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1. Introduction

Delay differential equations naturally appear in many fields of science and engineering. Such
equations have been proposed as models for a variety of physiological processes and conditions
including production of blood cells, respiration and cardiac arrhythemias. In recent years, the
existence of positive periodic solutions for delay differential equations has been received considerable
attention. J. Kaplan and J. Yorke [10] gave conditions for the existence of 4— or 6— periodic solutions
of equation

X(t) = — Zf(x(t —i), xeR (1.1)
i=1

while n = 1 and n = 2, respectively. After then, lots of results are achieved for this equation in general
cases [1-12]. W. Ge [4-6] proved several existence theorems of periodic solutions for (1.1) in the
general case by use of the fixed-point theorem in cone. After transforming (1.1) into a Hamiltonian
system and applying a theorem given by Mawhin and Willem [13], J.Li and X. He [11,12] proved a
theorem for the existence of several periodic solutions under the condition xf(x) > 0 (xf(x) < 0) for
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x # 0. G. Fei [1,2] studied the multiplicity of periodic solutions of (1.1) and proved theorems for the
cases n = 2k — 1 and n = 2k by using the index theory. In his work, the way to construct the functional
for the second case is quite different from that for the first case.

Applying S! index theory Z. Guo and J. Yu [8] gave a theorem for the multiple periodic solutions
of the delay-differential system with one lag in the form

X' (1) = =VF(x(t = 1)), x e RY, F € C°RY,R"). (1.2)

And by applying the same index theory, in [9], they obtained results on the multiplicity of 2(n + 1)-
periodic solutions to the delay differential system

X(t) = - Z VF(x(t - i)),x e RV, F e C°/(RY,RM). (1.3)
t=1
when n = 2k — 1. After then B. Zheng and Z. Guo studied (1.3) while n = 2k and gave two criteria

for the multiplicity of 2(2k + 1)-periodic solutions. The theorems given in both[9] and [14] contain a
condition to calculate the following function

YA, B) = Z\Pj(A, B), n=2k-1,

=

W(A,B)= > WiAB), TCN', n=2k
j=1.jer
for symmetric matrices A and B, respectively. This is a hard task to be fulfilled since it is not definite
for the problem how large the j must be to ensure ¥ ;(A, B) = 0.

In [7], we researched the same problem for system (1.3) when n = 2k — 1 and by constructing a new
functional we gave criteria for the multiplicity of periodic solutions only based on the eigenvalues of
symmetric matrices A and B.

In this paper we are to study the multiplicity of 2(2k + 1)-periodic solutions for system (1.3) when

n =2k, 1.e.,
2

X(t) = — Z VE(x(t — i), x € RN, F € CO(RY, RM). (1.4)

i=1
with the conditions F € C'(RY,R), VF(-x) = —F(x), F(0) = 0,

x(t—k—1)=—x(1). (1.5)
At the same time, assume there are real symmetric matrices A, and Ay such that
VF(x) = Awx + 0(|x]) as |x] = oo, VF(x) = Apx + o(|x]) as |x| — 0.

In section 2, some notations and variation structure for system (1.4) are introduced. Meanwhile, a
lemma about the relation between the periodic solutions of system(1.4) and the critical points of the
functional @ are also proved in section 2. Section 3 presents and proves the main results of this paper.
Before the proof of the main results some lemmas about the calculation of the differential of functional
® are proven. Two examples are given in section 4 to illustrate the applications of the main results.
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2. 2(2k + 1)-periodic solution of (1.4) and variation structure

Firstly, we consider a linear space which consists of all the 2(2k + 1)-periodic functions satisfying
(1.5)inRY, ie.
1

1 2 | 2i-1
H>={ x(t) = Z(al cos ¥ )”t+ b; sin (2’k+1)”t) ca;,b; € RY,

2(21 = Ddlail® + 1b:f*) < o0}

Since our goal is to find the 2(2k + 1)-periodic solutions for system (1 4) with condition (1.5), we
discuss now the special requirement for a solution of system (1.4) in H?. After then, we are able to

choose a suitable Hilbert space for our problem. Assume > a; =0 if n <m.

