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1. Introduction

Cellular function involves a large network of transformations of substrates, denoted S, into
products, P, which in turn may be further transformed, eliminated, or cycled back into a useful form.
While the chemical conversion of S into P can occur spontaneously

S
k
−−−→ P, (1.1)
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the rate constant, k, that regulates the speed of the reaction (1.1) will often be very small, so that
spontaneous conversion is too slow to sustain life. Moreover, spontaneous conversion allows only
the crudest forms of control. Consequently, the reaction must be catalyzed or “sped up.” Enzymes,
denoted E, are biochemical catalysts that accelerate the conversion of S into P, and the chemical process
by which the conversion of a substrate molecule into a product molecule is accelerated by an enzyme
is called an enzymatic reaction.

The simplest description of an enzymatic reaction for a single-substrate, single-product reaction is
the Michaelis–Menten mechanism [23, 29, 50],

S + E
k1
−−−⇀↽−−−

k−1
C

k2
−−−→ E + P, (1.2)

in which the conversion of S into P is achieved via two elementary reactions: the reversible formation
of the enzyme-substrate complex, C, and the conversion of S to P in the complex C with (in this simple
model) simultaneous dissociation into E and P. Enzymes lower the free-energy barrier separating
reactants from products, with the result that (1.2) is generally faster than (1.1) by many orders of
magnitude [30, Section 6.2].

The modeling and quantification of enzymatic reaction rates is of particular importance, especially
since metabolic disease and dysfunction may arise when these reactions are too slow due, e.g., to a
mutation in the corresponding gene. At or near the thermodynamic limit, enzymatic reactions are
modeled by nonlinear ordinary differential equations (ODEs), known as rate equations, that obey the
law of mass action. While the nonlinear terms in the model equations of enzymatic reactions make
the mathematical treatment of the reaction mechanism challenging, avenues for simplification often
exist. Specifically, if the rates of the elementary reactions that comprise the catalytic reaction are
disproportionate, the ODE model will be multiscale, meaning the complete reaction will consist of
disparate slow and fast time scales. Under the influence of distinct fast and slow time scales, the rate of
change of c (using lower-case italic letters to represent the concentrations of the corresponding species)
is very small relative to the rate of rate of change of s. The exploitation of this almost negligible rate
of change warrants a simplification of the form

S
keff

−−−→ P, (1.3)

where keff is the effective—but non-elementary—rate function. In the case of the Michaelis–Menten
mechanism, keff is a hyperbola in the variable s; in more complicated mechanisms it may adopt the
form of, for instance, a Hill-type function. The advantage offered by (1.3) is that the entire reaction
is describable in terms of the reactant concentration, s, since the explicit dependence on e and c has
been eliminated. The most widely studied example of this kind of reduction is probably the Michaelis–
Menten rate law, which can be obtained using the standard quasi-steady-state approximation (sQSSA).
More generally, rate laws of the form (1.3) are referred to as quasi-steady-state (QSS) reductions or
quasi-steady-state approximations (QSSA). The term QSS speaks to the fact that the concentration of
at least one chemical species (typically an intermediate) changes very slowly for the majority of the
reaction.∗ In fact, the rate of change is so small that it is nearly zero (steady-state) but not quite; hence
the expression quasi-steady-state.

∗In singular perturbation settings, these concentrations frequently correspond to fast variables that quickly equilibrate, and
subsequently have a small net rate of change. Note the correspondence to the multiscale concept mentioned earlier.
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The principal value of QSS approximations is that they yield a reduction of dimension [10]. In
the biochemical arena, the related equilibrium approximation was initially justified via biochemical
arguments by Henri [23] and by Michaelis and Menten [29]. Briggs and Haldane [4] later provided a
mathematical justification of the sQSSA using an argument that hints at later singular perturbation
treatments but lacked formal justification. Only the development of singular perturbation theory
some decades later (with seminal contributions by Tikhonov [46], and later Fenichel [9]) laid a solid
mathematical foundation, which was used by Heineken et al. [22] to develop criteria for the validity
of the sQSSA for the closed Michaelis–Menten system. This history was paralleled in inorganic
chemistry, with the initial development of the sQSSA based on ad hoc chemical reasoning [2, 6],
followed eventually by more rigorous treatments based on singular perturbation theory [3].

Singular perturbation theory in this context applies to ODEs that depend on a small nonnegative
parameter ε, and admit non-isolated stationary points at ε = 0. In practice, e.g. for systems with
polynomial or rational right-hand side, the set of stationary points then contains a submanifold of
positive dimension, which is called a critical manifold. Given appropriate conditions (see Appendix A
for details), one obtains a reduction to a system of smaller dimension constrained to evolve on the
critical manifold. The challenge in any application of Fenichel theory resides in finding a small
parameter from a given parameter dependent system. Traditional analyses of enzymatic reactions
rely heavily on scaling and non-dimensionalization in order to transform the model equations into a
standard form, and the utility of scaling analysis is that the small parameter often emerges naturally
from the dimensionless equations [41]. A different, more recent approach [16] starts with determining
so-called Tikhonov–Fenichel parameter values (TFPV), by searching for parameter combinations at
which the system admits non-isolated stationary points, and satisfies further technical conditions (see
Section 3.1). From such (dimensional) TFPV one then obtains singular perturbation reductions via
small perturbations along a curve in parameter space. In chemical applications, critical manifolds
frequently emerge when specific system parameters (such as rate constants) vanish.

While singular perturbation theory provides a very satisfactory toolbox for reduction of chemical
reaction networks, examples from the literature indicate that the approach may be too narrow for
some applications. Thus in some scenarios, at a certain parameter value there exists a distinguished
invariant manifold which is, however, not comprised of stationary points. Formally, this means that
a QSS reduction which approximates the system when 0 < ε � 1 is not attributable to Fenichel
theory. Nevertheless the QSS reduction is still sometimes a good approximation to the full system
when Fenichel theory is inapplicable, and this raises several important questions. First, given the lack
of a critical manifold and a fixed reduction procedure, how does one justify a QSS reduction, and
how does one go about quantifying its efficacy? Second, if Fenichel theory is not applicable but a
QSS reduction still proves to be an accurate approximation, will there be a distinguished invariant
manifold that attracts nearby trajectories? In other words, what phase-space structures make the
QSS reduction possible in situations where Fenichel theory is extraneous? In the present paper we
contribute, on the one hand, to answering these questions for an open Michaelis–Menten system with
constant substrate influx. On the other hand, we provide sharper estimates for the accuracy of the
sQSSA in singular perturbation scenarios. Finally, we consider distinguished invariant manifolds from
a global perspective for the system on the Poincaré sphere.
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2. An open Michaelis–Menten reaction mechanism

The open Michaelis–Menten reaction mechanism we consider here is the classical Michaelis–
Menten reaction mechanism with a constant influx of substrate, S, at a rate k0:

∅
k0
−−−→ S, S + E

k1
−−−⇀↽−−−

k−1
C

k2
−−−→ E + P, (2.1)

where k0, k1, k−1 and k2 are rate constants.
Mathematical models for (2.1) come in both deterministic and stochastic forms. Here we consider

only the deterministic ODE model that follows the law of mass action near the thermodynamic limit.
For a thorough analysis of the chemical master equation corresponding to (2.1), we invite the reader to
consult [1, 45].

The mass action model corresponding to (2.1) is given by the following set of nonlinear ODEs:

ṡ = k0 − k1es + k−1c, (2.2a)
ċ = k1es − (k−1 + k2)c, (2.2b)
ė = −k1es + (k−1 + k2)c, (2.2c)
ṗ = k2c, (2.2d)

where a dot denotes differentiation with respect to time. Summing equations (2.2b) and (2.2c) reveals
the conservation law

c + e = eT , (2.3)

where eT denotes the total enzyme concentration. Employing (2.3) to eliminate (2.2c), and noting that
(2.2d) is not coupled to (2.2a) or (2.2b), yields the simplified model

ṡ = k0 − k1(eT − c)s + k−1c,
ċ = k1(eT − c)s − (k−1 + k2)c,

(2.4)

from which the time dependence of p and e are readily obtained from (2.2d) and (2.3) once the solution
to (2.4) is procured.

In contrast, the mass-action system for the closed Michaelis–Menten reaction mechanism is
recovered by setting k0 = 0:

ṡ = −k1(eT − c)s + k−1c, (2.5a)
ċ = k1(eT − c)s − (k−1 + k2)c. (2.5b)

One distinguishing difference between the open and closed systems is that the total substrate
concentration, sT , is a conserved quantity when the reaction is closed. Therefore, (2.2) with k0 = 0 is
equipped with the additional conservation law sT = s + c + p, whereas with k0 > 0 one has only one
conservation law, (2.3).

