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1. Introduction

Delay differential equations naturally appear in many fields of science and engineering. Such
equations have been proposed as models for a variety of physiological processes and conditions
including production of blood cells, respiration and cardiac arrhythemias. In recent years, the
existence of positive periodic solutions for delay differential equations has been received considerable
attention. J. Kaplan and J. Yorke [10] gave conditions for the existence of 4− or 6− periodic solutions
of equation

x′(t) = −

n∑
i=1

f (x(t − i)), x ∈ R (1.1)

while n = 1 and n = 2, respectively. After then, lots of results are achieved for this equation in general
cases [1–12]. W. Ge [4–6] proved several existence theorems of periodic solutions for (1.1) in the
general case by use of the fixed-point theorem in cone. After transforming (1.1) into a Hamiltonian
system and applying a theorem given by Mawhin and Willem [13], J.Li and X. He [11,12] proved a
theorem for the existence of several periodic solutions under the condition x f (x) > 0 (x f (x) < 0) for
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x , 0. G. Fei [1,2] studied the multiplicity of periodic solutions of (1.1) and proved theorems for the
cases n = 2k − 1 and n = 2k by using the index theory. In his work, the way to construct the functional
for the second case is quite different from that for the first case.

Applying S 1 index theory Z. Guo and J. Yu [8] gave a theorem for the multiple periodic solutions
of the delay-differential system with one lag in the form

x′(t) = −∇F(x(t − l)), x ∈ RN , F ∈ C0(RN ,RN). (1.2)

And by applying the same index theory, in [9], they obtained results on the multiplicity of 2(n + 1)-
periodic solutions to the delay differential system

x′(t) = −

n∑
t=1

∇F(x(t − i)), x ∈ RN , F ∈ C0(RN ,RN). (1.3)

when n = 2k − 1. After then B. Zheng and Z. Guo studied (1.3) while n = 2k and gave two criteria
for the multiplicity of 2(2k + 1)-periodic solutions. The theorems given in both[9] and [14] contain a
condition to calculate the following function

Ψ(A, B) =

∞∑
j=1

Ψ j(A, B), n = 2k − 1,

Ψ(A, B) =

∞∑
j=1, j<Γ

Ψ j(A, B), Γ ⊂ N+, n = 2k,

for symmetric matrices A and B, respectively. This is a hard task to be fulfilled since it is not definite
for the problem how large the j must be to ensure Ψ j(A, B) = 0.

In [7], we researched the same problem for system (1.3) when n = 2k−1 and by constructing a new
functional we gave criteria for the multiplicity of periodic solutions only based on the eigenvalues of
symmetric matrices A and B.

In this paper we are to study the multiplicity of 2(2k + 1)-periodic solutions for system (1.3) when
n = 2k, i.e.,

x′(t) = −

2k∑
i=1

∇F(x(t − i)), x ∈ RN , F ∈ C0(RN ,RN). (1.4)

with the conditions F ∈ C1(RN ,R),∇F(−x) = −F(x), F(0) = 0,

x(t − k − 1) = −x(t). (1.5)

At the same time, assume there are real symmetric matrices A∞ and A0 such that

∇F(x) = A∞x + o(|x|) as |x| → ∞,∇F(x) = A0x + o(|x|) as |x| → 0.

In section 2, some notations and variation structure for system (1.4) are introduced. Meanwhile, a
lemma about the relation between the periodic solutions of system(1.4) and the critical points of the
functional Φ are also proved in section 2. Section 3 presents and proves the main results of this paper.
Before the proof of the main results some lemmas about the calculation of the differential of functional
Φ are proven. Two examples are given in section 4 to illustrate the applications of the main results.
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2. 2(2k + 1)-periodic solution of (1.4) and variation structure

Firstly, we consider a linear space which consists of all the 2(2k + 1)-periodic functions satisfying
(1.5) in RN , i.e.

H
1
2 = { x(t) =

∞∑
i=1

(ai cos (2i−1)π
2k+1 t + bi sin (2i−1)π

2k+1 t) : ai, bi ∈ R
N ,

∞∑
i=1

(2i − 1)(|ai|
2 + |bi|

2) < ∞}

Since our goal is to find the 2(2k + 1)-periodic solutions for system (1.4) with condition (1.5), we
discuss now the special requirement for a solution of system (1.4) in H

1
2 . After then, we are able to

choose a suitable Hilbert space for our problem. Assume
n∑

i=m
ai = 0 if n < m.

If x(t) is a 2(2k + 1)-periodic solution of (1.4) satisfying (1.5), then, x′(t − l) =
l−1∑
i=0
∇F(x(t − i)) −

2k∑
i=l+1
∇F(x(t − i)), l = 0, 1, · · · , 2k. Hence,

2k∑
l=0

(−1)lx′(t − l) = 0. (2.1)

From the equation above, one has
2k∑
l=0

(−1)lx(t − l) = c. However, c =
2k∑
l=0

(−1)lx(t − l − 2k − 1) =

−
2k∑
l=0

(−1)lx(t − l) = −c, which means c = 0. Then,

2k∑
l=0

(−1)lx(t − l) = 0. (2.2)

By Fourier’s expansion theory and (1.5), it holds that

x(t) =
∞∑

i=1
(ai cos (2i−1)π

2k+1 t + bi sin (2i−1)π
2k+1 t)

=
∞∑

l=0

2k+1∑
i=1

(al(2k+1)+i cos (2l(2k+1)+2i−1)π
2k+1 t + bl(2k+1)+i sin (2l(2k+1)+2i−1)π

2k+1 t).

Substituting the above expression into (2.2) we have

al(2k+1)+k+1 = bl(2k+1)+k+1 = 0. (2.3)

Then suppose

X =

{
x ∈ H

1
2 : x(t − 2k − 1) = −x(t),

2k∑
i=0

(−1)ix(t − i) = 0
}
.

For x ∈ X, define P : X → X:

x 7→
∞∑

l=0
(

k∑
i=1

+
2k+1∑
i=k+2

)(2l(2k + 1) + 2i − 1)(al(2k+1)+i cos (2l(2k+1)+2i−1)π
2k+1 t

+bl(2k+1)+i sin (2l(2k+1)+2i−1)π
2k+1 t),
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and denote

〈x, y〉X =

∫ 2(2k+1)

0
(Px(t), y(t))dt, 〈x, y〉 =

∫ 2(2k+1)

0
(x(t), y(t))dt, x, y ∈ X.