I-1
If x(¢) is a 2(2k + 1)-periodic solution of (1.4) satisfying (1.5), then, x'(t — ) = >, VF(x(t — i)) —
i=0
2%
> VF(x(t-1i)),[=0,1,---,2k. Hence,

i=l+1

Z( (e - 2.1)

2k 2k
From the equation above, one has 3. (-=1)'x(t — ) = c. However, c = X (-1)x(t =1 -2k - 1) =
=0 =0

2%
— Y (=1)'x(t = I) = —c, which means ¢ = 0. Then,
i=0

2k
Z(—l)lx(t ~)=0. 2.2)
=0

By Fourier’s expansion theory and (1.5), it holds that

x(t) = Y(a;cos St + by sin ED0p)
i=1

oo 2k+1
QI2k+1)+2i- D . QI2k+D)+2i- D
2 2 (@iki1)4i €OS =51 + byoi1yri SIn = 1),
=0 i=1

Substituting the above expression into (2.2) we have

A|Qk+1)+k+1 = bl(2k+1)+k+1 =0. (23)

Then suppose
2%
X = {x €H:: x(t =2k —1) = =x(t), X(=1)'x(t — i) = O}.
i=0

For x € X, define P : X — X:

2k+1 ,
X 3 z + 2 )2U2k + 1) + 2i — D(@yaps 1)+ cos EEE2DT
1=0 i=1 i=k+2

+bi2k+1)+i SIN (2I@k+ D+2i— D 0,

2k+1
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and denote

2(2k+1) 2(2k+1)
X% yx = fo (Px(2), y(1))dt, {x,y) = fo (x(®), y())dt, x,y € X.

Define

Ixllx = VO 0x  lxdl = Vi x) = V(P'x, ).

It is obvious that (X, || - ||x) is a Hilbert space and P : X — X is an invertible and self-adjoint operator.
Define

Z = {20} = (1), 22(0), -+ , 2k (1)} = (X0, 2t = 1), -+, x(1 = 2k + 1)) : x € X} € X,

Therefore z;(¢) = x(¢) € X. Furthermore, let

N 2i— D . 2i-Dr N
X(l)—{acos 1 t + bsin 1 t:a,beR"},

Z(@) = {(x(@®), x(t = 1), - -+, x(t = 2k + 1)) : x(2) € X(i)}.

Then,
[ee) s k
‘- Z Z(i):ZZZ(l(2k+l)+i)_

i¢l(2kff)+k+1 =0 i=1

! 2%-1 .

Denote H(z) = ), F(x(t —i)) + F( Y, (—1)"'x(t — i)), then,
i=0 =
_ (0HQ® 0H@) IH()
VH(2) = (55505 50)

(VF(x(t)) = VF(x(t = 2k)), VF(x(t — 1)) + VF(x(t = 2k)), - - -,
VFE(x(t = 1)) = (=1)VF(x(t — 2k)), - - -,
VF(x(t =2k + 1)) + VF(x(t — 2k)))

2%-1
where x(t — 2k) = 3 (=1)*"'x(t =i), zz=x(t =1+ 1),[=1,2,---,2k, and from (2.2),
i=0

2k—-1

2%
e = ) (D =) = Y (=17
i=0 i=1
Define ® : Z — R as a functional of z:
1
D(z) = §<Lz, )+ G(2) (2.4)
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where
2k—1
Lz= (2( 1) (e~ z< DY@ =i+ % (D) =),
i=l+1
2/<Z—( 1)1+2k1 /( —i)),
G = - 02(2’””(2 F(x(t—z))+F(Z( 1) x(z - D)),

2(2k+1
(z,y) = 0( +)(P,y)dt Ly E€Z,

=(P,P,---,P):Z— Z. Then

llzll = <z, z) = 2k{x, x)x = 2kl|xll,

2(2k+1)2k 1 -1 -1
O(z) = Z (Z( D*X (= i)+ Y (=D = i), x(t — D)dt
l [+1
2(2k+1) k v

[ Z F(x(t—10) + F( Z (=) x(t — i))]dt
1 Z f2(2k+1)( 1)1+l+1 [(X(t l), X (t _ l)) _ (X’(t _ l), x(t _ l))]dt

2 0<i<i<2k-1

[Z F(x(t = 1)) + F( Z (=D x(t - i))]dt

By Mawhin-Willem’s theorem [13, Theorem 1.4], @ is continuously differentiable and

2(2k+l)

(@(2),v) = (Lu,v)z - ( Z (VF(x(t = D) = (=1)'VF(x(t = 2k)), y(t = D))dt

Z f2(2k+1)(2( DX (1 — i) + Z( )ty (t — i) — VF(x(t — 1))

i=l+1

( l)l“VF (X(t = 2k)), y(t = D))dt

where z(t) = (x(¢), x(t — 1), -+ , x(t =2k + 1)), v(t) = (y(t), y(t = 1),--- ,y(t — 2k + 1)).
Denote @'(z) = (P}(2), D}(2), - - , P}, (2)), where

O, )= PSR-+ 3 (1 — i) — VGl — 1)
i=0 =l
+(—1)IVF()C(I -2b))),1=0,1,--- ,2k—1.