It is well known that further simplification of (2.5) is possible via a QSS reduction. The most
common reduction is the sQSSA, in which (2.5) is approximated with a differential-algebraic equation
consisting of the algebraic equation obtained by setting the right-hand side of equation (2.5b) equal
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to zero (“ċ = 0”) along with the differential equation (2.5a). This reduces to the single differential
equation

ṡ = −
k2eT s

KM + s
, KM :=

k−1 + k2

k1
, (2.6a)

c =
eT s

KM + s
, (2.6b)

where KM is the Michaelis constant.
The legitimacy of the sQSSA (2.6) for the closed Michaelis–Menten reaction mechanism (2.5)

is well-understood. Following an early effort by Briggs and Haldane [4], Heineken, Tsuchiya, and
Aris [22] were perhaps the first to prove with some degree of rigor that (2.6) is valid provided eT � s0.
The qualifier, eT � s0, was justified via singular perturbation analysis. Defining s̄ := s/s0, c̄ := c/eT ,
and T := k1eT t generates the singularly perturbed dimensionless form of (2.5)

s̄′ = −s̄ + c̄(s̄ + κ − λ), (2.7a)
µc̄′ = s̄ − c̄(s̄ + κ), (2.7b)

where prime denotes differentiation with respect to T , λ := k2/k1s0, κ := KM/s0, and µ := eT/s0.
Consequently, the sQSSA (2.6) is justified via Tikhonov’s theorem [46]. Throughout the years,
refinements and variations of the condition µ � 1 have been made. Perhaps most famously, Segel [42]
and Segel and Slemrod [41] extended the results of Heineken et al. [22] and demonstrated that (2.6)
is valid whenever eT � KM + s0. Embedded in Segel’s estimate is the more restrictive condition,
eT � KM, which is independent of the initial substrate concentration, and is nowadays the almost
universally accepted qualifier that justifies (2.6) [7].

While the QSS reductions of the closed Michaelis–Menten reaction are well-studied, analyses
pertaining to the validity of the QSSA in open reaction environments are somewhat sparse [1, 18, 44,
45]. The question we address is therefore: when is further reduction of (2.4) possible? The trajectories
illustrated in Figure 1 show that there are certainly conditions under which the QSSA estimate of the
enzyme-substrate complex, given by Eq (2.6b), which applies equally to the open system, is close to an
invariant manifold (here, a trajectory) that attracts nearby trajectories and along which the equilibrium
point is eventually approached from almost all initial conditions [11, 20, 39]. We thus ask under what
condition is the open sQSSA

ṡ = k0 −
k2eT s

KM + s
, (2.8)

permissible? At first glance, it seems rather intuitive to postulate that the open sQSSA (2.8) is valid
under the same condition that legitimizes the closed sQSSA: eT � KM. In fact, following the earlier
work of Segel and Slemrod [41], Stoleriu et al. [44] introduce the parameter α := k0/(k2eT ), and suggest
that (2.6b) and (2.8) are applicable whenever

eT (1 − α) � s0 +
KM

1 − α
(2.9)

holds. The inequality (2.9) is less restrictive than the Segel and Slemrod condition, since (2.9) is
satisfied as long as k0 is sufficiently close to k2eT [Implicitly, Stoleriu et al. assume that α < 1 in
Eq (2.9).]
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Figure 1. Trajectories of the open Michaelis–Menten equations (2.4) for (a) k1 = 1, eT = 1,
k−1 = 1 k2 = 3 and k0 = 2.5 (in arbitrary units), i.e. under conditions where there is an
equilibrium point in the first quadrant, marked by a dot; and (b) with parameters as in (a),
except k0 = 3.5, under which conditions there is not an equilibrium point in the first quadrant,
and the s component of the solution grows without bound. The arrows show the direction of
the flow. The dashed curve in both figures is defined by the QSSA equation (2.6b).

The approach used to derive (2.9) was based on the traditional method of comparing time scales: a
singular perturbation parameter was recovered through scaling analysis of the mass action equations
(2.4). However, it is possible to derive erroneous conclusions regarding the validity of the QSSA, even
when great care is taken in scaling and non-dimensionalization methodology (see, for example [13],
Section 4). It thus seems prudent to reexamine the basis for the sQSSA in the open Michaelis–Menten
mechanism using tools of singular perturbation theory that go beyond scaling arguments.

3. The Quasi-Steady-State Approximation: Justification from singular perturbation theory

In this section we derive the QSSA directly from Fenichel theory. Details covering projection onto
the critical manifold can be found in Appendix A.

3.1. The critical manifolds: Tikhonov–Fenichel parameter values

To apply Fenichel theory to the open Michaelis–Menten reaction mechanism, we need a curve of
non-isolated equilibrium solutions to form in the first quadrant of R2; see [16]. The following Lemma
addresses the conditions that ensure the existence of a critical manifold, and records some general
qualitative features.

Lemma 1. (a) System (2.4) admits an infinite number of stationary points if and only if one of the
following conditions holds.

• k0 = k1 = 0;
• k0 = eT = 0;
• k0 = k2 = 0.

(b) If the number of stationary points in the plane is finite then it is equal to zero or one. There exists
one stationary point if and only if the genericity conditions

k1 , 0, k2 , 0 and k2eT − k0 , 0 (3.1)
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are satisfied. In that case the stationary point is equal to

P0 :=
(̂
s, ĉ

)
=

(
(k−1 + k2)k0

k1(k2eT − k0)
,

k0

k2

)
. (3.2)

This point lies in the first quadrant if and only if

k2eT − k0 > 0, (3.3)

in which case it is an attracting node. The stationary point lies in the second quadrant if and only
if k2eT − k0 < 0, in which case it is a saddle point.

(c) The first quadrant is positively invariant for system (2.4), and solutions starting in the first quadrant
exist for all t ≥ 0. When k−1 + k2 > 0 then every solution that starts in the first quadrant enters the
(positively invariant) subset defined by c ≤ eT at some positive time.

(d) System (2.4) admits no non-constant closed trajectory.

Sketch of proof. Parts (a) and (b) are straightforward, as is the first statement in part (c). For the second
statement note ṡ + ċ ≤ k0, hence solutions starting in the first quadrant remain in a compact set for
all finite t > 0. Finally, when c ≥ eT then (2.4) shows that ċ ≤ −(k−1 + k2)eT , hence the second
statement of part (c) holds. We turn to the proof of part (d): If there exists a non-constant closed
trajectory then its interior contains a stationary point. Given a degenerate situation from part (a), the
variety of stationary points is unbounded, hence would intersect a closed trajectory if it intersects its
interior; a contradiction. This leaves the setting with an isolated stationary point, necessarily of index
one, which is only possible when the stationary point (3.2) lies in the first quadrant. By part (c) the
closed trajectory must be contained in the strip defined by c ≤ eT . But in this strip the divergence of
the vector field equals − (k1(eT − c) + k1s + k−1 + k2) < 0, and no closed non-constant trajectory can
exist by Bendixson’s criterion. �

Remark 1. The case k0 > k2eT , in which the inflow exceeds the enzyme’s clearance capacity, is not
physiologically irrelevant since the gene coding for a particular enzyme may suffer a mutation that
results in an enzyme with reduced catalytic activity, for example. As a rule, the accumulation of a
metabolite will eventually become toxic (or possibly oncogenic) to the cell, and the rate at which
S accumulates is therefore of interest. Other situations, e.g. the existence of an alternative but less
efficient pathway for eliminating S, or the permeation of S through the cell membrane, would require
more elaborate models for their study. Nevertheless, the model under study here would yield useful
initial insights into the cellular effects of a mutation to an enzyme.

Lemma 1 ensures the existence of a critical manifold comprised of equilibrium points whenever
k0 vanishes along with either eT , k1 or k2. We note that in the context of the closed reaction (2.5),
parameters with eT = 0 (with all remaining parameters > 0), resp. k1 = 0 (remaining parameters
> 0), resp. k2 = 0 (remaining parameters > 0), are TFPV. Generally, a TFPV [̂k0 êT k̂1 k̂2 k̂−1]
is characterized by the property that the variety of stationary points has positive dimension, and a
generic small perturbation of the parameters results in the formation of a normally hyperbolic invariant
manifold, called a slow manifold [17]. Choosing a curve in parameter space which is parameterized
by ε and starts at a TFPV, one obtains a system which admits a singular perturbation reduction.
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Let π ∈ R5
+ denote the parameter vector: π := [k0 eT k1 k2 k−1]T . By Lemma 1, and upon

checking normal hyperbolicity (see Appendix A below), the TFPVs and the critical manifolds, M, are
as follows:

π = [0 0 k1 k2 k−1] =⇒ M := {(s, c) ∈ R2 : c = 0}, (3.4a)
π = [0 eT 0 k2 k−1] =⇒ M := {(s, c) ∈ R2 : c = 0}, (3.4b)
π = [0 eT k1 0 k−1] =⇒ M := {(s, c) ∈ R2 : c = k1eT s/(k−1 + k1s)}. (3.4c)

Fenichel theory ensures that perturbing π in (3.4) along a curve in parameter space through the
TFPV results in the formation of an invariant slow manifold that attracts nearby trajectories at an
exponential rate. Formally, the QSSA may be seen as an approximation of the dynamics on the slow
manifold, perturbing from a TFPV.

3.2. Singular perturbations and the geometry of parameter space

The justification of the QSSA from singular perturbation theory requires us to implicitly equip
parameter space with some additional geometric structure. For example, consider the case where both
eT and k0 vanish in the singular limit. In order to formally apply singular perturbation theory, it must
hold that k0 ∼ O(eT ) (in a sense discussed below). Generally speaking, this means that we can apply
singular perturbation theory along a parametric curve, Γ, in (eT , k0) parameter space, Γ := (eT , z(eT )),
provided z(0) = 0 and

lim
eT→0+

z(eT )

eT
< ∞. (3.5)

However, a small perturbation suggests that the parameter values will be close to the parameter plane
origin located at (eT , k0) = (0, 0). In this case z(eT ) is well-approximated by its tangent line at eT = 0,
thus it is enough to only consider rays of the form k0 = γeT , where γ is a positive constant with
dimension t−1. To eliminate the need for a dimensional slope γ, define a ray in parameter space by

eT 7→ εe∗T and k0 7→ εk∗0, (3.6)

where the parameters k∗0 and e∗T are nominal values of k0 and eT , respectively.
The additional constraint of sampling parameter space along a ray [or in a more general way along a

curve satisfying (3.5)] must be imposed in order to justify the open sQSSA from singular perturbation
theory. In their analysis of the open Michaelis–Menten reaction (2.4), Stoleriu et al. [44] implicitly
performed their analysis along a ray defined by

eT = e(0) + k0/k2, (3.7)

where e(0) > 0 is the initial free enzyme concentration. This ray in parameter space is encoded in their
initial conditions, which allow for an arbitrary positive value of e(0), but which specify c(0) = ĉ =

k0/k2. The advantage of working along the ray defined by (3.7) is that there is no possibility that the
inflow can exceed the clearance capacity of the enzyme, i.e. inequality (3.3) is automatically satisfied.