Define

‖x‖X =
√
〈x, x〉X, ‖x‖2 =

√
〈x, x〉 =

√
〈P−1x, x〉X.

It is obvious that (X, ‖ · ‖X) is a Hilbert space and P : X → X is an invertible and self-adjoint operator.
Define

Z = {z(t)} = {(z1(t), z2(t), · · · , z2k(t))} = {(x(t), x(t − 1), · · · , x(t − 2k + 1)) : x ∈ X} ⊂ X2k.

Therefore z1(t) = x(t) ∈ X. Furthermore, let

X(i) =

{
a cos

(2i − 1)π
2k + 1

t + b sin
(2i − 1)π

2k + 1
t : a, b ∈ RN

}
,

Z(i) = {(x(t), x(t − 1), · · · , x(t − 2k + 1)) : x(t) ∈ X(i)}.

Then,

Z =

∞∑
i=1

i,l(2k+1)+k+1

Z(i) =

∞∑
l=0

k∑
i=1

Z(l(2k + 1) + i).

Denote H(z) =
2k−1∑
i=0

F(x(t − i)) + F(
2k−1∑
i=0

(−1)i+1x(t − i)), then,

∇H(z) = (∂H(z)
∂z1

, ∂H(z)
∂z2

, · · · , ∂H(z)
∂z2k

)
= (∇F(x(t)) − ∇F(x(t − 2k)),∇F(x(t − 1)) + ∇F(x(t − 2k)), · · · ,
∇F(x(t − 1)) − (−1)i∇F(x(t − 2k)), · · · ,
∇F(x(t − 2k + 1)) + ∇F(x(t − 2k)))

where x(t − 2k) =
2k−1∑
i=0

(−1)i+1x(t − i), zl = x(t − l + 1), l = 1, 2, · · · , 2k, and from (2.2),

z2k+1 =

2k−1∑
i=0

(−1)i+1x(t − i) =

2k∑
i=1

(−1)izi.

Define Φ : Z → R as a functional of z:

Φ(z) =
1
2
〈Lz, z〉 + G(z) (2.4)
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where

Lz = P−1

(
2k−1∑
i=1

(−1)i+1x′(t − i), · · · ,
l−1∑
i=0

(−1)i+lx′(t − i) +
2k−1∑
i=l+1

(−1)i+l+1x′(t − i), · · · ,

2k−2∑
i=0

(−1)i+2k−1x′(t − i)
)
,

G(z) = −
∫ 2(2k+1)

0
(
2k−1∑
i=0

F(x(t − i)) + F(
2k−1∑
i=0

(−1)i+1x(t − i)))dt,

〈z, y〉 =
∫ 2(2k+1)

0
(P̂z, y)dt, z, y ∈ Z,

P̂ = (P, P, · · · , P) : Z → Z. Then

‖z‖ = 〈z, z〉 = 2k〈x, x〉X = 2k‖x‖2X, (2.5)

Φ(z) = 1
2

∫ 2(2k+1)

0

2k−1∑
l=0

(
l−1∑
i=0

(−1)i+lx′(t − i) +
2k−1∑
i=l+1

(−1)i+l+1x′(t − i), x(t − l))dt

−
∫ 2(2k+1)

0
[
2k−1∑
i=0

F(x(t − i)) + F(
2k−1∑
i=0

(−1)i+1x(t − i))]dt

= 1
2

∑
0≤i<l≤2k−1

∫ 2(2k+1)

0
(−1)i+l+1[(x(t − i), x′(t − l)) − (x′(t − i), x(t − l))]dt

−
∫ 2(2k+1)

0
[
2k−1∑
i=0

F(x(t − i)) + F(
2k−1∑
i=0

(−1)i+1x(t − i))]dt.

By Mawhin-Willem’s theorem [13, Theorem 1.4], Φ is continuously differentiable and

〈Φ′(z), v〉 = 〈Lu, v〉Z −
∫ 2(2k+1)

0
(
2k−1∑
l=0

(∇F(x(t − l)) − (−1)l∇F(x(t − 2k)), y(t − l)))dt

=
2k−1∑
l=0

∫ 2(2k+1)

0
(
l−1∑
i=0

(−1)i+lx′(t − i) +
2k−1∑
i=l+1

(−1)i+l+1x′(t − i) − ∇F(x(t − l))

−(−1)l+1∇F(x(t − 2k)), y(t − l)))dt

where z(t) = (x(t), x(t − 1), · · · , x(t − 2k + 1)), v(t) = (y(t), y(t − 1), · · · , y(t − 2k + 1)).
Denote Φ′(z) = (Φ′1(z),Φ′2(z), · · · ,Φ′2k(z)), where

Φ′l+1(z) = P−1(
l−1∑
i=0

(−1)i+lx′(t − i) +
2k−1∑
i=l

(−1)i+l+1x′(t − i) − ∇F(x(t − l))

+(−1)l∇F(x(t − 2k))), l = 0, 1, · · · , 2k − 1.
(2.6)

If a point z ∈ Z satisfies Φ′(z) = 0, then z is called a critical point of Φ. The following lemma
reveals the relation between the 2(2k + 1)-periodic solutions of system (1.4) and the critical points of
Φ. Based on this lemma we can discuss the multiplicity of critical points of Φ instead of discussing that
of 2(2k + 1)-periodic solutions of system (1.4). In the following, denote x(t) as the first N components

of z(t) in Z and set
−1∑
i=0

x′(t − i) = 0.

Lemma 2.1 If x ∈ X, z = (x(t), x(t − 1), · · · , x(t − 2k + 1)) ∈ Z, then the following propositions are
equivalent to each other.

1) x(t) is one of the solutions of system (1.4),
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2) z(t) satisfies Φ′1(z) = 0, i.e.