(2.5)

(2.6)

If a point z € Z satisfies ®’(z) = 0, then z is called a critical point of ®. The following lemma
reveals the relation between the 2(2k + 1)-periodic solutions of system (1.4) and the critical points of
®. Based on this lemma we can discuss the multiplicity of critical points of ® instead of discussing that
of 2(2k + 1)-periodic solutions of system (1.4). In the following, denote x(#) as the first N components

-1
of z(¢) in Z and set Z X'(t—1)=

Lemma 2.1 If x E X, z=(x(t),x(t=1),---,x(t = 2k + 1)) € Z, then the following propositions are

equivalent to each other.
1) x(¢) is one of the solutions of system (1.4),
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2) z(1) satisfies ®|(z) = 0, i.e.

2k—1
Z(—l)i”x’(t — i) = VF(x(t)) + VF(x(t — 2k)) = 0, 2.7)

i=1
3) z(¢) is one of the critical points of ® on Z, i.e., z(¢) satisfies
-1 , 2%-1 .
S(EDFX =i+ Y (=D (= i) = VF(x(t = D) + (=1D)'VF(x(t — 2k))
i=0 i=l+1
=0, [=0,1,---,2k—1 2.8-1)
Proof. 1)= 2).
Suppose x(¢) is a solution of system (1.4).

By the periodicity of x(¢) and (1. 5) one has
xX'(t-10)= Z VF(x(t - i) — 2kzl VF(x(t —i)) — VF(x(t — 2k)) 29-1

i=l+1
1=1,2,---,2k—1, x(t — 2k) = Z (—1)‘+1x(t — 7). Multiplying (-1)"*! to the equalities (2.9 — ) and
i=0
summing them up, we have

2k-1

Z(—l)l“x'(t — 1) = VF(x(t)) — VF(x(t — 2k)),
=1

which means (2.7) holds.

2)= 3).
System (2.7) is the same as (2.8 — 0).
From (2.7) one has
2%k-1
Z(—l)”lx’(t —i—1)-VFx(it-1)+VF(x(t-2k-1)) =0,
i=1
1.e.,
2%-1
0 = Z (=Dix'(t = i)+ x'(t = 2k) = VF(x(t — 1)) = VF(x(?))
e %1 (2.10)
Z (=Dix'(t—=i)+ Z (=D*'X'(t — i) = VF(x(t — 1)) — VF(x(1)).
Then (2.7) and (2.10) yield
2%-1
-xX'(t) + Z(—l)ix’(t —0)=VFx(t-1)-VF(x(-2k)=0
i=2
which means (2.8 — 1).
Suppose (2.8 —[) holds. Then,
0= zl:(—l)””lx’(t -0+ 2El(—l)”r”zx’(t — )+ (=Dt = 2k)
i=1 i=I+2
—VF(x(t — 1= 1)+ (-D)*'VF(x(t))
2%-1 2%-1 , (2.11)
— Z( 1)l+l+1x/(t l) + Z ( 1)1+l+2 ’(l‘ l) + (_1)l+1 Z (_1)1x/(t _ l)
i=l+2 i=0

—VF(x(t —1[=1)) + (DI*VF(x(2)).
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Multiplying (2.7)with (=1)"*! and add it to (2.11), one can obtain (2.8 — (I + 1)) .
3)=1).
Summing the equalities from (2.8 — 1) to (2.8 — (2k — 1)), one has

2k
—X'(5) = ) VF(x(t - i),

which implies x(¢) is a solution of system (1.4).

Denote P; : Z — Z@G), ZG) = {(x(@).x(t = D,---,x(t = 2k + 1) : x() =
a;cos St + by sin %glf”t a;,b; € RN}, i# QL+ DQRk+1); Z(2L+ DRk + 1)) =0, [eN*U{0}.

Furthermore, let P; = Z P 1 Z > Z Z(@i), i=1,2,---.Then, one has LP; = P,L.
: A

Let -G'(z) = (P~ 1(VF (x(t)) = VF(x(t — 2k))) P Y(VF(x(t = 1)) + VF(x(t — 2k))), -

P YVE(x(t = D) + (=DH*'VF(x(t — 2k))), - , P/ (VF(x(t = 2k + 1)) — VF(x(t — 2k)))). Then D'(2) =
Lz + G'(z). L is a bounded self-adjoint operator and G’(z) : Z — X% is compact since (G'z)(t) is
differentiable with respect to t.

Denote B, By € R?V*XN ag

2k + 1 2k + 1 2k + 1 2k + 1
2k AOO’... b 2k AOO)aBO_( AO"" E) 2k

and for z(¢) = (x(¢), x(t = 1), --- , x(t — 2k + 1)),

B, = (

(2k+1Aoo (t) 2k+1Aoox(t - 1)’ U 2k+1Aoox(t -2k + 1))a

> 2k > 2k
Byz = (2k+1A0 (), B Agx(r = 1), -+, ELAox(t — 2k + 1)). (2.12)
Define 6z(t) = Tounz(t) : Z — Z, where
I -1 - I —I]
I O --- 0 O
Tun=| 0 1 0O O (2.13)
0o 0 -~ I O]

is a 2kN X 2kN matrix, I is a N X N unit matrix and O is a N X N zero matrix.