In order to apply singular perturbation theory, we need to start from a critical manifold, i.e. from one
of the cases in the set (3.4). Note that the ray through the (eT , k0) parameter plane chosen by Stoleriu et
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al. [44], Equation (3.7), does not satisfy (3.5) unless e(0) = 0. This leads to difficulties. For example,
the condition (2.9) along the ray defined by (3.7) translates to

k1e(0) � k1s0 + (k−1 + k2)
( 1

1 − α

)
. (3.8)

The inequality (3.8) is satisfied by taking k1 → 0, but this limit alone does not produce a critical
manifold. Hence, the singular perturbation machinery is not applicable to legitimizing the open
sQSSA (2.8) by this route.

Another issue with the constrained set of initial conditions imposed by (3.7) is that it excludes
many initial conditions that are physiologically relevant. For example, a natural initial condition
is (s, e, c, p)(0) = (0, eT , 0, 0), corresponding to the substrate flow being turned on at time zero
(e.g. because the cell is placed in a new environment, or because it has turned on a previously
dormant metabolic pathway that produces S), but this initial point is inaccessible if the parametric
constraint (3.7) has been imposed. Consequently, it remains an open question whether the results
of the analysis apply at arbitrary points in parameter space and for arbitrary initial conditions. In
particular, there is no guarantee that the analysis of Stoleriu et al. [44] applies when the inflow exceeds
the clearance capacity of the enzyme which, as argued previously, is not an irrelevant case. By contrast,
a transformation informed by the basic requirements of singular perturbation theory such as (3.6)
allows us to make rigorous statements about the manifold structure of the problem, and imposes no
constraints on the initial conditions.

3.3. Quasi-steady-state reductions: Projecting onto the critical manifold

Let us now consider the first scenario in which eT and k0 vanish in the singular limit. The
perturbation of the singular vector field is

ṡ = εk∗0 − k1(εe∗T − c)s + k−1c,

ċ = k1(εe∗T − c)s − (k−1 + k2)c.
(3.9)

The singular limit obtained by setting ε = 0 in (3.9) yields a critical manifold, M, that is identically the
s axis:

M := {(s, c) ∈ R2 : c = 0}. (3.10)

To compute the corresponding singular perturbation reduction (see Appendix A for specific details),
we rewrite the right hand side of (3.9) as h(s, c) + εG(s, c, ε). Furthermore h(s, c) = P(s, c) f (s, c), with

P(s, c) :=
[

k1s + k−1

−k1s − (k−1 + k2)

]
, f (s, c) := c, G(s, c, ε) :=

[
k0 − k1eT s

k1eT s

]
. (3.11)

Since D f P = − (k1s + k−1 + k2) is negative on M, M satisfies the attracting hyperbolicity condition, and
Tikhonov-Fenichel reduction is applicable (see [15] and also Appendix A). The singular perturbation
reduction is then obtained by projecting G(s, c, 0) onto the tangent space of M at x = (s, c), TxM, via
the linear operator ΠM which projects onto the kernel along the image Nx of the Jacobian Dh(x).

ΠM |c=0G(s, 0, 0). (3.12)
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Note that Nx, which is equal to the range of P(x), is a complementary subspace to TxM. For our specific
problem (3.9), ΠM is given by

ΠM :=
[
1 u(s)
0 0

]
, u(s) :=

(s + KS )

(s + KM)
, KS := k−1/k1, (3.13)

and the corresponding reduction, which agrees with the QSS reduction, is

ṡ = k0 −
k2eT s

KM + s
. (3.14)

Equation (3.14) is, of course, the open sQSSA. A similar calculation is easily carried out for the case
of small k1 and small k0, as well as small k0 and k2, and we refer the reader to Appendix A for details.
The specific QSS reduction that accompanies the perturbation defined by k1 7→ εk∗1 and k0 7→ εk∗0 is

ṡ = k0 −
k2eT

KM
s, (3.15)

which is the linear limiting law obtained in the small-s limit of (3.14).
Accordingly, we have confirmation that the open sQSSA (2.8) is valid under any condition that

invokes a scaling of the form k0 7→ εk∗0 and eT 7→ εe∗T . We further note that a QSS reduction based
on Fenichel theory is also possible in case k0 7→ εk∗0 and k2 7→ εk∗2 so that both k0 and k2 vanish in
the singular limit. This reduction yields the classical equilibrium approximation, (See Section 5.3 and
Appendix A for details.)

Several questions remain. First, what is ε? We have shown that the open sQSSA is valid provided
k0 and eT are sufficiently small, but what is small when k0 and eT are nonzero? Second, from the work
of Goeke et al. [17], the QSS may still hold in certain regions of the phase-plane even if Fenichel
theory is not applicable. The analysis of Stoleriu et al. [44] is also indirectly suggestive of the idea
that the validity of the open sQSSA may not necessarily stem from singular perturbation theory. These
observations raise the deeper question: is a scaling of the form k0 7→ εk∗0, eT 7→ εe∗T necessary for the
validity of the QSSA, or merely sufficient? We address these questions directly in the sections that
follow.

4. Revisiting quasi-steady state for the complex species

4.1. The notion of QSS

Singular perturbation theory provides a natural setting for developing conditions under which QSSA
holds, but the literature (notably Stoleriu et al. [44] for the open Michaelis–Menten mechanism)
suggests that one should consider less restrictive notions as well. In the following we will sketch
one such notion. This goes back to Schauer and Heinrich [40], who were the first to note that the
minimal requirement for the validity of QSS reduction for some species should be the near-invariance
of a corresponding variety, which we call the QSS variety. This variety is defined as the zero set of the
rate of change for the species under consideration. The idea of near-invariance was expounded upon
by Noethen et al. [32], and further analyzed by Goeke et al. [17]:
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• A fundamental feature of QSS is that the rate of change of certain sets of species should be close
to zero for an extended period of time. (In the Michaelis–Menten reaction, QSS for complex thus
means that ċ ≈ 0 for an extended period of time.) In the phase space interpretation, a sizable
part of the trajectory should thus be close to the QSS variety which is defined by evaluating the
condition ċ = 0. (In the Michaelis–Menten mechanism the QSS variety for complex is thus
defined by k1(eT − c)s − (k−1 + k2)c = 0; see Eq (2.6b).) The validity of such a condition will
depend on the parameters.

• According to [17], Section 3.3, the minimal requirement for QSS should therefore be near-
invariance of the QSS variety, in the sense that the system parameters are small perturbations
of QSS parameter values. By definition, at a QSS parameter value the QSS variety is an invariant
set for system (2.4). (In the Michaelis–Menten mechanism one thus requires invariance of the
variety defined by Eq (2.6b) for system (2.4) at a QSS parameter value.) The arguments in [17]
show that this condition is necessary if one requires arbitrary accuracy of the QSS approximation
for suitable parameters. By standard continuous dependence theorems for initial values and
parameters (see e.g. Perko [34], Section 2.3), small perturbations of a QSS parameter value yield
trajectories that remain close to the QSS variety on compact time intervals; thus the condition is
also sufficient. One practical advantage of this notion is that QSS parameter values, similarly to
TFPV, are algorithmically accessible for polynomial or rational systems.

• The near-invariance condition alone may not be sufficiently strong to satisfy expectations about
QSS. One may also require that solutions quickly approach the QSS variety in an initial
transient phase. Since the combination of these two features is automatically satisfied in
singular perturbation settings, singular perturbations naturally enter the picture. But the singular
perturbation scenario is both broader and narrower than QSS for chemical species: It is broader
since it also is applicable to settings with slow and fast reactions. On the other hand, we will
see below that it is, in a sense, too narrow for sQSS in the open Michaelis–Menten reaction
mechanism.

4.2. Open Michaelis–Menten: QSS parameter values for complex

The QSS variety for (2.4) is given by

c = w(s) :=
k1eT s

k1s + k−1 + k2
. (4.1)

We prefer this to the usual notation w(s) = eT s/(KM + s), which may obscure the role of k1. We first
determine all QSS parameter values.

Lemma 2. The QSS parameters of system (2.4) are as follows:

(i) eT = 0 with the other parameters arbitrary;

(ii) k1 = 0 with the other parameters arbitrary;

(iii) k0 = k2 = 0;

(iv) k−1 = k2 = 0.
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Proof. We proceed along the lines of [17], Section 3.4, using an invariance criterion that employs the
Lie derivative, L[·], corresponding to (2.4). The Lie derivative is defined by

L[ϕ](s, c) = ṡ
∂ϕ

∂s
+ ċ

∂ϕ

∂c

= (k0 − k1(eT − c)s + k−1c)
∂ϕ

∂s
+ (k1(eT − c)s − (k−1 + k2)c)

∂ϕ

∂c

for any polynomial (more generally, smooth) function ϕ. For the variety defined by ϕ = 0 to be
invariant it is necessary that

L[ϕ](s, c) = 0 whenever ϕ(s, c) = 0.

