by Theorem 2.3 of [11] this proves that S is commutative.
Assume that d;z # 0. From (2.36), using MA-semiring identities, we can write

d;(v)d(u) = dr(u)dz(v) + [u, v] (2.37)

and
ds()dy () + [u,v] = do(u)ds(v) (2.33)

In (2.36), replacing u by 4uz?, we obtain
Ads(Vudy () + ds (A (W) + do(u)Zd5(v) + u do(Z)d3(v) + ul2,v] ) + [u,v] 2) = 0
and using (2.37) and (2.38) and then 2-torsion freeness of S, we obtain
[ds(v), uldy(2%) + da(w)[d3(v),2°] = 0 (2.39)

We see that (2.39) is same as (2.32) of the previous part of this result. This proves that [S, S ] = {0} and
hence S is commutative. Also then by the hypothesis, since d3 # 0, d| = d,. O

Theorem 6. Let G be nonzero Jordan ideal of a 2-torsion free prime MA-semiring S and d, and d, be
nonzero derivations of S such that for all u,v € G

[d2(v), di ()] + dy[v,u] =0 (2.40)
Then S is commutative.
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In (2.40) replacing u by 4uw?, w € G and using 2-torsion freeness and again using(2.40), we obtain

(V) + Vv, uldi(W?) + dy(W)[da(v) + Vv ,w?] = 0 (2.41)

In (2.41) replacing u by 2ulr, jk], j,k € G,r € S, we obtain
uldy(v) + V', 2[r, jklldi(w?) + 2[d>(v) + V', ul[r, jkId(W?)

+ud, 2[r, jKD[d>(v) + vV, w*] + 2dyw)[r, jk1[do(v) + Vv, w?*] = 0

Using 2-torsion freeness and (2.41) again, we get

[do(v) + V', ullr, jKldi(W?) + di @7, jK][do(v) + V', w?] = 0 (242)
In(2.42) replacing u by 4tu?, t € S and using (2.42) again, we get

[do(v) + v, (1?1, jkldy(W?) + dy ([ r, jKl[da(v) + v, w?] = 0 (2.43)

In (2.43) taking ¢ = (d»(v) + v)t and using MA-semirings identities, we obtain
(dr(v) + V)da(v) + V', tlu?[r, jKldi(W?) + dy(da(v) + V)0 [r, jKl[dr(v) + V', w?]

+Hdo(v) +V)d (O [r, jKI[do(v) + v, w*] = 0
and using (2.43) again, we obtain
d\(d>(v) + V)t [r, jKl[do(v) + V', w?] =0 (2.44)

By the primeness we obtain either d;(d,(v) + V) = 0or u?[r, jkl[dr(v)+V',w?] = 0. If d\ (dx,(v) +V) = 0,
then by Theorem 2 we have d; = 0, which contradicts the hypothesis. Therefore we must suppose
W[r, jklld>(v) + v',w?*] = 0. By Lemma 5, we have either u> = 0 or [d,(v) + v,w?] = 0. But
u> = 0 implies G = {0} which is not possible. On the other hand applying Lemma 5, we have
[do(v) +V,r] = 0,¥r € S and therefore taking r = v,v € G and [d,(v),Vv] + [v',v] = 0 and using
MA-semiring identities, we get

[d2(v),v] + [v,v] =0 (2.45)

As [v,v] = [v, V], from (2.45), we obtain [d»(v), v] + [v,v] = 0 and therefore
[d2(v), V] = [v,v] (2.46)

Using (2.46) into (2.45), we get 2[d,>(v), v] = 0 and by the 2-torsion freeness of S, we get [d,(v), v] = 0.
By Theorem 2.2 of [22], we conclude that §' is commutative.