From (1.5) and (2.2), one has 6z(f) = z(¢ + 1) and 6**'z(t) = —z(¢). Then,
{1,6,6%,---,6%} is a Lie group with 6***? = 1, where 1 stands for the identity transform in Z.

Now we have

D(62) = O(2),
D'(6z) = 6D’ (),

i.e., with respect to the Lie group {1,6,6%,--- ,6**!}, @ is invariant and @’ is —equivariant.

In order to prove our results we shall apply the following lemma.

Lemma 2.2 [2, Lemma 2.4]

Assume there are two S !-invariant linear subspaces, Z* and Z~ C Z, and r > 0 such that
(a) Z* U Z~ is a closed and finite codimension in Z,
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(b)L(Z)cZ withL=L-P'B,orL=L-P'B,
(c) there exists ¢, € R such that

D) <co <P0), VzE€EZ NS, ={z€Z : Izl =1},

(d) there exists ¢y € R such that
inf ®(z) > ¢y,
z€Z*

(e) @ satisfies (P.S).-condition for ¢y < ¢ < Ce.
Then @ possesses at least m = %[dim(Z‘ NZ*)—codim,(Z~UZ")] different critical orbits in ®~'([cp, Ce])
provided m > 0.

Remark 2.1 (P.S).-condition in (e) can be replaced by (P.S)-condition since (P.S)-condition implies
(P.S).-condition for each ¢ € R.

Remark 2.2 If (P.S).-condition in (e) is replaced by (P.S)-condition, (c) and (d) can be changed into

(¢") there exists ¢, € R such that

D) > ce >D(0), VzE€Z NS, ={z€Z Izl =1},

(d’) there exists ¢y € R such that

inf ®(z) < ¢y
A

if ®(z) is replaced by —(D(z).
Remark 2.3 When Z = @ ZO),Z () =Z"NZG), Z (i) =Z N Z(@G), we have dim Z(i) = 2N and

[dim(Z" (i) N Z~(i)) — codimy;,(Z* (i) + Z7(i))]

3

I
1 —
Mg

Il
—_

[dim(Z" (i) N Z7(i)) — (dim Z(i) — dim(Z" (i) + Z(i)))]

I
N —
M8

1

[dim Z* (i) + dimZ (i) — 2N]. (2.14)

I
N —
M8

Il
—

3. Main results

Suppose {a; : j = 1,2,---,N} are the eigenvalues of A, and {5; : j = 1,2,---,N} are the
eigenvalues of Ay, dj,e; € RY are the eigenvectors of A, and A, with respect to a; and S,
respectively. Assume {d;,d,,--- ,dy} and {e|, e, - - , ey} are two orthogonal bases of RY.

Lemma 3.1 If z € Z(i), i # l(k + 1), then there is y = 5% such that

2%+ 1 2i— 1
" i- 1)ytan¥

(Lz,z) = (z,2). 3.1

Proof. Denote | - | as the norm in R”, then
2(2k+1)
(z,2) =2k f lx(D)dr = 2k(2k + D)(|a;l* + |b:f). (3.2)
0
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It follows that
(Lz,7)

= % I = m, X = D) = (= m), x( = D))

0<m<I<2k-1 k]
=2 % (=l PV = m), ¥ (- D
0<m<I<2k-1
m 2k=12k=1
PRy TN (0 PV 1+ ), x - D)t
=1 I=j
2k—1
-2 % (=1 @k = ) [V el + ), ¥ @)
2k—

=2 Z (2k = P(=1)*1(2i = Dyy(2k + 1)(lal® + ) sin j(2i — 1)y

—1

=22 - 1)yQRk+1) Z 2k — H(=1)*1sin j(2i — Vy(lal* + |b]*).
=1

Since
2k—1
D @k = j(=1)*"sin j2i — Dy
j=1
2k—1 . . . .
1 2j-D2i-y . Q2j+DQ@i-1y
= ———— ) (=1)"'(2k - j)[sin +sin ]
2 cos 2 1)7 JZ:‘ 2 2
B 1 CQi-Dy . (2j=D@i- Dy
_ m[2ksmT + ;(—1) sin > ]
(2i— 1) 1 2 2i—1)
= ktan 5 L > oos 1 Z;( 1)/[sin j(2i — l)ycosTy
2 J=
-1
—cos j(2i — 1)y sin UT))/]
1 2i-1
= (k + E) tan %,
one has
(Lz,z) = (2k+1)°(2i - 1)Vtan( )y(l > + b
2k+1 2i-1
= (2i = 1)ytan %(z,z)
Lemma 3.1 is proved.
Denote E; ={1e; : 1 e R},D; ={Ad; : A €R}, j=1,2,--- ,N,[ > 0and
Y0 < [202k + 1) + 2i — Dlytan E52 < @), a; >0,
i=1
indaj =1 0, a; =0,

k ,
SN0 < [I+ DRk + D +2(k+1—Dlytan =2 < —0 ), @, <0,
2 J J

i=1
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k .