Moreover, the condition is sufficient when ϕ is irreducible, and it is applicable to the irreducible factors
of ϕ; for details see [17] and the references therein.

Now let ψ(s, c) = 0 define the QSS manifold, thus

ψ(s, c) := k1(eT − c)s − (k−1 + k2)c. (4.2)

The invariance condition for the curve ψ(s, c) = 0 is

L[ψ](s, c) = −k1(eT − c)(−ψ(s, c) + k0 − k2c) − (k1s + k−1 + k2)ψ(s, c) = 0 (4.3)

whenever ψ(s, c) = 0, thus

k1(eT − c)(k0 − k2c) = 0 whenever ψ(s, c) = 0. (4.4)

This product yields three conditions which can be evaluated. Clearly k1 = 0 works and yields (ii). The
second condition, eT − c = 0, holds on ψ = 0 if and only if (k−1 + k2)eT = 0, which yields respectively
(iv) and (i). The third condition yields k0 = k2 = 0 when k2 = 0, i.e. (iii). In case k2 , 0 one obtains
c = k0/k2, and

k1(eT − k0/k2)s − (k−1 + k2)k0/k2 = 0 for all s;

here the coefficient of s and the constant must vanish. This again leads to conditions already discussed.
�

Remark 2. (a) In cases (i) and (ii), the QSS variety is given by c = 0, provided that the
other parameters are positive, and the QSS parameter conditions are less restrictive than for
singular perturbations, which also require k0 = 0. This is a notable difference to the closed
Michaelis–Menten scenario, for which all complex-QSS parameter values are also TFPV. Case (iii)
corresponds to a singular perturbation scenario. The dynamics in case (iv) is of some interest in
the Michaelis–Menten reaction mechanism without inflow; see [7].

(b) Classical QSS reduction is tantamount to exploiting the fact that if ψ(s, c) = 0 defines a nearly
invariant curve, then c ≈ w(s), from which the open sQSSA (2.8) presumably follows. However,
a word of caution is in order. When a QSS parameter value is also consistent with a singular
perturbation and gives rise to a critical manifold, the classical QSS reduction may differ from the
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reduction obtained from Fenichel theory (see [17], Section 3.5). For example, ψ(s, c) = 0 is nearly
invariant if k0 and k2 are small, but the classical QSS reduction, given by

ṡ = k0 −
k2eT s

k1s + k−1
, (4.5)

does not agree with the reduction obtained from singular perturbation theory, which is given by
(A.18). Convergence to the singular perturbation reduction is guaranteed by Fenichel theory, hence
the QSS reduction (4.5) cannot correctly describe the dynamics at lowest order.

For the QSS parameters which do not correspond to singular perturbations, there remains to
investigate whether solutions approach this variety, and if so, how fast and how close the approach
is. Furthermore, even in the singular perturbation scenario one needs estimates on the initial (boundary
layer) behavior, since Fenichel’s theory applies directly only to a neighborhood of the critical variety.

These problems will be addressed via direct estimates, which will also be of help in answering a
quantitative question, i.e. how small should eT be in order to justify (2.8)? Ultimately, the term small is
relative in nature. Therefore, the appropriate question to ask is: For (2.8) to be approximately accurate,
eT and k0 must be much smaller than what? Before we start this investigation we establish an auxiliary
result about the phase plane geometry of (2.4).

4.3. Phase plane arguments

From here on we restrict attention to system (2.4) on the positively invariant strip W defined by
s ≥ 0 and 0 ≤ c ≤ eT . A priori we impose no requirements on the parameters. We look at isoclines,
noting that

ċ = 0⇔ c = Nc(s) ≡
k1eT s

k1s + k−1 + k2
, ċ ≥ 0⇔ c ≤ Nc(s); (4.6)

and

ṡ = 0⇔ c = Ns(s) ≡
k1eT s − k0

k1s + k−1
, ṡ ≥ 0⇔ c ≥ Ns(s), (4.7)

where Nx denotes the x nullcline. These nullclines define positively invariant sets:

Lemma 3. Consider the “wedge”

W1 := max
{

0,
k1eT s − k0

k1s + k−1

}
≤ c ≤

k1eT s
k1s + k−1 + k2

, s ≥ 0.

Then the following hold:

(a) If the system admits no positive stationary point, thus k0 > k2eT , then the c-isocline lies above the
s-isocline for all s ≥ 0, and W1 extends to s → ∞. If the system admits the positive stationary
point (̂s, ĉ) then the isoclines meet at this point, and s ≤ ŝ, c ≤ ĉ for all points of W1.

(b) W1 is positively invariant for system (2.4), and on W1 one has ṡ ≥ 0.
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Proof. Part (a) is straightforward. As for part (b), from (2.4) one sees that ṡ+ ċ = k0−k2c ≥ k0−k2̂c = 0
on W1, thus

ṡ = 0⇒ ċ ≥ 0, ċ = 0⇒ ṡ ≥ 0.

This implies the positive invariance of W1, since the vector field points to the interior of W1 at the
boundary (Figure 2). Clearly ṡ ≥ 0 on W1. �

e
T
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~

c = 0
.

= 0s
.

> 0s
.

c > 0
.

W
1
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.
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< 0s
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.
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1
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c

~
s

c

Figure 2. Sketches of the positively invariant sets W1 in the phase plane for the open
Michaelis–Menten reaction mechanism (2.1). The curves are the nullclines, and the arrows
show the direction of motion of trajectories as they cross the nullclines. Both nullclines tend
asymptotically to c = eT as s→ ∞. s̃ is the s intercept of the s nullcline. Left: k0 > k2eT and
the two nullclines never meet. Right: k2eT > k0 and the nullclines cross at the stationary point
(̂s, ĉ). The flow points into the region delimited by the two nullclines, making this region a
funnel [24].

Remark 3. Smallness of eT and existence of a positive stationary point imply smallness of k0; this
leads automatically to the singular perturbation setting. Matters are different when k1 is small.

Everywhere inside the wedge, ċ > 0 and ṡ > 0. Thus, all trajectories inside the wedge have positive
slope. Since the flow points into the wedge, the slow manifold must also lie inside the wedge. Thus,
the slow manifold has a positive slope for s ≤ ŝ in the first quadrant. Moreover, the slow manifold
must enter the first quadrant by crossing through the s axis in the interval (0, s̃), where s̃ = k0/k1eT is
the s intercept of the s nullcline (Figure 2).

In the case that there is a positive equilibrium point, for s > ŝ, ċ < 0 and ṡ < 0 between the two
nullclines so that trajectories in this region still have positive slope. The flow is, again, into the region
between the two nullclines (Figure 2), so the slow manifold must lie within this region. The slow
manifold therefore has positive slope here as well. Moreover, lims→∞Nc(s) = lims→∞Ns(s) = eT .
Thus, the two nullclines pinch together asymptotically. Although we do not pursue this idea here,
this property would allow the anti-funnel theorem to be used to prove the existence of a unique slow
manifold to the right of the equilibrium point [5, 24]. (See Section 6 for correspondence to the global
behavior.)

4.4. How small is small: A direct estimate

Given that we are interested in obtaining a condition that ensures phase plane trajectories closely
follow the QSS variety corresponding to the c nullcline, we compute an upper bound on the limit
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supremum (lim sup) of
L := |c − w(s)|

for a solution of (2.4), where w(s) is given by (4.1). To determine such an upper bound, we calculate

1

2

d

dt
L2 = (c − w(s))(ċ − w′(s)ṡ). (4.8)

The derivative ċ given in (2.4) factors:

ċ = −k1(s + KM)(c − w(s)) =: −τ(s)(c − w(s)), (4.9)

and substitution of (4.9) into (4.8) yields

1

2

d

dt
L2 = −τ(s)L2 − (c − w(s))(w′(s)ṡ) (4.10a)

≤ −τ0L2 + |L|max |w′(s)|max |ṡ|, τ0 := τ(0). (4.10b)

Differentiating w(s) with respect to s reveals max |w′(s)| = k1eT/(k−1 + k2). Denote max |ṡ| by v and
note that v ≤ k0 on W1, due to ṡ ≥ 0.

With

εc :=
k1eT

k−1 + k2
,

Cauchy’s inequality

ab ≤ σa2 +
b2

4σ
, ∀σ > 0 (4.11)

implies

εcv|L| ≤ σL2 +
(εcv)2

4σ
∀σ > 0, (4.12)

which yields
1

2

d

dt
L2 ≤ (σ − τ0)L2 +

(εcv)2

4σ
∀σ > 0. (4.13)

A natural choice for σ is σ := τ0/2 leading to the inequality

d

dt
L2 ≤ −τ0L2 +

(εcv)2

τ0
. (4.14)

Applying Gronwall’s lemma to (4.14) generates an upper estimate for L2:

Proposition 1. (a) For every solution of (2.4) with initial value in W1 one has the estimates

L2 ≤ L2(0)e−τ +
(εcv)2

τ2
0

(1 − e−τ); (4.15a)

L2 ≤ L2(0)e−τ +
(εck0)2

(k−1 + k2)2 (4.15b)

with τ := τ0t = (k−1 + k2)t.
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(b) Thus with

ε∗ :=
k0k1eT

(k−1 + k2)2, (4.16)

the solution approaches the QSS variety up to an error of ε∗2, with time constant λτ := (k−1 + k2)−1.

Note that the estimates from the proposition explain the rapid approach of the trajectories in Figure 1
to the QSS variety.