2k−1∑
i=1

(−1)i+1x′(t − i) − ∇F(x(t)) + ∇F(x(t − 2k)) = 0, (2.7)

3) z(t) is one of the critical points of Φ on Z, i.e., z(t) satisfies
l−1∑
i=0

(−1)i+lx′(t − i) +
2k−1∑
i=l+1

(−1)i+l+1x′(t − i) − ∇F(x(t − l)) + (−1)l∇F(x(t − 2k))

= 0, l = 0, 1, · · · , 2k − 1 (2.8 − l)
Proof. 1)⇒ 2).
Suppose x(t) is a solution of system (1.4).
By the periodicity of x(t) and (1.5), one has

x′(t − l) =
l−1∑
i=0
∇F(x(t − i)) −

2k−1∑
i=l+1
∇F(x(t − i)) − ∇F(x(t − 2k)) (2.9 − l)

l = 1, 2, · · · , 2k − 1, x(t − 2k) =
2k−1∑
i=0

(−1)i+1x(t − i). Multiplying (−1)l+1 to the equalities (2.9 − l) and

summing them up, we have
2k−1∑
l=1

(−1)l+1x′(t − l) = ∇F(x(t)) − ∇F(x(t − 2k)),

which means (2.7) holds.
2)⇒ 3).
System (2.7) is the same as (2.8 − 0).
From (2.7) one has

2k−1∑
i=1

(−1)i+1x′(t − i − 1) − ∇F(x(t − 1)) + ∇F(x(t − 2k − 1)) = 0,

i.e.,

0 =
2k−1∑
i=2

(−1)ix′(t − i) + x′(t − 2k) − ∇F(x(t − 1)) − ∇F(x(t))

=
2k−1∑
i=2

(−1)ix′(t − i) +
2k−1∑
i=0

(−1)i+1x′(t − i) − ∇F(x(t − 1)) − ∇F(x(t)).
(2.10)

Then (2.7) and (2.10) yield

−x′(t) +

2k−1∑
i=2

(−1)ix′(t − i) − ∇F(x(t − 1)) − ∇F(x(t − 2k)) = 0,

which means (2.8 − 1).
Suppose (2.8 − l) holds. Then,

0 =
l∑

i=1
(−1)i+l+1x′(t − i) +

2k−1∑
i=l+2

(−1)i+l+2x′(t − i) + (−1)lx′(t − 2k)

−∇F(x(t − l − 1)) + (−1)l+1∇F(x(t))

=
l∑

i=1
(−1)i+l+1x′(t − i) +

2k−1∑
i=l+2

(−1)i+l+2x′(t − i) + (−1)l+1
2k−1∑
i=0

(−1)ix′(t − i)

−∇F(x(t − l − 1)) + (−1)l+1∇F(x(t)).

(2.11)
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Multiplying (2.7)with (−1)l+1 and add it to (2.11), one can obtain (2.8 − (l + 1)) .
3)⇒ 1).
Summing the equalities from (2.8 − 1) to (2.8 − (2k − 1)), one has

−x′(t) =

2k∑
i=1

∇F(x(t − i)),

which implies x(t) is a solution of system (1.4).
Denote P̂i : Z → Z(i), Z(i) = {(x(t), x(t − 1), · · · , x(t − 2k + 1)) : x(t) =

ai cos (2i−1)π
2k+1 t + bi sin (2i−1)π

2k+1 t, ai, bi ∈ R
N}, i , (2l + 1)(2k + 1); Z((2l + 1)(2k + 1)) = 0, l ∈ N+ ∪ {0}.

Furthermore, let Pi =
i∑

j=1
P̂ j : Z →

i∑
j=1

Z(i), i = 1, 2, · · · . Then, one has LPi = PiL.

Let −G′(z) = (P−1(∇F(x(t)) − ∇F(x(t − 2k))), P−1(∇F(x(t − 1)) + ∇F(x(t − 2k))), · · · ,
P−1(∇F(x(t − l)) + (−1)l+1∇F(x(t − 2k))), · · · , P−1(∇F(x(t − 2k + 1)) − ∇F(x(t − 2k)))). Then Φ′(z) =

Lz + G′(z). L is a bounded self-adjoint operator and G′(z) : Z → X2k is compact since (G′z)(t) is
differentiable with respect to t.

Denote B∞, B0 ∈ R
2kN×2kN as

B∞ = (
2k + 1

2k
A∞, · · · ,

2k + 1
2k

A∞), B0 = (
2k + 1

2k
A0, · · · ,

2k + 1
2k

A0)

and for z(t) = (x(t), x(t − 1), · · · , x(t − 2k + 1)),

B∞z = ( 2k+1
2k A∞x(t), 2k+1

2k A∞x(t − 1), · · · , 2k+1
2k A∞x(t − 2k + 1)),

B0z = (2k+1
2k A0x(t), 2k+1

2k A0x(t − 1), · · · , 2k+1
2k A0x(t − 2k + 1)).

(2.12)

Define δz(t) = T2kNz(t) : Z → Z, where

T2kN =



I −I · · · I −I
I O · · · O O
O I · · · O O
...

... · · ·
...

...

O O · · · I O


(2.13)

is a 2kN × 2kN matrix, I is a N × N unit matrix and O is a N × N zero matrix.
From (1.5) and (2.2), one has δz(t) = z(t + 1) and δ2k+1z(t) = −z(t). Then,

{1, δ, δ2, · · · , δ4k+1} is a Lie group with δ4k+2 = 1, where 1 stands for the identity transform in Z.
Now we have

Φ(δz) = Φ(z),

Φ′(δz) = δΦ′(z),

i.e., with respect to the Lie group {1, δ, δ2, · · · , δ4k+1}, Φ is invariant and Φ′ is δ−equivariant.
In order to prove our results we shall apply the following lemma.
Lemma 2.2 [2, Lemma 2.4]
Assume there are two S 1-invariant linear subspaces, Z+ and Z− ⊂ Z, and r > 0 such that
(a) Z+ ∪ Z− is a closed and finite codimension in Z,

AIMS Mathematics Volume 6, Issue 7, 6815–6832.
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(b) L̂(Z−) ⊂ Z− with L̂ = L − P−1B∞ or L̂ = L − P−1B0,

(c) there exists c∞ ∈ R such that

Φ(z) ≤ c∞ < Φ(0), ∀z ∈ Z− ∩ S r = {z ∈ Z− : ‖z‖ = r},

(d) there exists c0 ∈ R such that
inf
z∈Z+

Φ(z) ≥ c0,

(e) Φ satisfies (P.S)c-condition for c0 ≤ c ≤ c∞.
Then Φ possesses at least m = 1

2 [dim(Z−∩Z+)−codimZ(Z−∪Z+)] different critical orbits in Φ−1([c0, c∞])
provided m > 0.