Corollary 1. Let G be nonzero Jordan ideal of a 2-torsion free prime MA-semiring S and d be a
nonzero derivation of S such that for all u,v € G d[v,u]=0. Then S is commutative

Proof. In theorem (6) taking d, = 0 and d, = d, we get the required result. O

Theorem 7. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-semiring and d, be
derivation of S. Then there exists no nonzero derivation d, such that for all u,v € G

d>(v) o dy(u) + di(v ou) =0 (2.47)
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Proof. Suppose on the contrary that there is a nonzero derivation d; satisfying (2.47). In (2.47)
replacing u by 4uw?, w € G and using (2.47) again, we obtain

di(W[W?, dy(v) + v] + [u, ds(0)] di(W?) + ud; (v o w?) + (u o v)dy(W?) + ud;[v,w*] =0 (2.48)
In (2.48), replacing u by u[r, jk],r € S, j,k € G and using (2.48) again, we get

diW)[r, jKIIW?, do(v) + v] + [u, do(v) + V] [r, jkldi(w?) = 0 (2.49)

In (2.49) replacing u by 4tu?,t € S and using (2.49) again, we obtain
di(Ou[r, jklw?, do(v) + v] + td, (u?)[r, jKIW?, dy(v) + V]

+t[u?, do(v) + V] [r, jKldy(W?) + [t, do(v) + v] t*[r, jkldi(W?) = 0

and using2-torsion freeness and (2.49) again, we obtain

d\(OW?[r, jKIIW?, da(v) + v] + [t, do(v) + v] W?[r, jkldy(W?) = 0 (2.50)

In (2.50) taking ¢ = (dr(v) + v)t and using MA-semirings identities, we get
di(dy(v) + )t [r, jK)[W?, da(v) + V] + (da(v) + V)di (DU [r, jKIW?, da(v) + V]

+Hdr(v) + W[t, da(v) + v] WP [r, jkldi(w*) = 0
Using (2.50) again, we obtain
di(d>(v) + V)tu?[r, jkl[w?, do(v) +v] = 0 (2.51)

that is d, (d>(v) +v)S u[r, jk][w?, d>(v)+v] = 0. Therefore by the primeness following the same process
as above, we have either d;(d>(v) +v) = 0 or u?[r, jkl[w?,dr(v) +v] = Oforall u,v, j,k,w € G,r € S. If
di(d,(v) +v) = 0. As d; # 0, therefore d»(v) +v = 0. Secondly suppose that u?[r, jk][w?, d>(v) +v] = 0.
By Lemma 5, we have either > = 0 or [w?,dy(v) +v] = 0. But #*> = 0 implies that G = {0}, a
contradiction. Therefore we consider the case when [w?, d,(v) + v] = 0, which implies, by Lemma 4,
that [d>(v) + v,r] = 0,Vr € § and taking in particular t = v € G, we have

[d2(v),v] + [v,v] =0 (2.52)

Also by definition of MA-semirings, we have [v,v] = [v,v]. Therefore [d,(v),v] + [v,v] = 0 and
therefore
[d2(v),v] = [v,V] (2.53)

Using (2.53) into (2.52) and then using 2-torsion freeness of S, we obtain [d(v),v] = 0. By Theorem
2.2 of [22], we conclude that S is commutative. Therefore (2.47) will be rewritten as 2d;(u)d,(v) +
2(d;(v')u + v'd;(u)) = 0 and hence by the 2-torsion freeness of S, we obtain

di(Wdr(v) + dy (v )u +v'dy(u) = 0 (2.54)
In (2.54) replacing u by 2uw and using 2-torsion freeness of S, we get
diwd>(v) + udy(W)do(v) + dy(V Juw + v dy (w)w + v ud; (w) = 0
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and therefore

w(d,(W)d>(v) + di (V) )u + V' dy () + ud;(w)da(v) + v ud,(w) = 0

Using (2.54) again, we obtain
udy(W)d>(v) + v'ud;(w) = 0 (2.55)

In (2.55) replacing v by 2vz, we get

ud,(W)d>(v)z + udy,(w)vds(2) + v zud,(w) = 0
and therefore

2(ud,(W)dy(v) + V' ud, (w)) + ud;(w)vds(z) = 0

and using (2.55) again, we get d;(w)uGd,(z) = {0}. By the above Lemma 2,we have either d;(w)u = 0
or d>(z) = 0 and therefore by Remark 1, we have either d;(w) = 0 or d,(z) = 0. As d; # 0, therefore
d, = 0. Therefore our hypothesis becomes d,(u o v) = 0 and therefore d,(u*) = 0, Yu € G. By Lemma
3, d; = 0 a contraction to the assumption. Hence d, is zero. O

3. Open problem

We have proved the results of this paper for prime semirings and it would be interesting to generalize
them for semiprime semirings, we leave it as an open problem.