From our analysis of the mathematical energy, L2, we have both a time constant, λτ = τ−1
0 , as well

as a parameter, ε∗. The time constant yields a natural dimensional fast time scale, τ, that is equivalent
to the fast time scale obtained by Segel [42] for the closed Michaelis–Menten reaction mechanism.
Moreover, ε∗ should in some sense be small for the open sQSSA to be accurate. The difficulty here is
that ε∗ has dimension, and we must scale ε∗ appropriately to recover a dimensionless parameter. To
scale, note that if k0 < k2eT , then

eT k0

KM(k−1 + k2)
<

k2e2
T

KM(k−1 + k2)
. (4.17)

Since c ≤ eT , we divide the (4.17) through by eT , and take the inequality,

εo :=
k2eT

KM(k−1 + k2)
� 1, (4.18)

to be the general qualifier for the validity of open sQSSA (2.8) in W1, when a finite stationary point is
located in the first quadrant.

Note that εo vanishes if either k1, eT or k2 vanish. However, the use of Fenichel theory also requires
k0 to vanish in the singular limit, otherwise the perturbation is non-singular and the accuracy of a
specific QSS reduction is attributable only to the near-invariance of the QSS manifold [hence the
difference in the justification of the open sQSSA that occurs from the mapping (k0, eT ) 7→ ε(k∗0, e

∗
T )

versus the mapping (k0, eT ) 7→ (k0, εe∗T )]. This observation is a definitive difference between our work
and that of Stoleriu et al. [44].

5. Additional insights from solutions of the invariance equation

The sQSSA can be thought of as an attempt to approximate the slow invariant manifold [11]. There
are many other methods for approximating the slow manifold, ranging from the method of intrinsic
low-dimensional manifolds [28], which is accurate to O(ε) [25], to methods that can be improved
order-by-order such as singular-perturbation theory [3, 22, 41], computational singular perturbation
theory [27], and Fraser’s iterative method [11, 31]. Here, we study solutions of the invariance equation,
the equation that the exact slow manifold satisfies, in order to gain further insights into the role of the
TFPV in determining the validity of the sQSSA. The Fraser iterative method will be a major tool, but
we will also consider various small-parameter expansions of the iterates.

5.1. The invariance equation

Assume that, in accordance with the arguments in Section 4.3, we can represent the slow manifold
(at least locally) as the graph of a function c = C(s). If ṡ = ṡ(s, c) and ċ = ċ(s, c), then differentiating
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the assumed representation of the slow manifold with respect to time, we get

ċ(s,C) =
dC(s)

ds
ṡ(s,C), (5.1)

the invariance equation [11, 19, 21, 26, 35].
The invariance equation could be solved using a perturbation method. A strategy suggested by the

work of the previous sections is to perturb from a TFPV along a curve in parameter space with the
TFPV as its endpoint, e.g. the ray (3.6). The scaling parameter ε can then serve as a perturbation
parameter, and a perturbation problem of the typical form results, i.e. to compute the i’th term in the
perturbation series, we solve an algebraic equation that only depends on the previous terms. However,
suppose that we did not know about TFPVs. Then we might try to use the same small parameter as in
the closed system, viz. some scaled version of eT [4, 22, 42, 44]. In the current framework, we would
write eT 7→ εe∗T , and expand C(s) = χ1(s)ε + χ2(s)ε2 + . . . If we implement this program, we find that
χ1(s) satisfies the differential equation

dχ1

ds
=

1
k0

[
k1e∗T s − χ1(k1s + k−1 + k2)

]
. (5.2)

Higher-order terms also satisfy differential rather than algebraic equations. These difficulties are linked
to the fact that eT = 0, of itself, is not a TFPV for the open system. For the TFPVs (3.4a) and (3.4b),
since the leading-order term in C(s) is O(ε), rescaling the TFPVs balances the terms in the invariance
equation such that, to leading order, ċ, ṡ and dC/ds are all O(ε). As a result, (with slight abuse of
notation) dχi/ds first appears to O(εi+1), and we obtain an algebraic equation for χi. The case of
TFPV (3.4c) is slightly different. If we rescale (k0, k2) 7→ ε(k∗0, k

∗
2) and take C(s) = ζ0(s) + ζ1(s)ε +

ζ2(s)ε + . . ., the ε0 terms of the invariance equation can be rearranged to

[
k1s(eT − ζ0) − k−1ζ0

] (
1 +

dζ0

ds

)
= 0. (5.3)

The term in square brackets gives us the critical manifold (3.4c) for ζ0. (The other solution, dζ0/ds =

−1, gives the fast foliations of the manifold in the limit ε → 0.) At higher orders, ζi first appears with
the O(εi) terms. However, because in the limit ε → 0 for this TFPV, the k0 term in ṡ vanishes, the
coefficient of dζi/ds at O(εi) is the term in square brackets in Eq (5.3), which vanishes. Thus, dζi/ds
first appears with a non-vanishing coefficient at O(εi+1), and we again have a perturbation problem
involving only algebraic equations.

To recapitulate, rescaling the TFPVs yields a tractable perturbation problem precisely because the
TFPVs define critical manifolds. Choosing any path through parameter space that does not reduce to a
TFPV as ε→ 0 will, by contrast, necessarily yield a troublesome perturbation problem.

Each TFPV yields a different perturbation problem. Rather than studying the perturbation
expansions of the slow manifold directly, we turn to Fraser’s method [11, 31], which will allow
us to compute a sequence of approximations in a TFPV-agnostic manner. Series expansions of the
approximations can then be obtained for any desired TFPV scaling parameter.

In Fraser’s iterative method, we think of the invariance equation as an equation to be solved for C
in terms of dC/ds. In this case, we can explicitly rearrange the invariance equation to the functional
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equation [11]

C =

k1eT s
(
1 +

dC
ds

)
− k0

dC
ds

(k1s + k−1)
(
1 +

dC
ds

)
+ k2

. (5.4)

Observe that if we rescale k0 and eT as in (3.6) and let ε→ 0 in the functional equation, we recover the
critical manifold (3.4a). Similar comments can be made for (k0, k1) and (k0, k2) and the corresponding
critical manifolds (3.4b) and (3.4c), respectively. Thus, the critical manifolds are recovered in suitable
limits of the functional equation.

We now want to solve Eq (5.4) for the slow manifold. If we knew the derivative of C with respect
to s along the slow manifold, we could immediately compute C(s) from (5.4). Since we do not, we
solve the invariance equation by iteration: From some initial guess C0(s), we compute the derivative,
substitute it into (5.4) to obtain C1(s), and iterate. In practice, iterative solution of a functional equation
such as (5.4) tends to converge specifically to the slow manifold [11, 36] if it converges at all [37], even
though every trajectory is a solution of the invariance equation.

The critical manifolds associated with the TFPVs suggest potential initial functions for iteration.
Suppose then that we start iteration from the critical manifold [under either TFPV (3.4a) or (3.4b)]
C0(s) = 0. Then C1(s) is the sQSSA (2.6b). Figure 3 shows a sequence of iterates calculated from this
initial function. Convergence is rapid, although much more so away from the s axis.
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Figure 3. Iterates of Eq (5.4) for the open Michaelis–Menten reaction mechanisms starting
from the initial function C0(s) = 0 for the parameters of Figure 1(a). The solid dot marks the
location of the equilibrium point. The inset shows an expanded view of the behavior of the
iterates near the origin.

As a side note, consider using a vertical initial function, i.e. one for which dC/ds = ∞. The first
iterate from such an initial function is the s nullcline, which intercepts the s axis at s = k0/k1eT , i.e.
at the extreme right end of the possible range of s intercepts of the slow manifold. The sQSSA, on
the other hand, is the c nullcline, obtained in one iterative step from the initial function C0(s) = 0,
and it intercepts the s axis at s = 0. The two nullclines thus arise naturally as approximations of the
slow manifold by iteration from coordinate axes, and serve as upper and lower bounds for the slow
manifold. Similar comments about the relationship of the functional equation to the nullclines have
previously been made about closed systems [11, 12, 31].
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5.2. The TFPVs (k0, eT ) and the small parameters rediscovered

If we obtain higher iterates using a symbolic algebra system, then make the substitution (3.6), and
finally expand in powers of ε, we find that the i’th iterate is consistent with the previous iterate to order
εi−1. In other words, the iterative method builds the perturbation series term-by-term, as was previously
observed for various perturbative solutions of the closed system [25, 36]. However, this property does
not hold if we, for instance, expand in powers of eT , since eT = 0 is not, of itself, a TFPV for the open
system. These properties parallel those of the direct perturbation calculations (not shown).

The first two non-zero terms of the perturbation series computed along the ray (3.6) can be written
as follows:

C(s)
e∗T

=
s

s + KM
ε +

KM

[
s(k2e∗T − k∗0) − k∗0KM

]
k1(s + KM)4 ε2 + O(ε3). (5.5)

Division by e∗T , the nominal value of the enzyme concentration, has made this expression
dimensionless. Thus, the ε2 term represents an error term for the sQSSA. Specifically, the absolute
value of the coefficient of ε2,

δ(s) =

∣∣∣∣∣∣∣∣
KM

[
s(k2e∗T − k∗0) − k∗0KM

]
k1(s + KM)4

∣∣∣∣∣∣∣∣ , (5.6)

is a dimensionless error parameter such that the error in the sQSSA is small provided this coefficient is
small. An elementary calculation shows that δ(s) has a local maximum of

δm =

27k2e∗T
(
1 − k∗0

k2e∗T

)4

256k1K2
M

(5.7)

in s ∈ (0,∞) provided k2e∗T > k∗0. The global maximum of δ(s) for s ≥ 0 is either this local maximum
or

δ(0) = ε∗/eT =
k∗0

k1K2
M

, (5.8)

where the dimensional parameter ε∗ is defined in Eq (4.16). When the inflow exceeds the enzyme’s
clearance capacity, the situation is straightforward, and δ(0) is the correct small parameter. Otherwise,
δm will be larger than δ(0) when

27
256

(
1 −

k0

k2eT

)4

>
k0

k2eT
. (5.9)

We dropped the asterisks here because k∗0/k2e∗T = k0/k2eT . This inequality can be solved numerically.
It yields k0/k2eT < 0.0767. Putting it all together, we have the following:

• The sQSSA is a good approximation to the slow manifold globally if k0/k2eT < 0.0767 and
δm � 1. Comparing Eq (5.7) to (4.18), and noting that in this parameter range, δm < 27

256εo,
we conclude that εo � 10 is sufficient for the validity of the sQSSA. This is a somewhat more
permissive bound than (4.18).