El #(1: 0 < [212k + 1) + (2i — D]ytan 52 < g}, B; >0,
O’ ﬁ] = 07
- i #(1:0 < [0+ DRk + 1) +2(k + 1 = i)ytan 52 < g3}, B; <0,

i=1

indﬁj =

N N
then RN = le = '21 E;. Suppose
J:

Jj=

N N
indA,, = " inda;, indAg = )" indg, (3.3)
=1 =
and Qi—1) Qi-1)
XD,J'(Z.) = {x(t) = a; cos %t + b; sin %t, a;, b; € Dj},
2i-1 2i—1
Xp(i) = {x(t) = a; cos %z + by sin %r, a,b; € Ej},
therefore,
N N
X)) = > Xp i) = ) Xp,(i). (3.4)
=1 j=1
Denote

o k
x(t) = Z Z [al(2k+])+i cos(RIRk + 1) +2i — 1)’)/t + bl(2k+l)+i sin(2I2k + 1) + 2i — l)yl
=0 i=1

+a10k+1)+k+14i COS(2L + 1)(2k + 1) + 2i)yt
+Dis 1yrke 14 SIN((2L + 1)(2k + 1) + 2i)y1].

It follows from (3.1) and (3.2) that for z;(¢) = x(¢), one has

(Lz,2)

, 8k . (QU2k+1)+2i-1) 2 2
=y(2k+1) z;) ;[(21(216 +1)+2i-1)tan fyﬂazeknﬂﬂ + b1k 1y+il?)
+QU2k + 1) + 2(k + 1 + i) — 1) tan HEEDZELDZY (g0, 1) 41

Hbiars 1y a1+

oo k .
= y(2k + 1)? 2 R[(2I2k+1)+2i = tan CED (|ayaprysil? + 1Birsyail®)

—(21+ D2k + 1)+ 2(k+ 1 —1i))tan (Zi;])y(lal(2k+1)+2k+2—i|2 + |biksys2ks2-i1)].

(3.5)

and

2(k+1)
(P7'Aux, x) = f (Awx, X)dt = 2k + Da;(jail* + [b:i*), x € Xp (i),
0
2(k+1)
(P7'Agx, x) = f (Aox, x)dt = 2k + DB;(lail* + 1bi*), x € Xg (i),
0
and

(P'Boz,2) = 2k + DX(lai* + b)), x € Xp,,

- 3.6
(P™'Boz,2) = B2k + D*(lail* + 1b:P),  x € X . G0
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Denote
Zo={z€Z:{Lz- P 'Byz,2) <0}, Z; ={z€ Z: (Lz— P"'Byz,2) < 0},
Z) ={z€Z:(Lz— P"'Buz,2) =0}, Z) ={z € Z: (Lz — P"'Byz,2) = 0},
Z5 ={ze€Z:(Lz— P 'B.z,z) > 0}, Zy ={z€Z:(Lz— P'Byz,2) > 0}.
Then

z=2,P2 Pz =z, Pz Pz 3.7)

From (3.1) and Lemma 3.1 [7], we have the following lemmas.

Lemma 3.2 L(Z;) c Z;, L(Z%) c 7%, L(z:) c zt, LZy) c z;, LZ) c 20, LZ) c Z,
(L=L-P'By,orL=L-P"By.

Lemma 3.3 All the subspaces of Z,

2o+ 75, ZE+ 7, 2y + 2+ 2y, Zy + 25+ 20, 73 + 7, + 72,

Zo+ZE+ 270, Zo + 2+ 20+ 20, Zd + 2+ 79 + 72,

are of finite codimensions in Z.

Denote I';, = {@; > 0 : thereare [ > 0, i € {1,2,--- ,k} suchthat @; = y(2I2k + 1) + 2i -
Dtan @52} T = {a; < 0 : thereare [ > 0, i € {1,2,---,k} such that @; = —y((21 + D)2k + 1) +
2(k+ 1-i)tan 52 T = {8; > 0 : thereare [ > 0, i € {1,2,---,k} such that §; = y(2I(2k + 1) +

— D) tan 2512, r— =1{8;<0: thereare [ >0, i € {1,2,--- ,k} such that 8; = —y((2l + 1)(2k + 1) +
2(k+1 l))tan 2 1W} =I5 Ul [h =T} UTy.
 k}