Remark 2.1 (P.S)c-condition in (e) can be replaced by (P.S)-condition since (P.S)-condition implies
(P.S)c-condition for each c ∈ R.

Remark 2.2 If (P.S)c-condition in (e) is replaced by (P.S)-condition, (c) and (d) can be changed into
(c′) there exists c∞ ∈ R such that

Φ(z) ≥ c∞ > Φ(0), ∀z ∈ Z− ∩ S r = {z ∈ Z− : ‖z‖ = r},

(d′) there exists c0 ∈ R such that
inf
z∈Z+

Φ(z) ≤ c0

if Φ(z) is replaced by −Φ(z).

Remark 2.3 When Z =
∞⊕

i=1
Z(i), Z+(i) = Z+ ∩ Z(i), Z−(i) = Z− ∩ Z(i), we have dim Z(i) = 2N and

m =
1
2

∞∑
i=1

[dim(Z+(i) ∩ Z−(i)) − codimZ(i)(Z+(i) + Z−(i))]

=
1
2

∞∑
i=1

[dim(Z+(i) ∩ Z−(i)) − (dim Z(i) − dim(Z+(i) + Z−(i)))]

=
1
2

∞∑
i=1

[dim Z+(i) + dimZ−(i) − 2N]. (2.14)

3. Main results

Suppose {α j : j = 1, 2, · · · ,N} are the eigenvalues of A∞ and {β j : j = 1, 2, · · · ,N} are the
eigenvalues of A0, d j, e j ∈ R

N are the eigenvectors of A∞ and A0 with respect to α j and β j,
respectively. Assume {d1, d2, · · · , dN} and {e1, e2, · · · , eN} are two orthogonal bases of RN .

Lemma 3.1 If z ∈ Z(i), i , l(k + 1), then there is γ = π
2k+1 such that

〈Lz, z〉 =
2k + 1

2k
(2i − 1)γ tan

(2i − 1)γ
2

〈z, z〉. (3.1)

Proof. Denote | · | as the norm in RN , then

〈z, z〉 = 2k
∫ 2(2k+1)

0
|x(t)|2dt = 2k(2k + 1)(|ai|

2 + |bi|
2). (3.2)
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It follows that
〈Lz, z〉
=

∑
0≤m<l≤2k−1

(−1)m+l+1
∫ 2(2k+1)

0
[(x(t − m), x′(t − l)) − (x′(t − m), x(t − l))]dt

= 2
∑

0≤m<l≤2k−1
(−1)m+l+1

∫ 2(2k+1)

0
(x(t − m), x′(t − l))dt

j=l−m
= 2

2k−1∑
j=1

2k−1∑
l= j

(−1)2l− j+1
∫ 2(2k+1)

0
(x(t − l + j), x′(t − l))dt

= 2
2k−1∑
j=1

(−1) j+1(2k − j)
∫ 2(2k+1)

0
(x(t + j), x′(t))dt

= 2
2k−1∑
j=1

(2k − j)(−1) j+1(2i − 1)γ(2k + 1)(|a|2 + |b|2) sin j(2i − 1)γ

= 2(2i − 1)γ(2k + 1)
2k−1∑
j=1

(2k − j)(−1) j+1 sin j(2i − 1)γ(|a|2 + |b|2).

Since

2k−1∑
j=1

(2k − j)(−1) j+1 sin j(2i − 1)γ

=
1

2 cos (2i−1)γ
2

2k−1∑
j=1

(−1) j+1(2k − j)[sin
(2 j − 1)(2i − 1)γ

2
+ sin

(2 j + 1)(2i − 1)γ
2

]

=
1

2 cos (2i−1)γ
2

[2k sin
(2i − 1)γ

2
+

2k∑
j=1

(−1) j sin
(2 j − 1)(2i − 1)γ

2
]

= k tan
(2i − 1)γ

2
+

1

2 cos (2i−1)γ
2

2k∑
j=1

(−1) j[sin j(2i − 1)γ cos
(2i − 1)γ

2

− cos j(2i − 1)γ sin
(2i − 1)γ

2
]

= (k +
1
2

) tan
(2i − 1)γ

2
,

one has

〈Lz, z〉 = (2k + 1)2(2i − 1)γ tan
(2i − 1)γ

2
(|ai|

2 + |bi|
2)

=
2k + 1

2k
(2i − 1)γ tan

(2i − 1)γ
2

〈z, z〉.

Lemma 3.1 is proved.
Denote E j = {λe j : λ ∈ R}, D j = {λd j : λ ∈ R}, j = 1, 2, · · · ,N, l ≥ 0 and

ind α j =


k∑

i=1
]{l : 0 < [2l(2k + 1) + (2i − 1)]γ tan (2i−1)γ

2 < α j}, α j > 0,

0, α j = 0,

−
k∑

i=1
]{l : 0 < [(2l + 1)(2k + 1) + 2(k + 1 − i)]γ tan (2i−1)γ

2 < −α j}, α j < 0,
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ind β j =


k∑

i=1
]{l : 0 < [2l(2k + 1) + (2i − 1)]γ tan (2i−1)γ

2 < β j}, β j > 0,

0, β j = 0,

−
k∑

i=1
]{l : 0 < [(2l + 1)(2k + 1) + 2(k + 1 − i)]γ tan (2i−1)γ

2 < −β j}, β j < 0,

then RN =
N∑

j=1
D j =

N∑
j=1
E j. Suppose

indA∞ =

N∑
j=1

indα j, indA0 =

N∑
j=1

indβ j, (3.3)

and
XD, j(i) = {x(t) = ai cos

(2i − 1)γ
2

t + bi sin
(2i − 1)γ

2
t, ai, bi ∈ D j},

XE, j(i) = {x(t) = ai cos
(2i − 1)γ

2
t + bi sin

(2i − 1)γ
2

t, ai, bi ∈ E j},

therefore,

X(i) =

N∑
j=1

XD, j(i) =

N∑
j=1

XE, j(i). (3.4)

Denote

x(t) =
∞∑

l=0

k∑
i=1

[al(2k+1)+i cos(2l(2k + 1) + 2i − 1)γt + bl(2k+1)+i sin(2l(2k + 1) + 2i − 1)γt

+al(2k+1)+k+1+i cos((2l + 1)(2k + 1) + 2i)γt
+bl(2k+1)+k+1+i sin((2l + 1)(2k + 1) + 2i)γt].