• If k0/k2eT > 0.0767, then δ(0) � 1 is the appropriate condition for the validity of the sQSSA in
the open system.
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Note that this analysis has recovered both of the small parameters identified in Section 4.4, but has also
established a sharp boundary for switching from one small parameter to the other. We thus have two
complementary methods to obtain small parameters. In any given problem, one or the other method
might be unworkable, thus our presentation of both methods here.

5.3. The TFPVs (k0, k2) and the equilibrium approximation

We can also expand the iterates using the small parameter implied by (3.4c). If we take (k0, k2) 7→
ε(k∗0, k

∗
2), and then expand the second (or higher) iterate in powers of ε, we get

C(s)
eT

=
s

s + KE
−

KE

(
k∗2s + k∗0

)
+ k∗2s2

k1 (s + KE)
[
(s + KE)2 + KEeT

]ε + O(ε2), (5.10)

where KE = k−1/k1. Note that the O(ε0) term is the classical quasi-equilibrium approximation (QEA)
for the Michaelis–Menten reaction mechanism. Contrast equations (5.5) and (5.10): The QEA for the
open system is only accurate to order ε0, unlike the sQSSA which is accurate to order ε. (This fact
is also reflected in Remark 2(b) and in the second example in Appendix A.) This is easily understood
given that the QEA lies above the sQSSA at any s > 0, and that the slow manifold, which enters the
first quadrant by passing through the positive s semi-axis, lies below the sQSSA for s < ŝ. In the
interval s ∈ [0, ŝ], the sQSSA will therefore always be closer to the slow manifold than the QEA. This
is unlike the situation in the closed system, where the slow manifold lies between the QEA and sQSSA,
and where it is possible to choose parameters such that one or the other approximation is more accurate
near the origin. The difference is that the QEA is a nullcline in the closed system, but not in the open
system. One implication of this result is that the TFPV (3.4a) is the most natural one to use as a basis
for a geometric singular perturbation treatment of the slow manifold. (See also Appendix A for further
notes on the expansion from the TFPV (3.4c).)

5.4. The TFPVs (k0, k1) and the linear regime

Finally, turning to the TFPV (3.4b), we define a perturbation parameter ε by

(k0, k1) 7→ ε(k∗0, k
∗
1). (5.11)

A perturbation series based on this small parameter is a polynomial in s due to the appearance of k1

and s together in the rate equations. The first nonzero terms of this series are

C(s)
eT

=
k∗1s

k−1 + k2
ε −

k∗1
{
k∗1s [s(k−1 + k2) − k2eT ] + k∗0(k−1 + k2)

}
(k−1 + k2)3 ε2 + O(ε3). (5.12)

Substituting this series along with the parameter definitions (5.11) into ṡ from (2.4), we get, to lowest
order in ε,

ṡ ≈
(
k∗0 −

vmaxs
K∗M

)
ε, (5.13)

where vmax = k2eT and K∗M = (k−1 + k2)/k∗1 or, restoring the small parameters from (5.11),

ṡ ≈ k0 −
vmaxs
KM

. (5.14)

This is of course the small-s linear limit of the sQSSA, the previously seen Eq (3.15). An alternative
route to this equation is presented in Appendix A.
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6. The open Michaelis–Menten reaction on the Poincaré sphere

It is worthwhile to consider the global behavior of system (2.4) and its distinguished invariant sets
to illuminate the role of QSS varieties in a broader context, particularly for systems which do not admit
a stationary point in the first quadrant.

It is a standard technique to extend planar polynomial ODE systems to the Poincaré sphere. A
good description of the procedure is given in Perko [34], Section 3.10: Given a sphere in R3, let the
phase plane be tangent to its north pole, and consider the bijective central projection from the upper
half sphere to the phase plane. Then points on the equator of the sphere may be viewed as points at
infinity for the planar system, with each line through the origin corresponding to a pair of antipodal
points on the equator.† Finally, for the purpose of visualization one applies a parallel projection in the
north-south direction from the upper hemisphere to the equatorial plane.

A discussion of the system on the Poincaré sphere thus allows us to understand the behavior of
the planar system at infinity. Note that all solutions of the system on the Poincaré sphere, which is
compact, exist for all t ∈ R, while this is not necessarily the case for solutions of (2.4) when t ≤ 0 or
outside the first quadrant. Any reference to limit sets in the following arguments is to be understood
for the system on the sphere. In our analysis we will mostly be interested in the first quadrant.

Stationary points at infinity (i.e. on the equator) for a polynomial planar system are of particular
interest. Antipodal pairs of stationary points generally correspond to invariant lines for the
homogeneous part of highest degree; see e.g. [48]. For system (2.4) with k1 , 0 we thus need to
consider the homogeneous quadratic part

ṡ = k1cs,
ċ = −k1cs.

This homogeneous vector field admits three invariant lines, viz.

R ·

[
1
0

]
, R ·

[
0
1

]
, R ·

[
1
−1

]
.

The stationary points at infinity which are relevant for the first quadrant correspond to the rays

R+ ·

[
1
0

]
and R+ ·

[
0
1

]
,

and we call the corresponding stationary points at infinity P1, resp. P2. Moreover we denote by P3 the

stationary point at infinity which corresponds to R+ ·

[
1
−1

]
.

We present the pertinent results for system (2.4) on the Poincaré sphere (see Appendix B for
computations and proofs).

Lemma 4. Assume that the genericity conditions (3.1) are satisfied. Then the following hold for the
system on the Poincaré sphere.

†The central projection also yields a bijection from the lower hemisphere to the phase plane, and one thus obtains a vector field on
the sphere which is mirror symmetric relative to the equatorial plane, and has the equator as an invariant set. One could furthermore pass
to a direction field on the projective plane, but we will not do so.
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(a) The stationary point P1 at infinity is a degenerate saddle when k2eT > k0, with the stable manifold
contained in the equator. In case k2eT < k0 this point is a degenerate attracting node.

(b) The stationary point P2 at infinity is a saddle-node, with a repelling node part on the upper
hemisphere.

(c) The stationary point P3 at infinity is a repelling node.

We first describe the behavior of system (2.4) on the relevant part of the Poincaré sphere when there
is an isolated stationary point in the first quadrant as illustrated in Figure 4.

Figure 4. The system on the Poincaré Sphere for the open Michaelis–Menten reaction
mechanism in case k2eT > k0. The distinguished trajectory is colored green.

Proposition 2. Assume that the genericity conditions (3.1) hold, and let k2eT > k0. Then every solution
starting in the first quadrant converges toward P0 = (̂s, ĉ) as t → ∞. There is a unique distinguished
trajectory that connects the saddle P1 at infinity to P0. Moreover this trajectory is asymptotic in the
phase plane to the line c = eT as t → −∞.

We turn to the case when P0 lies in the second quadrant; see Figure 5. Here, considering the
system on the Poincaré sphere is necessary to understand the global dynamics, and moreover a proper
understanding requires us to look beyond the first quadrant.

P
2

P
1

P
3

Figure 5. The system on the Poincaré Sphere for the open Michaelis–Menten reaction
mechanism in case k2eT < k0. The distinguished trajectory is colored green.
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Proposition 3. Assume that the genericity conditions (3.1) hold, and let k2eT < k0. Then every solution
that starts in the first quadrant converges to P1 as t → ∞, and the corresponding trajectory in the
phase plane is asymptotic to the line c = eT . There is a unique distinguished trajectory that connects
the saddle P0 to P1.

Remark 4. In view of Proposition 3, the mathematically distinguished trajectory connecting P0 and P1

may be seen as a natural candidate for a “global” slow manifold in appropriate parameter regimes. We
provide a few more details here. From the proof (see also Figure 5) one finds that the two components
of the unstable manifold of P0 connect respectively to P1 and to the antipode of P3. Solutions in the
open upper hemisphere, unless they start on the stable manifold of P0, converge either to P1 or to the
antipode of P3 as t → ∞. Moreover one component of the stable manifold of P0 connects to P2 (which
is the only available alpha limit point), and the other may connect either to the antipode of P1, or to
the antipode of P2, or to P3. (Topological arguments do not yield more precise information, and we
will not delve further into this matter.) The stable manifold of P0 separates the regions of attraction
for P1 and the antipode of P3 in the open upper hemisphere. In turn, the region of attraction for P1 is
separated by the distinguished trajectory into two subregions. For one of these subregions, the alpha
limit set of all points is equal to {P2}, thus one may briefly say that all trajectories in this region come
down from c = ∞. For the other subregion, a similarly concise statement does not seem possible: The
set of alpha limit points certainly includes P3, but it may also include the antipode of P2 or of P1.