Fori e {1, nd [ > 0, denote .
nt =80 there is a; € T'Y, such that y(21(2k + 1) + 2i — 1) tan 252 = ),
n;, = #{(L,i) : thereis a; € T, such that —y((2/ + D2k + 1) + 2(k + 1 — i) tan CEY = g,
= #{(/,i) : there is B; € T} such that y(2/(2k + 1) + 2i — 1) tan Z52 = g},
770 = #{(1,i) : there is B; € [; such that —y((2[ + 1)(2k + 1) + 2(k + 1 — i)) tan 522 = g},

LetD = PID; : @; € '} and I1 : RY — D be an orthogonal projection with HRN D. Assume

(A)) F € C'(RY, R) satisfies (1.4) and F(—x) = F(x), F(0)=0

(A2) there exist M and r € CO(R*,R*) with r(c0) = +o0, 2 — 0 as s — oo, such that |F(x) -
%(Aoox, x)| > =M + r(| ILx [) whenever x € U{D; : a; € I's},

(A3) £[F(x) - %(Aoox, x)] > 0, as |x| = oo,

(A7) £[F(x) - %(on, x)]>0,0<|x < 1.

By a standard argument as the proof of Lemma 2.1 [13] and Lemma 3.3 [8], we have

Lemma 3.4 Assume (A;) and (A,) hold. Then, ®(x) defined by (2.4) satisfies (P.S)-condition.

Lemma 3.5 Suppose (A;) and (A,) hold. Then there is / > 0 such that

m= > [dim(Z* (i) N Z7(i)) — codimy;(Z*(0) + Z7(i))]
KT D) s 1

= 2. [dim(Z*(@) N Z7 (@) — codimz,,(Z7 (@) + Z7 ()],
i¢l(2k]4s—ils)[+k+l
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if
(Z7,27) e (Z5.2)),(Zy,2), (25, Z5), (25, Z2,),

(Z5+ 20, Z0), (25, Zy + Z)), (25, 23 + 22), (Zy + 23, Z1),
(Z§,Z + Z0), (2§ + 29, 23), (Z5, + 22, Z0), (Z5, 2§ + Z),
(ZL+ 20,25 + Z0), (2§ + 20,25, + Z2),(Z5, + 22, Z5 + Z),
(Zy + 23,25 + Z2)).

Now we give the main results of this paper.

Theorem 3.1 Assume (A;) and (A;) hold. Then system (1.4) possesses at least

m = max{ind(As) — ind(Ay) — 17, = 175, ind(Ao) — ind(Aw) — 7y — 1%}

different 2(2k + 1)-periodic orbits satisfying x(f — (2k + 1)) = —x(¢) provided m > 0.
Corollary 3.1 Suppose (A;) and (A;) hold.
) If ', UT,, = 0, then system (1.4) possesses at least

m = max{ind(A.) — ind(Ap) — g, ind(Ap) — ind(As) — 75}

different 2(2k + 1)-periodic orbits satisfying x(t — 2k — 1) = —x(¢) provided that m > 0.
ii) If I'; U = 0, then system (1.4) possesses at least

m = max{ind(A.) — ind(Ay) — n-,, ind(A¢) — ind(A,) — 11}

different 2(2k + 1)-periodic orbits satisfying x(t — 2k — 1) = —x(¢) provided that m > 0.
i) MUl =T, uly, =T UIl’; =0, then system (1.4) possesses at least

m = max{ind(A.) — ind(Ag), ind(A() — ind(A.,)}

different 2(2k + 1)-periodic orbits satisfying x(t — 2k — 1) = —x(¢) provided that m > 0.
Corollary 3.1 can be directly obtained from Theorem 3.1.
Theorem 3.2 Suppose (A;) and (A;) hold.
i) If (A7) holds, then system (1.4) possesses at least

m = max{ind(A.) — ind(Ap) + %, — 1§, ind(Ag) — ind(A) — 175 — )

different 2(2k + 1)-periodic orbits satisfying x(t — 2k — 1) = —x(¢) provided that m > 0.
ii) If (AJ) holds, then system (1.4) possesses at least

m = max{ind(A) — ind(Ap) — 1, — 1y, ind(Ap) — ind(A) — 175 + 1}

different 2(2k + 1)-periodic orbits satisfying x(t — 2k — 1) = —x(¢) provided that m > 0.
iii) If (A}) holds, then system (1.4) possesses at least

m = max{ind(A) — ind(Ap) — n, — 1y, ind(Ap) — ind(A) + 175 — N}

different 2(2k + 1)-periodic orbits satisfying x(t — 2k — 1) = —x(¢) provided that m > 0.
iv) If (A}) holds, then system (1.4) possesses at least

m = max{ind(A.) — ind(4¢) — 17, + 175, ind(Ag) — ind(A.,) — 15 — 175}
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different 2(2k + 1)-periodic orbits satisfying x(t — 2k — 1) = —x(¢) provided that m > 0.