It follows from (3.1) and (3.2) that for z1(t) = x(t), one has

〈Lz, z〉

= γ(2k + 1)2
∞∑

l=0

k∑
i=1

[(2l(2k + 1) + 2i − 1) tan (2l(2k+1)+2i−1)γ
2 (|al(2k+1)+i|

2 + |bl(2k+1)+i|
2)

+(2l(2k + 1) + 2(k + 1 + i) − 1) tan (2l(2k+1)+2(k+1+i)−1)γ
2 (|al(2k+1)+k+1+i|

2

+|bl(2k+1)+k+1+i|
2)]

= γ(2k + 1)2
∞∑

l=0

k∑
i=1

[(2l(2k + 1) + 2i − 1) tan (2i−1)γ
2 (|al(2k+1)+i|

2 + |bl(2k+1)+i|
2)

−((2l + 1)(2k + 1) + 2(k + 1 − i)) tan (2i−1)γ
2 (|al(2k+1)+2k+2−i|

2 + |bl(2k+1)+2k+2−i|
2)].

(3.5)

and

〈P−1A∞x, x〉 =

∫ 2(k+1)

0
(A∞x, x)dt = (2k + 1)α j(|ai|

2 + |bi|
2), x ∈ XD, j(i),

〈P−1A0x, x〉 =

∫ 2(k+1)

0
(A0x, x)dt = (2k + 1)β j(|ai|

2 + |bi|
2), x ∈ XE, j(i),

and
〈P̂−1B∞z, z〉 = α j(2k + 1)2(|ai|

2 + |bi|
2), x ∈ XD, j,

〈P̂−1B0z, z〉 = β j(2k + 1)2(|ai|
2 + |bi|

2), x ∈ XE, j.
(3.6)
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Denote

Z−∞ = {z ∈ Z : 〈Lz − P̂−1B∞z, z〉 < 0}, Z−0 = {z ∈ Z : 〈Lz − P̂−1B0z, z〉 < 0},

Z0
∞ = {z ∈ Z : 〈Lz − P̂−1B∞z, z〉 = 0}, Z0

0 = {z ∈ Z : 〈Lz − P̂−1B0z, z〉 = 0},

Z+
∞ = {z ∈ Z : 〈Lz − P̂−1B∞z, z〉 > 0}, Z+

0 = {z ∈ Z : 〈Lz − P̂−1B0z, z〉 > 0}.

Then
Z = Z−∞

⊕
Z0
∞

⊕
Z+
∞ = Z−0

⊕
Z0

0

⊕
Z+

0 . (3.7)

From (3.1) and Lemma 3.1 [7], we have the following lemmas.
Lemma 3.2 L̂(Z−∞) ⊂ Z−∞, L̂(Z0

∞) ⊂ Z0
∞, L̂(Z+

∞) ⊂ Z+
∞, L̂(Z−0 ) ⊂ Z−0 , L̂(Z0

0) ⊂ Z0
0 , L̂(Z+

0 ) ⊂ Z+
0 ,

(L̂ = L − P̂−1B∞ or L̂ = L − P̂−1B0).
Lemma 3.3 All the subspaces of Z,

Z−0 + Z+
∞, Z+

0 + Z−∞, Z+
0 + Z−∞ + Z0

0 , Z−0 + Z+
∞ + Z0

0 , Z+
0 + Z−∞ + Z0

∞,

Z−0 + Z+
∞ + Z0

∞, Z−0 + Z+
∞ + Z0

0 + Z0
∞, Z+

0 + Z−∞ + Z0
0 + Z0

∞,

are of finite codimensions in Z.
Denote Γ+

∞ = {α j > 0 : there are l ≥ 0, i ∈ {1, 2, · · · , k} such that α j = γ(2l(2k + 1) + 2i −
1) tan (2i−1)γ

2 }, Γ−∞ = {α j < 0 : there are l ≥ 0, i ∈ {1, 2, · · · , k} such that α j = −γ((2l + 1)(2k + 1) +

2(k + 1 − i)) tan (2i−1)γ
2 }, Γ+

0 = {β j > 0 : there are l ≥ 0, i ∈ {1, 2, · · · , k} such that β j = γ(2l(2k + 1) +

2i − 1) tan (2i−1)γ
2 }, Γ−0 = {β j < 0 : there are l ≥ 0, i ∈ {1, 2, · · · , k} such that β j = −γ((2l + 1)(2k + 1) +

2(k + 1 − i)) tan (2i−1)γ
2 }, Γ∞ = Γ+

∞ ∪ Γ−∞, Γ0 = Γ+
0 ∪ Γ−0 .

For i ∈ {1, 2, · · · , k} and l ≥ 0, denote
η+
∞ = ]{(l, i) : there is α j ∈ Γ+

∞ such that γ(2l(2k + 1) + 2i − 1) tan (2i−1)γ
2 = α j},

η−∞ = ]{(l, i) : there is α j ∈ Γ−∞ such that − γ((2l + 1)(2k + 1) + 2(k + 1 − i)) tan (2i−1)γ
2 = α j},

η+
0 = ]{(l, i) : there is β j ∈ Γ+

0 such that γ(2l(2k + 1) + 2i − 1) tan (2i−1)γ
2 = β j},

η−0 = ]{(l, i) : there is β j ∈ Γ−0 such that − γ((2l + 1)(2k + 1) + 2(k + 1 − i)) tan (2i−1)γ
2 = β j}.