7. Discussion

The open Michaelis–Menten reaction mechanism, although of definitive relevance in biochemistry,
has attracted less attention than the classical closed mechanism without influx. We investigated the
sQSSA for this system from two perspectives:

1. We considered QSS as a singular perturbation phenomenon. We determined all parameter
combinations (TFPVs) from which singular perturbation reductions emanate via a small
perturbation, and in particular we identified the relevant parameter values for sQSSA, which are
given by k0 = eT = 0, with all other parameters positive. By singular perturbation theory one
obtains the familiar QSS reduction.

2. Motivated by a more general notion of QSS (proposed by Schauer and Heinrich [40]) and by the
results of Stoleriu et al. [44], we obtained quasi-steady state reduction by direct estimates from
QSS parameter values given by eT = 0, all other parameters positive. Thus sQSS reduction for
the open MM reaction is applicable to a wider range of parameters than for singular perturbation
reduction. Note that such a phenomenon does not appear in the closed Michaelis–Menten system.
By these estimates we obtained a justification of central results in [44], and could also determine
their range.

However, considering the fine structure of slow manifolds by analysis of higher order
approximations revealed the special role (and higher accuracy of approximation) of Tihkonov-Fenichel
parameter values in contrast to QSS parameter values.

Finally, we took a global mathematical perspective to investigate scenarios with no positive
equilibrium.
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A. Projecting onto a critical manifold

This appendix is intended to give the reader a short and user-friendly overview of pertinent methods
in geometric singular perturbation theory. For a more elaborate presentation, we encourage the reader
to consult [8, 9, 15, 26, 33, 49]. The references [15, 33] focus specifically on the QSSA.

Singular perturbation reductions are straightforward for sufficiently smooth systems in standard
form

ẋ1 = ε f1(x1, x2, ε),
ẋ2 = f2(x1, x2, ε),

which depend on a “small parameter” ε. We assume that the reader is familiar with this procedure,
which we sketch without giving details: In slow time τ = εt the system may be rewritten as

x′1 = f1(x1, x2, ε),
εx′2 = f2(x1, x2, ε).

Given suitable hyperbolicity conditions, solutions of the latter system converge toward solutions of the
reduced (differential-algebraic) system

x′1 = f1(x1, x2, 0), f2(x1, x2, 0) = 0.

The procedure just sketched requires an a priori separation of slow and fast variables, which is
not necessarily given. This difficulty is overcome by a coordinate-free version of singular perturbation
reductions as developed by Fenichel [9]. (Almost all the relevant information is contained in pp. 65–66
of this reference, but in rather condensed form.) Here we present the basic theory and computation-
relevant facts, loosely following Wechselberger [49], Chapter 3, as well as [14, 15] specifically for the
QSS reduction procedure.

For systems not in standard form, one must first define the notion of a singular perturbation,
according to Fenichel. Given a differential equation of the form

ẋ = F(x, ε), x ∈ Rn, F : Rn × R 7→ Rn (A.1)

with sufficiently smooth F, one is interested in the dynamics in the asymptotic limit ε → 0+. The
singular points of F(x, 0) determine the nature of the perturbation. It will be convenient to express F
in the form

F(x, ε) =: h(x) + εG(x, ε), (A.2)

so that there is a clear distinction between the vector field, h(x) = F(x, 0), and the perturbation,
εG(x, ε). Let S denote the set of singular points of F(x, 0):

S := {x ∈ Rn : h(x) = 0}. (A.3)

Note that S is an algebraic variety for polynomial or rational systems, which are quite common in
reaction equations. If S is the empty set, or contains only isolated singularities, then the perturbation
is called regular. In contrast, if M ⊆ S is a differentiable manifold comprised of non-isolated
singularities, then the perturbation is singular, and M is called a critical manifold.

We now outline the reduction procedure in the coordinate-free setting:
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1. Given a singularly perturbed problem of the form (A.1), one can establish necessary and sufficient
conditions for the existence of a local transformation to standard form, as follows: For every
x ∈ M the required conditions are

(i) TxM = ker Dh(x) = {v ∈ Rn : Dh(x) · v = 0}.

(ii) For the eigenvalue 0 of Dh(x) the algebraic and the geometric multiplicities are equal.

(iii) Normal hyperbolicity: All nonzero eigenvalues of Dh(x) have nonzero real parts. In
applications one often requires the stronger attracting hyperbolicity condition, viz. all
nonzero eigenvalues of Dh(x) have negative real parts.

2. Given the above conditions, one has a direct sum decomposition

Rn = TxM ⊕ Nx, ∀x ∈ M, (A.4)

where the Dh(x)-invariant complementary subspace Nx = R(Dh(x)) is the range of Dh(x). The
conditions in item 1 are necessary and sufficient for such a decomposition to exist.

Given this decomposition one can define the projection operator, ΠM, which for every x ∈ M
maps Rn onto the tangent space of M at x and has kernel Nx. (Recall that a projection is uniquely
determined by its kernel and image.)

Once ΠM is known, the leading order singular perturbation reduction is computed by projecting
the perturbation term onto the tangent space of M of x:

x′ = ΠMG(x, 0), G(x, 0) ∈ Rn, x ∈ M. (A.5)

3. To compute ΠM explicitly, it is useful to employ a decomposition

h(x) = P(x) f (x), (A.6)

where P(x) is a rectangular matrix-valued function, M locally coincides with the zero level set
of the vector-valued function f (x), and D f (x) has full rank when x ∈ M. The existence of such
a decomposition is guaranteed by the implicit function theorem, and for polynomial or rational
systems it can be obtained in an algorithmic manner. One obtains the operator ΠM as

ΠM := I − P(D f P)−1D f . (A.7)

4. In addition to the reduced equation, the initial value on the critical manifold M is also relevant. In
the attracting hyperbolic case the fast equation ẋ = h(x) admits n − dim M independent first
integrals in a neighborhood of M, and to a given initial value z ∈ Rn corresponds (up to a
correction of order ε) the point where M intersects the common level set of the first integrals
containing z; see Fenichel [9], Lemma 5.3, and also [15], Proposition 2.

Formally, the procedure resulting in (A.5) is referred to as a critical manifold projection; see
Figure 6 for a geometric illustration. The flow on M at ε = 0 is trivial, but Fenichel theory ensures
that the perturbed vector field has an invariant slow manifold close to M, on which the flow is slow
but non-trivial. The long-time evolution of x is given (approximately) by the projected dynamical
system (A.5).
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x1

x2 R(Dh(x))

Nx

G(x, 0)

ΠMG(x, 0)

TxM N⊥(Dh(x))

x

M

Figure 6. Projecting onto the slow manifold. In this figure, “R” denotes range and “N”
denotes nullspace. The complementary subspaces TxM and Nx are invariant with respect to
the linearization Dh(x), and the components of G(x, 0) ∈ Rn can be uniquely expressed as
G(x, 0) = u + v, with u ∈ TxM and v ∈ Nx. ΠM is constructed in the form of an oblique
projection onto TxM; note that TxM and Nx are not necessarily orthogonal. The perturbed
dynamical system that is influenced by the presence of G(x, 0) is approximated by (A.5).
Note that the critical manifold M is in fact filled with non-isolated equilibria.

As a first illustrating example we formally compute the singular perturbation reduction for the case
of small k0 = εk∗0 and small k1 = εk∗1, thus we have the perturbation problem

ṡ = εk∗0 − εk∗1(eT − c)s + k−1c,
ċ = εk∗1(eT − c)s − (k−1 + k2)c.

(A.8)

The critical manifold, M, attained by setting ε = 0 in (A.8), corresponds to the s axis:

M := {(s, c) ∈ R2 : c = 0}. (A.9)

Furthermore, h(s, c) = P(s, c) f (s, c) and G(s, c, ε) are given by

P(s, c) :=
[

k−1

−(k−1 + k2)

]
, f (s, c) = c, G(s, c, ε) :=

[
k∗0 − k∗1(eT − c)s

k∗1(eT − c)s

]
, (A.10)

and thus D f = [0 1]. Next, D f P is the scalar −(k−1 + k2). This scalar is negative throughout M, and
therefore (e.g. according to [15]) conditions (ii) and (iii) above are satisfied. The product of P and D f
is

PD f :=
[
0 k−1

0 −(k−1 + k2)

]
. (A.11)

Combining the above results yields

ΠM = I2×2 +
1

(k−1 + k2)
PD f =

1
k−1

k−1 + k2
0 0

 , (A.12)
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and the reduced equation is

s′ := ΠM |c=0G(s, 0, 0) = k∗0 −
k∗1k2eT

k−1 + k2
s. (A.13)

It is worth pointing out that the fast system here admits the first integral: (k−1 + k2)s + k−1c. Hence,
given an initial value (s0, c0) for (A.8), the corresponding initial value for the reduced equation is just

s̃0 = s0 +
k−1

k−1 + k2
c0.

In this example the singular perturbation reduction (A.13) coincides with the “classical” QSS reduction
with respect to c in the linear regime where s � KM. This is not accidental, but due to the special form
of the critical manifold; see [17], Proposition 5.

As a second example consider the singular perturbation reduction for the case of small k0 = εk∗0 and
small k2 = εk∗2, thus yielding the perturbation problem

ṡ = εk∗0 − k1(eT − c)s + k−1c,
ċ = k1(eT − c)s − (k−1 + εk∗2)c.