v) If (A7), (A}) hold, then system (1.4) possesses at least

m = max{ind(A.) — ind(Ap) + L, + n,,ind(Ap) — ind(As) — 17, — N}

different 2(2k + 1)-periodic orbits satisfying x(t — 2k — 1) = —x() provided that m > 0.

vi) If (A7), (A}) hold, then system (1.4) possesses at least

m = max{ind(A) — ind(Ao) — 7, — 15, ind(Ap) — ind(Ac) + 17, + 775}

different 2(2k + 1)-periodic orbits satisfying x(t — 2k — 1) = —x(¢) provided that m > 0.

vii) If (A7), (A}) hold, then system (1.4) possesses at least

m = max{ind(A) — ind(Ap) + %, — n,,ind(Ap) — ind(A) + 175 — N}

different 2(2k + 1)-periodic orbits satisfying x(t — 2k — 1) = —x(¢) provided that m > 0.

viii) If (A7), (A;) hold, then system (1.4) possesses at least

m = max{ind(A.) — ind(Ao) — 1, + 1, 1nd(Ap) — ind(As) + nt - Mo}

different 2(2k + 1)-periodic orbits satistfying x(t — 2k — 1) = —x(¢) provided that m > 0.

Proof of Theorem 3.1.
Suppose m = ind(Ay) — ind(A.) — 17, — 175, > 0.
LetZ* =Z_ and Z~ = Z;,Vz € Z". There is o > 0 such that

1 N
5(Lz — P 'B.z,2) > ollxll3.

Then,

1
|F(x) - E(P_le,)Qxl < x5 + M.

_ v
=202k + 1)

Therefore,

0@ = Xlz2)+G)
o 202k+1) 2K }
= JLea) - 77 % Fte - iy
= KLz —@k+ 1) [ Fadr

= WLz-1p'Buzzy - @k+ 1) [[7

> Lo|lx2 =22k + DM — 400, [Ixl2 — oo,
which implies that there is ¢y € R such that
D(z) > ¢y, z€Z.
At the same time, there are ¢, € R™ and y > 0 such that

D(2) € Coo.

[F(x(1)) — 3(P'Ax, x)x]dt
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Suppose ¢y < cw. Then conditions (¢) and (d) in Lemma 2.2 are satisfied.

Since Lemmas 2.1 and 3.2-3.4 imply (P.S)-condition as well as conditions (a) and (b) in Lemma
2.2 hold under the requirement of Theorem 3.1, we only need to compute .

From Lemma 3.5 we have

m= 1+ Y [dimZ*() N Z (i) — codimg,(Z*() + Z~(i))]

2
i¢l(2]ifls)[+k+1

=1 Y [dimZ*() +dim Z~(i) - dim Z(0)] (3.8)
ey '

= 1 Y [dimZ*()+dimZ (i) - 2N].
i¢l(2]i5<rili)l+k+1

Then,
m= 1 ¥ [dim(Z}() + dim Z; (i) — 2N]
1<i<I
i#£I2k+1)+k+1
= 1 Y [dmZL(Q2k+1)+i)+dimZ;IQ2k + 1) + i) — 2N]

1Q2k+1)+i<I

i€{1,2,+ k},[I>0
+1 Y [dimZLUQk+ D) +k+1+1)

1Q2k+1)+k+1+i<I
i€{1,2,-- k},1>0

+dimZ;(I2k + 1) + k + 1 + 1) — 2N]
= > [dim Z7(I(2k + 1) + i) + dim Z; (I(2k + 1) + i) — 2N]

1Q2k+1)+i<]
i€{1,2,-+ ,k},[>0

+% > [dimZL(Q2k+ 1)+ 2(k+ 1) =)
o

+dim Z5 (I(2k + 1) + 2(k + 1) = i) = 2N].

Denote I) = #{IQk+1)+i<I:1>0,ie€{l1,2,--- ,k}}, L =#{I2k+ 1) +2(k+1)—-i<1:1>0,i €
{1,2,--- ,k}},and indA, = }} indej, indA_ = 3 inda;,indAj = }’ indB;, indA; =  indg;, then,
a;>0 ;<0 B;>0 B;<0

indA., = indAl + indA_, indA, = indA; + indA,.

o0

Obviously,
> dim Z; (I(2k + 1) + i) = 2indA,

1Q2k+1)+i<I
i€{1,2,+ k},I>0

S dimZ5(Q2k + 1) + i)
1Q2k+1)+i<I
i€{l1,2,- k},1>0

= Y [2N-dimZZ(Qk + 1) + i) — dim Z°(Qk + 1) + i)]
el 120

= 2NI, - 2indAZ, - 272,
Y dimZy 2k + 1) +2(k + 1) — i)

1Q2k+1)+2(k+1)—i<]
i€{1,2, k},1>0

= > [2N-dimZ) - dimZ}]
1Qk+1)+2(k+1)—i<]
i€{1,2, k}I>0
=2NI, + 2indA; - 27,.
Therefore,
m =indAj +indA; — indA] —indA_, —nl, —n,
= indAy — indA., — il —17;.
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Theorem 3.1 is proved.
Proof of Theorem 3.2.