Let D =
⊕
{D j : α j ∈ Γ∞} and Π : RN → D be an orthogonal projection with ΠRN = D. Assume

(A1) F ∈ C1(RN ,R) satisfies (1.4) and F(−x) = F(x), F(0) = 0,
(A2) there exist M and r ∈ C0(R+,R+) with r(∞) = +∞, r(s)

s → 0 as s → ∞, such that |F(x) −
1
2 (A∞x, x)| ≥ −M + r(| Πx |) whenever x ∈ ∪{D j : α j ∈ Γ∞},

(A±3 ) ±[F(x) − 1
2 (A∞x, x)] > 0, as |x| → ∞,

(A±4 ) ±[F(x) − 1
2 (A0x, x)] > 0, 0 < |x| � 1.

By a standard argument as the proof of Lemma 2.1 [13] and Lemma 3.3 [8], we have
Lemma 3.4 Assume (A1) and (A2) hold. Then, Φ(x) defined by (2.4) satisfies (P.S)-condition.
Lemma 3.5 Suppose (A1) and (A2) hold. Then there is I > 0 such that

m =
∑

1≤i<∞
i,l(2k+1)+k+1

[dim(Z+(i) ∩ Z−(i)) − codimZ(i)(Z+(i) + Z−(i))]

=
∑

1≤i≤I
i,l(2k+1)+k+1

[dim(Z+(i) ∩ Z−(i)) − codimZ(i)(Z+(i) + Z−(i))],
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if
(Z+,Z−) ∈ {(Z+

∞,Z
−
0 ), (Z+

0 ,Z
−
∞), (Z−∞,Z

+
0 ), (Z−0 ,Z

+
∞),

(Z+
∞ + Z0

∞,Z
−
0 ), (Z+

∞,Z
−
0 + Z0

0), (Z−0 ,Z
+
∞ + Z0

∞), (Z−0 + Z0
0 ,Z

+
∞),

(Z+
0 ,Z

−
∞ + Z0

∞), (Z+
0 + Z0

0 ,Z
−
∞), (Z−∞ + Z0

∞,Z
+
0 ), (Z−∞,Z

+
0 + Z0

0),
(Z+
∞ + Z0

∞,Z
−
0 + Z0

0), (Z+
0 + Z0

0 ,Z
−
∞ + Z0

∞), (Z−∞ + Z0
∞,Z

+
0 + Z0

0),
(Z−0 + Z0

0 ,Z
+
∞ + Z0

∞)}.

Now we give the main results of this paper.
Theorem 3.1 Assume (A1) and (A2) hold. Then system (1.4) possesses at least

m = max{ind(A∞) − ind(A0) − η−∞ − η
+
0 , ind(A0) − ind(A∞) − η−0 − η

+
∞}

different 2(2k + 1)-periodic orbits satisfying x(t − (2k + 1)) = −x(t) provided m > 0.
Corollary 3.1 Suppose (A1) and (A2) hold.
i) If Γ+

∞ ∪ Γ−∞ = ∅, then system (1.4) possesses at least

m = max{ind(A∞) − ind(A0) − η+
0 , ind(A0) − ind(A∞) − η−0 }

different 2(2k + 1)-periodic orbits satisfying x(t − 2k − 1) = −x(t) provided that m > 0.
ii) If Γ+

0 ∪ Γ−0 = ∅, then system (1.4) possesses at least

m = max{ind(A∞) − ind(A0) − η−∞, ind(A0) − ind(A∞) − η+
∞}

different 2(2k + 1)-periodic orbits satisfying x(t − 2k − 1) = −x(t) provided that m > 0.
iii) If Γ+

0 ∪ Γ−0 = Γ+
∞ ∪ Γ−∞ = Γ+

0 ∪ Γ−0 = ∅ , then system (1.4) possesses at least

m = max{ind(A∞) − ind(A0), ind(A0) − ind(A∞)}

different 2(2k + 1)-periodic orbits satisfying x(t − 2k − 1) = −x(t) provided that m > 0.
Corollary 3.1 can be directly obtained from Theorem 3.1.
Theorem 3.2 Suppose (A1) and (A2) hold.
i) If (A+

3 ) holds, then system (1.4) possesses at least

m = max{ind(A∞) − ind(A0) + η+
∞ − η

+
0 , ind(A0) − ind(A∞) − η−0 − η

+
∞}

different 2(2k + 1)-periodic orbits satisfying x(t − 2k − 1) = −x(t) provided that m > 0.
ii) If (A−3 ) holds, then system (1.4) possesses at least

m = max{ind(A∞) − ind(A0) − η−∞ − η
+
0 , ind(A0) − ind(A∞) − η−0 + η−∞}

different 2(2k + 1)-periodic orbits satisfying x(t − 2k − 1) = −x(t) provided that m > 0.
iii) If (A+

4 ) holds, then system (1.4) possesses at least

m = max{ind(A∞) − ind(A0) − η−∞ − η
+
0 , ind(A0) − ind(A∞) + η+

0 − η
+
∞}

different 2(2k + 1)-periodic orbits satisfying x(t − 2k − 1) = −x(t) provided that m > 0.
iv) If (A−4 ) holds, then system (1.4) possesses at least

m = max{ind(A∞) − ind(A0) − η−∞ + η−0 , ind(A0) − ind(A∞) − η−0 − η
+
∞}
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different 2(2k + 1)-periodic orbits satisfying x(t − 2k − 1) = −x(t) provided that m > 0.
v) If (A+

3 ), (A−4 ) hold, then system (1.4) possesses at least

m = max{ind(A∞) − ind(A0) + η+
∞ + η−0 , ind(A0) − ind(A∞) − η−0 − η

+
∞}

different 2(2k + 1)-periodic orbits satisfying x(t − 2k − 1) = −x(t) provided that m > 0.
vi) If (A−3 ), (A+

4 ) hold, then system (1.4) possesses at least

m = max{ind(A∞) − ind(A0) − η−∞ − η
+
0 , ind(A0) − ind(A∞) + η−∞ + η+

0 }

different 2(2k + 1)-periodic orbits satisfying x(t − 2k − 1) = −x(t) provided that m > 0.
vii) If (A+

3 ), (A+
4 ) hold, then system (1.4) possesses at least

m = max{ind(A∞) − ind(A0) + η+
∞ − η

−
0 , ind(A0) − ind(A∞) + η+

0 − η
+
∞}

different 2(2k + 1)-periodic orbits satisfying x(t − 2k − 1) = −x(t) provided that m > 0.
viii) If (A−3 ), (A−4 ) hold, then system (1.4) possesses at least

m = max{ind(A∞) − ind(A0) − η−∞ + η−0 , ind(A0) − ind(A∞) + η+
∞ − η

−
0 }

different 2(2k + 1)-periodic orbits satisfying x(t − 2k − 1) = −x(t) provided that m > 0.
Proof of Theorem 3.1.
Suppose m = ind(A0) − ind(A∞) − η−0 − η

+
∞ > 0.