(A.14)

Here the “classical” QSS reduction is significantly different from the singular perturbation reduction.
The critical manifold is defined by

M := {(s, c) ∈ R2 : f (s, c) = 0} (A.15)

with f (s, c) := k1(eT − c)s − k−1c, and furthermore, h(s, c) = P(s, c) f (s, c) with

P(s, c) :=
[
−1
1

]
; moreover G(s, c, ε) :=

[
k∗0
−k∗2c

]
. (A.16)

A routine calculation yields D f P = − (k1(eT − c) + k1s + k−1), which is < 0 on M, so again conditions
(ii) and (iii) are satisfied. One obtains the reduced system[

s′

c′

]
=

k∗0 − k∗2c
k1(eT − c) + k1s + k−1

[
k1s + k−1

k1(eT − c)

]
(A.17)

which is relevant only on the invariant manifold M. Using the parameterization c = k1eT s/(k1s + k−1)
of M, one arrives at an equation for s alone:

s′ = (k1s + k−1) ·
k∗0(k1s + k−1) − k∗2k1eT s
k1k−1eT + (k1s + k−1)2 . (A.18)

The reduced system without inflow is known from the literature, see e.g. [14, Example 8.6], [38,
Section 5] or [49, Section 3.4]. Note that s + c is a first integral of the fast system; this may be
employed to determine the initial value on M.
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B. Computations and proofs for the Poincaré sphere

In this Appendix, we record the necessary computations, and give proofs for Lemma 4 as well as
Propositions 2 and 3.

From a computational perspective it is convenient to project the system from the sphere to another
tangent plane. The procedure was streamlined (for different purposes) in [48], and we are using it here,
noting that the final result is the same as in [34].

To accommodate various transformations we rename the variables in system (2.4), thus obtaining

ẋ1 = k0 − k1(eT − x2)x1 + k−1x2,

ẋ2 = k1(eT − x2)x1 − (k−1 + k2)x2.
(B.1)

We compute the Poincaré transform of this system with respect to x1 (terminology from [48]), which
corresponds to the transformed system on the tangent plane to the “east pole” (compare Perko [34],
Section 3.10, Theorem 2).

• In a first step introduce a further variable x3 and homogenize, to obtain

ẋ1 = k0x2
3 − k1eT x1x3 + k1x1x2 + k−1x2x3 =: g1,

ẋ2 = k1eT x1x3 − k1x1x2 − (k−1 + k2)x2x3 =: g2.

• In step 2, compute the projected system

ẋ2 = −x2g1 + x1g2,

ẋ3 = −x3g1.

• In step 3, dehomogenize by setting x1 = 1, to obtain

ẋ2 = −k1x2 + k1eT x3 − k1x2
2 + (k1eT − k−1 − k2)x2x3 − k−1x2

2x3 − k0x2x2
3,

ẋ3 = −x3

(
k1x2 − k1eT x3 + k−1x2x3 + k0x2

3

)
.

(B.2)

with the equator corresponding to x3 = 0.

Lemma 5. Assume that the genericity conditions (3.1) are satisfied. Then the following hold:

(a) System (B.2) admits two stationary points on the line x3 = 0. These are (0, 0), corresponding to
P1 for the homogeneous quadratic part of system (B.1), and (−1, 0) which corresponds to P3.

(b) At the stationary point (0, 0) the Jacobian is[
−k1 k1eT

0 0

]
.

In case k2eT > k0 this point is a degenerate saddle with the equator as local stable manifold and
a center-unstable manifold tangent to the line x2 − eT x3 = 0. In case k2eT < k0 this point is a
degenerate attracting node with all trajectories but the two on the equator approaching it tangent
to the line x2 − eT x3 = 0.
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(c) At the stationary point (−1, 0) (which is irrelevant for the dynamics on the first quadrant) the
Jacobian is [

k1 k2

0 k1

]
,

hence this point is a repelling node.

Proof. (i) The stationary points with x3 = 0 are determined from the equation −k1(x2 + x2
2) = 0;

thus part (a) follows. Computing the Jacobians is straightforward, and part (c) as well as the
first statement of (b) follows. To prepare for proving the remaining statements, introduce new
coordinates y2 = x2 − eT x3 and y3 = x3 to obtain

ẏ2 = −k1y2 − (k−1 + k2)eT y2
3 + · · ·

ẏ3 = − k1y2y3 − (k−1eT + k0)y3
3 + · · ·

with diagonalized linear part.

(ii) The following auxiliary result is a special case from the last section of [47]: Consider a system

ż1 = α111z2
1 + 2α112z1z2 + α122z2

2 + γ1111z3
1 + · · ·

ż2 = λz2 + α211z2
1 + 2α212z1z2 + α222z2

2 + · · ·
(B.3)

with real parameters, and λ , 0. Then the normal form on an invariant manifold (NFIM) tangent
to z2 = 0, up to degree three, is given by

ż1 = α111z2
1 + (γ1111 − 2α112α211/λ) z3

1 + · · · (B.4)

In case α111 , 0 the stationary point 0 of system (B.3) is a saddle-node. In case α111 = 0 and
λ < 0 the stationary point 0 is a degenerate saddle when γ1111 − 2α112α211/λ > 0 and a degenerate
attracting node when γ1111−2α112α211/λ < 0. In the latter case all but two trajectories are tangent
to z2 = 0.

(iii) Applying this result with the identifications z1 = y3, z2 = y2, α111 = 0, 2α112 = −k1, γ1111 =

−(k−1eT + k0) and α211 = −(k−1 + k2)eT one obtains the NFIM up to degree three as

ẏ3 = (k2eT − k0)y3
3 + · · · ,

and all assertions follow.
�

There remains to discuss the stationary point P2 at infinity, for which we use the Poincaré transform
of (B.1) with respect to x2. The first step is unchanged but the projection in the second step is now
given as

ẋ1 = −x1g2 + x2g1,

ẋ3 = −x3g2

and dehomogenization with x2 = 1 yields

ẋ1 = −k1(x1 + x2
1) + k−1x3 + (k−1 + k2 + k1eT )x1x3 + k0x2

3 − k1eT x2
1x3,

ẋ3 = −x3 (k1eT x1x3 − k1x1 − (k−1 + k2)x3) .
(B.5)

There are two stationary points with x3 = 0. The point (−1, 0) corresponds to P3, which has been taken
care of. There remains (0, 0), corresponding to P2.
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Lemma 6. Assume that the genericity conditions (3.1) hold. Then the stationary point P2 at infinity is
a saddle-node, with a repelling node part on the upper hemisphere. Except for the trajectories on the
equator, all trajectories of (B.5) with positive x3 that emanate from this stationary point are tangent to
the line given by k1x1 + k−1x3 = 0.

Proof. To diagonalize the Jacobian at (0, 0), introduce new coordinates y1 = x1 + k−1/k1 · x3, y3 = x3 to
obtain the system

ẏ1 = k1y1 + · · ·

ẏ3 = k2y2
3 + k1y1y3 + · · ·

with the dots denoting terms of higher order. By the result quoted in the proof of Lemma 5, the NFIM
up to degree two on y1 = 0 is given by ẏ3 = k2y2

3 + · · · , and all assertions follow. �

We note that Lemma 4 is thus proven. We turn to the Propositions.

Proof of Proposition 2. By Poincaré-Bendixson and Lemma 1, the omega limit set of every solution
starting in the first quadrant must contain a stationary point. By Lemma 6, P2 is a saddle-node with a
repelling node part in the upper hemisphere, so P2 cannot be an omega limit point. By Lemma 5 the
point P1 is a saddle with stable manifold on the equator, therefore an omega limit set containing P1

cannot consist of P1 alone. By the Butler-McGehee theorem (see e.g. Smith and Waltman [43]), the
omega limit set has nonempty intersection with the stable manifold of the saddle, and by invariance
and closedness it must contain P2 or P3; a contradiction since both these points are repelling. So, only
P0 remains, and by attractivity of P0 the solution converges toward this point. The last two assertions
are concerned with the center-unstable manifold of P1, and are a consequence of Lemma 5(b), since
dehomogenizing x2 − eT x3 with respect to x3 yields x2 − eT . �

Proof of Proposition 3. By Lemmas 5 and 6, and by properties of antipodal points for systems of
even degree, the stationary points at infinity are P1 (attracting node), its antipode (repelling node),
P2 (repelling node part for upper hemisphere), its antipode (saddle part for the upper hemisphere, with
stable manifold on the equator), P3 (repelling node) and its antipode (attracting node).

The first two statements follow from Lemma 5 and Poincaré-Bendixson theory similarly to the
previous case. For the last statement, consider the two local components of the unstable manifold of
P0. Such a component cannot connect to a component of the stable manifold, since the existence of
a homoclinic orbit would imply the existence of a further stationary point. Therefore the omega limit
set of a point on the unstable manifold must contain a different stationary point. This point cannot be a
repelling node, which excludes P3 or the antipode of P1, and it cannot be P2, which is repelling for the
upper hemisphere. Finally, it cannot be the antipode of P2 with saddle part in the upper hemisphere, by
arguments analogous to those in the previous proof, invoking the Butler-McGehee theorem. Therefore,
the omega limit set of a point in the unstable manifold of P0 contains a single point, which is either P1

or the antipode of P3. Finally, not both local components of the unstable manifold can have the same
point as omega limit point; this again would imply the existence of a further stationary point.

�

Remark 5. In case k2eT = k0, system (2.4) admits no finite stationary point, and for the sake of
completeness we record the pertinent result about this setting. By routine (albeit lengthy) computations
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one finds that in case k2eT = k0, k1 , 0 and k2 , 0 the NFIM of (B.2) at 0 up to degree four is given by

ẏ3 = −
(k−1 + k2)k2eT

k1
y4

3 + · · · ,

hence the stationary point P1 is a degenerate attracting node. In the global picture, P1 thus attracts all
solutions starting in the first quadrant.
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