Since the proof of Theorem 3.2 for each case is similar, we prove the theorem only for case (ii).

Without loss of generality, suppose
indA, — indA., — 17, + 1, > max{0,indA. — indA, — n, — 15},

and denote Z* = ZL + Z0, Z~ = Z;.
From (A7), there is M > 0 such that

—[F(x) - %(Amx, x)]>-M, xeRV.

Then, forz € Zt + Z0,,

D(z) = 5(Lz,2) + G(z)

3(Lz = 5P 7' Bz, 2) + G(2) + 3(P' Bz, 2)
G(2) + 3(P7'Buz,2)

—2k + 1) [PHVIF@) - LHAwx, 01dt
@k+ 1) [ My

—2M(2k + 1)?,

vV

\%

which implies that condition (d) in Lemma 2.2 holds.
From (3.8), one has

m= 1 ¥ [dimZ*(i)+dimZ (i) - 2N]
i+l 1
= 1 ¥ [dimZi@) +dimZ% (i) + dim Z; (i) - 2N]
i ;&I(ZIéfls)l+k+ 1
= 3 Y [dimZi()+dimZl@@)-2N1+35 Y dimZ%®)
i #l(ZIf—ilS )1+k+ 1 i ¢l(2/éiils)1+k+ 1

= indA, — indA, — 175, — 7y + 1 dim Z,
= indAg —indAs — 5, —ny + 15 + 15,
= indAp —indAs — 17, + 17

Theorem 3.2 is proved.

4. Examples

Example 4.1 Consider the number of 6-periodic solutions of the following system
X (t)=-VF(x(t— 1)) — VF(x(t - 2))
where x = (x1, x,) € R?,

T 4 4
F(x) = ————(9x% + 22x1x% + 9x2) — (7 +2x2), |x] = oo,
12\/5 1 142 2 1 2

F(x) = 12”—\/3(29)& +22V3x1x + 73) + (2 + 2)7,  |x] — 0.

4.1)
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Obviously, F € C!(R%,R), F(0) =0, F(-x) = F(x),

3n _1x ] X 4x%
3 6V3 1 3

VF(x)=|_ e 4 [X]— L o e
6v3 231721 |3x;

291 1137 7 2 2
—F 3(x7 +
VF(x) = [I?V%n P4 Hil + [3(XI + xz))le]’ x| > 0
o ae el Be e
and
_5n _llx _29n U
O P A
T6va 2V 6 63
The eigenvalues of A, and A are
m lO7r nd g, n B 107
ay = ——, @y = — = - sy P2 = T —»
3V3 33 3V3 3V3
respectively. Since k = 1, one has
inde; = #{{>0: O<§(6l+1)7rL—3Tf( +1)< 3(} 0,

inday = —f{/20: 0< = (61+5)<£}=
indB, = —#{{>0: O<—(6l+5)<—
indB, = #{l>0: O<—(6l+1)<1°”}

I
<‘
|| -

II

Therefore,
ind A, = —1,ind Ay = 2.
At the same time,
Mo =1, M =0,15=0,1n =0,
and all the conditions of Theorem 3.2 (vi) are satisfied. Then system (4.1) has at least

m =ind Ag —ind A + 1, + 15 =3

different 6-periodic orbits satisfying x(z — 3) = —x(z).
Example 4.2 Let N = 2. We discuss the multiplicity of 6-periodic solutions of system (4.1), where
x=(x,x) €R?,

F(x)= (-2%x]+Fxx - ;—&aé 3 = )1 — )+
Sm_ 2 St

st T ANt 6\fx2 + x1 + x5 )(p(lxl)
Then .
4x
VF(x) = Agx — [ H, |xl = 0,
6x;
43
VE(x) = Aex + |37 L], |x| = oo,
3%
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where
251 5t St 5
ao=| W Ll |
3 V3 V3 3V3
< A and A have their eigenvalues a; = —%}, a, = 32(\);, and B, = 10” , P = 31(3}, respectively.
0
indey = —#{{>0:0< 7560 +5) < 313;} =1,
inde, = #{{>0:0< —(6l+ 1) < 20”} =4,
indg; = —#{/>0:0< \F(6l+5) < l0”} = -5,
ind, = —#{/>0:0 < ;=(6l+5) < 10”}:—1,
and then

indA, = 3, indAy = —6.
On the other hand, we have
Mo =T =15 =1y = 0.
Therefore,
= indA, —indAy = 9,

and system (4.1) has at least 9 different 6-periodic orbits satisfying x(¢ — 3) = —x(¢) by Theorem 3.1.
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