Let Z+ = Z−∞ and Z− = Z+
0 ,∀z ∈ Z+. There is σ > 0 such that

1
2
〈Lz − P̂−1B∞z, z〉 ≥ σ‖x‖22.

Then,

|F(x) −
1
2
〈P−1Ax, x〉X | ≤

σ

2(2k + 1)
‖x‖22 + M.

Therefore,

Φ(z) = 1
2〈Lz, z〉 + G(z)

= 1
2〈Lz, z〉 −

∫ 2(2k+1)

0

2k∑
i=0

F(x(t − i))dt

= 1
2〈Lz, z〉 − (2k + 1)

∫ 2(2k+1)

0
F(x(t))dt

= 1
2〈Lz − 1

2 P̂−1B∞z, z〉 − (2k + 1)
∫ 2(2k+1)

0
[F(x(t)) − 1

2〈P
−1Ax, x〉X]dt

≥ 1
2σ‖x‖

2
2 − 2(2k + 1)M → +∞, ‖x‖22 → ∞,

which implies that there is c0 ∈ R such that

Φ(z) ≥ c0, z ∈ Z+.

At the same time, there are c∞ ∈ R− and γ > 0 such that

Φ(z) ≤ c∞.
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Suppose c0 < c∞. Then conditions (c) and (d) in Lemma 2.2 are satisfied.
Since Lemmas 2.1 and 3.2–3.4 imply (P.S)-condition as well as conditions (a) and (b) in Lemma

2.2 hold under the requirement of Theorem 3.1, we only need to compute m.
From Lemma 3.5 we have

m = 1
2

∑
1≤i≤I

i,l(2k+1)+k+1

[dim Z+(i) ∩ Z−(i) − codimZ(i)(Z+(i) + Z−(i))]

= 1
2

∑
1≤i≤I

i,l(2k+1)+k+1

[dim Z+(i) + dim Z−(i) − dim Z(i)]

= 1
2

∑
1≤i≤I

i,l(2k+1)+k+1

[dim Z+(i) + dim Z−(i) − 2N].

(3.8)

Then,
m = 1

2

∑
1≤i≤I

i,l(2k+1)+k+1

[dim(Z+
∞(i) + dim Z−0 (i)) − 2N]

= 1
2

∑
l(2k+1)+i≤I

i∈{1,2,··· ,k},l≥0

[dim Z+
∞(l(2k + 1) + i) + dim Z−0 (l(2k + 1) + i) − 2N]

+1
2

∑
l(2k+1)+k+1+i≤I

i∈{1,2,··· ,k},l≥0

[dim Z+
∞(l(2k + 1) + k + 1 + i)

+ dim Z−0 (l(2k + 1) + k + 1 + i) − 2N]
=

∑
l(2k+1)+i≤I

i∈{1,2,··· ,k},l≥0

[dim Z+
∞(l(2k + 1) + i) + dim Z−0 (l(2k + 1) + i) − 2N]

+1
2

∑
l(2k+1)+2(k+1)−i≤I
i∈{1,2,··· ,k},l≥0

[dim Z+
∞(l(2k + 1) + 2(k + 1) − i)

+ dim Z−0 (l(2k + 1) + 2(k + 1) − i) − 2N].

Denote I1 = ]{l(2k + 1) + i ≤ I : l ≥ 0, i ∈ {1, 2, · · · , k}}, I2 = ]{l(2k + 1) + 2(k + 1)− i ≤ I : l ≥ 0, i ∈
{1, 2, · · · , k}}, and indA+

∞ =
∑
α j>0

indα j, indA−∞ =
∑
α j<0

indα j, indA+
0 =

∑
β j>0

indβ j, indA−0 =
∑
β j<0

indβ j, then,

indA∞ = indA+
∞ + indA−∞, indA0 = indA+

0 + indA−0 .

Obviously,∑
l(2k+1)+i≤I

i∈{1,2,··· ,k},l≥0

dim Z−0 (l(2k + 1) + i) = 2indA+
0 ,∑

l(2k+1)+i≤I
i∈{1,2,··· ,k},l≥0

dim Z+
∞(l(2k + 1) + i)

=
∑

l(2k+1)+i≤I
i∈{1,2,··· ,k},l≥0

[2N − dim Z−∞(l(2k + 1) + i) − dim Z0
∞(l(2k + 1) + i)]

= 2NI1 − 2indA+
∞ − 2η+

∞,∑
l(2k+1)+2(k+1)−i≤I
i∈{1,2,··· ,k},l≥0

dim Z−0 (l(2k + 1) + 2(k + 1) − i)

=
∑

l(2k+1)+2(k+1)−i≤I
i∈{1,2,··· ,k},l≥0

[2N − dim Z0
0 − dim Z+

0 ]

= 2NI2 + 2indA−0 − 2η−0 .
Therefore,

m = indA+
0 + indA−0 − indA+

∞ − indA−∞ − η
+
∞ − η

−
0

= indA0 − indA∞ − η+
∞ − η

−
0 .
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Theorem 3.1 is proved.
Proof of Theorem 3.2.
Since the proof of Theorem 3.2 for each case is similar, we prove the theorem only for case (ii).
Without loss of generality, suppose

indA0 − indA∞ − η−0 + η−∞ > max{0, indA∞ − indA0 − η
−
∞ − η

+
0 },

and denote Z+ = Z+
∞ + Z0

∞, Z− = Z−0 .
From (A−3 ), there is M > 0 such that

−[F(x) −
1
2

(A∞x, x)] > −M, x ∈ RN .