Acknowledgments

Taif University Researchers Supporting Project number (TURSP-2020/154), Taif University Taif,
Saudi Arabia.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. K. Glazek, A guide to the literature on semirings and their applications in mathematics and
information sciences with complete bibliography, Springer, 2002.

2. P. Kostolanyi, F. Misun, Alternating weighted automata over commutative semirings, Theor.
Comput. Sci., 740 (2018), 1-27.

3. U. Hebisch, H. J. Weinert, Semirings: Algebraic theory and applications in computer science,
World Scientific Publishing Company, 1998.

4. V. N. Kolokoltsov, V. P. Maslov, Idempotent analysis and its applications, Dordrecht: Kluwer
Acad. Publ., 1997.

5. V. P. Maslov, S. N. Samborskii, Idempotent analysis, RI: American Mathematical Society, 1992.

AIMS Mathematics Volume 6, Issue 7, 6833-6844.



6844

6. M. A. Javed, M. Aslam, M. Hussain, On condition (A,) of Bandlet and Petrich for inverse
semiqrings, Int. Math. Forum, 7 (2012), 2903-2914.
7. S. Shafig, M. Aslam, M. A. Javed, On centralizer of semiprime inverse semiring, Discuss. Math.
Gen. Algebra Appl., 36 (2016), 71-84.
8. Y. A. Khan, W. A. Dudek, Stronger Lie derivations on MA-semirings, Afr. Mat., 31 (2020), 891—
901.
9. L. Ali, Y. A. Khan, A. A. Mousa, S. A. Khalek, G. Farid, Some differential identities of MA-
semirings with involution, AIMS Mathematics, 6 (2020), 2304-2314.
10. L. Ali, M. Aslam, M. 1. Qureshi, Y. A. Khan, S. Ur Rehman, G. Farid, Commutativity of MA-
semirings with involution through generalized derivations, J. Math., 2020 (2020), 8867247.
11. L. Ali, M. Aslam, Y. A. Khan, On Jordan ideals of inverse semirings with involution, Indian J. Sci.
Technol., 13 (2020), 430-438.
12. L. Ali, M. Aslam, Y. A. Khan, G. Farid, On generalized derivations of semirings with involution,
J. Mech. Continua Math. Sci., 15 (2020), 138-152.
13. R. Awtar, Lie and Jordan structure in prime rings with derivations, P. Am. Math. Soc., 41 (1973),
67-74.
14. H. E. Bell, W. S. Martindale, Centralizing mappings of semiprime rings, Can. Math. Bull., 30
(1987), 92—-101.
15. J. Berger, I. N. Herstein, J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra, 71 (1981),
259-267.
16. B. E. Johnson, Continuity of derivations on commutative Banach algebras, Am. J. Math., 91 (1969),
1-10.
17. D. A. Jordan, On the ideals of a Lie algebra of derivations, J. Lond. Math. Soc., 2 (1986), 33-39.
18. L. Oukhtite, A. Mamouni, Derivations satisfying certain algebraic identities on Jordan ideals, Arab.
J. Math., 1 (2012), 341-346.
19. E. C. Posner, Derivations in prime rings, P. Am. Math. Soc., 8 (1957), 1093—-1100.
20. S. Shafig, M. Aslam, Jordan and Lie ideals of inverse semirings, Asian-Eur J. Math., 2021 (2021),
2150181.
21. L. Oukhtite, A. Mamouni, C. Beddani, Derivations and Jordan ideals in prim rings, J. Taibah Uni.
Sci., 8 (2014), 364-369.
22. L. Ali, Y. A. Khan, M. Aslam, On Posner’s second theorem for semirings with involution, JDMSC,
23 (2020), 1195-1202.
23. I. N. Herstein, On the Lie and Jordan rings of simple associative ring, Am. J. Math., 77 (1955),
279-285.
‘ ©2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
% AIMS Press terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 7, 6833-6844.


http://creativecommons.org/licenses/by/4.0

	Introduction
	Main results
	Open problem