Then, for z ∈ Z+
∞ + Z0

∞,

Φ(z) = 1
2〈Lz, z〉 + G(z)

= 1
2〈Lz − 1

2 P̂−1B∞z, z〉 + G(z) + 1
2〈P̂

−1B∞z, z〉
≥ G(z) + 1

2〈P̂
−1B∞z, z〉

= −(2k + 1)
∫ 2(2k+1)

0
[F(x(t)) − 1

2 (A∞x, x)]dt

> (2k + 1)
∫ 2(2k+1)

0
(−M)dt

= −2M(2k + 1)2,

which implies that condition (d) in Lemma 2.2 holds.
From (3.8), one has
m = 1

2

∑
1≤i≤I

i,l+k+1

[dim Z+(i) + dim Z−(i) − 2N]

= 1
2

∑
1≤i≤I

i,l(2k+1)+k+1

[dim Z+
∞(i) + dim Z0

∞(i) + dim Z−0 (i) − 2N]

= 1
2

∑
1≤i≤I

i,l(2k+1)+k+1

[dim Z+
∞(i) + dim Z0

∞(i) − 2N] + 1
2

∑
1≤i≤I

i,l(2k+1)+k+1

dim Z0
∞(i)

= indA0 − indA∞ − η+
∞ − η

−
0 + 1

2 dim Z0
∞

= indA0 − indA∞ − η+
∞ − η

−
0 + η+

∞ + η−∞
= indA0 − indA∞ − η−0 + η−∞.

Theorem 3.2 is proved.

4. Examples

Example 4.1 Consider the number of 6-periodic solutions of the following system

x′(t) = −∇F(x(t − 1)) − ∇F(x(t − 2)) (4.1)

where x = (x1, x2) ∈ R2,

F(x) = −
π

12
√

3
(9x2

1 + 22x1x2 + 9x2
2) − (x

4
3
1 + 2x

4
3
2 ), |x| → ∞,

F(x) =
π

12
√

3
(29x2

1 + 22
√

3x1x2 + 7x2
2) + (x2

1 + x2
2)

3
2 , |x| → 0.
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Obviously, F ∈ C1(R2,R), F(0) = 0, F(−x) = F(x),

∇F(x) =

− 3π
2
√

3
− 11π

6
√

3
− 11π

6
√

3
− 3π

2
√

3

 [x1

x2

]
−

4
3 x

1
3
1

8
3 x

1
3
2

 , |x| → ∞

∇F(x) =

 29π
6
√

3
11
√

3π
6
√

3
11
√

3π
6
√

3
7π

6
√

3

 [x1

x2

]
+

[
3(x2

1 + x2
2)2x1

3(x2
1 + x2

2)
1
2 x2

]
, |x| → 0

and

A∞ =

− 3π
2
√

3
− 11π

6
√

3
− 11π

6
√

3
− 3π

2
√

3

 , A0 =

− 29π
6
√

3
11π

6
11π

6 − 7π
6
√

3

 .
The eigenvalues of A∞ and A0 are

α1 =
π

3
√

3
, α2 = −

10π

3
√

3
and β1 = −

π

3
√

3
, β2 =

10π

3
√

3
,

respectively. Since k = 1, one has

ind α1 = ]{l ≥ 0 : 0 < 1
3 (6l + 1)π 1

√
3

= π

3
√

3
(6l + 1) < π

3
√

3
} = 0,

ind α2 = −]{l ≥ 0 : 0 < π

3
√

3
(6l + 5) < 10π

3
√

3
} = −1,

ind β1 = −]{l ≥ 0 : 0 < π

3
√

3
(6l + 5) < π

3
√

3
} = 0,

ind β2 = ]{l ≥ 0 : 0 < π

3
√

3
(6l + 1) < 10π

3
√

3
} = 2.

Therefore,
ind A∞ = −1, ind A0 = 2.

At the same time,
η+
∞ = 1, η−∞ = 0, η+

0 = 0, η−0 = 0,

and all the conditions of Theorem 3.2 (vi) are satisfied. Then system (4.1) has at least

m = ind A0 − ind A∞ + η−∞ + η+
0 = 3

different 6-periodic orbits satisfying x(t − 3) = −x(t).
Example 4.2 Let N = 2. We discuss the multiplicity of 6-periodic solutions of system (4.1), where

x = (x1, x2) ∈ R2,

F(x) = (− 25π
6
√

3
x2

1 + 5π
3 x1x2 −

5π
2
√

3
x2

2 − x4
1 − x6

2)(1 − ϕ(|x|))+

( 5π
6
√

3
x2

1 −
5π
√

3
x1x2 + 5π

6
√

3
x2

2 + x
4
3
1 + x

8
5
2 )ϕ(|x|).

Then

∇F(x) = A0x −
[
4x3

1
6x5

2

]
, |x| → 0,

∇F(x) = A∞x +

4
3 x

1
3
1

8
5 x

3
5
2

 , |x| → ∞,
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where

A0 =

− 25π
3
√

3
5π
3

5π
3 − 5π

√
3

 , A∞ =

 5π
3
√

3
− 5π
√

3
− 5π
√

3
5π

3
√

3

 .
A∞ and A0 have their eigenvalues α1 = − 10π

3
√

3
, α2 = 20π

3
√

3
, and β1 = −10π

√
3
, β2 = − 10π

3
√

3
, respectively.

So
indα1 = −]{l ≥ 0 : 0 < π

3
√

3
(6l + 5) < 10π

3
√

3
} = −1,

indα2 = ]{l ≥ 0 : 0 < π

3
√

3
(6l + 1) < 20π

3
√

3
} = 4,

indβ1 = −]{l ≥ 0 : 0 < π

3
√

3
(6l + 5) < 10π

√
3
} = −5,

indβ2 = −]{l ≥ 0 : 0 < π

3
√

3
(6l + 5) < 10π

3
√

3
} = −1,

and then
indA∞ = 3, indA0 = −6.

On the other hand, we have
η+
∞ = η−∞ = η+

0 = η−0 = 0.

Therefore,
m = indA∞ − indA0 = 9,

and system (4.1) has at least 9 different 6-periodic orbits satisfying x(t − 3) = −x(t) by Theorem 3.1.
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