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Abstract:  Recently, the symmetric division deg (SDD) index is proven to be a potentially
useful molecular descriptor in QSAR and QSPR (quantitative structure-activity and structure-property
relationships) studies. And its predictive capability is better than that of some popular topological
indices, such as the famous geometric-arithmetic index and the second Zagreb index. In this work, the
maximum S DD indices of trees with given matching number or domination number or independence
number or number of pendant vertices or segments or diameter or radius are presented. Furthermore,
the corresponding extremal trees are identified.
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1. Introduction

Topological molecular descriptors are mathematical invariants reflecting some biological and
physico-chemical properties of organic compounds on the chemical graph, and they play a substantial
role in materials science, chemistry and pharmacology, etc. (see [1-3]). Symmetric division deg (S DD
for short) index is one of the 148 discrete Adriatic indices that showed good predictive properties on
the testing sets provided by International Academy of Mathematical Chemistry (IAMC) [4]. This
graph descriptor has a good correlation with the total surface area of polychlorobiphenyls [4] and its
extremal graphs which have a particularly elegant and simple structure are obtained with the help of
MathChem [5]. S DD index is defined as

SDD(G) =

uveE(G)

(min{d(;(u), dc(v)} N max{dg(u), dG(v)})
max{dg(u),ds(v)} min{d;(u), dc(v)}

- Y (LW, )
uveE(G) dG(v) dG(I/t) ,
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where dg(u) denotes the degree of vertex u in G. Recently, Furtula et al. [6] found that S DD index is an
applicable and viable topological index, whose predictive capability is better than that of some popular
topological indices. Gupta et al. [7] determined some upper and lower bounds of S DD index on some
classes of graphs and characterized the corresponding extremal graphs. For other recent mathematical
investigations, the readers can refer [8—13].

We only deal with the simple connected graphs in this work. Let G = (V(G), E(G)) be the graph
having vertex set V(G) and edge set E(G). Let us denote the maxmium degree of G by A(G). We
use dg(x,y) to denote the distance between two vertices x and y in G. Denoted by G — uv the graph
arising from G by deleting the edge uv € E(G). The subgraph of G obtained by deleting the vertex
x (x € V(G)) and its incident edges is denoted by G — x. Let P, and S, be the n-vertex path and the
n-vertex star, respectively.

A matching in G is a subset M C E(G) if no two edges in M are adjacent. An independent
set is a subset of vertices in which no two elements are adjacent. The matching number and the
independence number of a graph G is the maximum cardinality of a matching and an independent set
in G, respectively. A dominating set of a graph is a vertex set V' C V(G) if each vertex of V(G) \ V’
is adjacent to at least one vertex of V’. The domination number of a graph G, denoted by «(G), is the
minimum cardinality among all dominating sets. The eccentricity 5(x) of a vertex x € V(G) is defined
as gg(x) = max{dg(x,y)ly € V(G)}. The diameter and radius of a graph G is the maximum eccentricity
and the minimum eccentricity over all vertices in G, respectively. A segment of a tree T (see [14]) is
a path-subtree whose terminal vertices are pendent or branching vertices (the vertex with degree 3 or
greater) of 7. We can see [15] for other terminologies and notations.

2. SDD index of trees with given matching number

Denoted by & ,,,, the set of trees of order n with matching number m. Thus & »,,,, are trees with a
perfect matching. Let us denote the set of all pendant vertices in 7 by PV(T).

Let T, , be the tree of order n obtained from §,,_,..1 by attaching one pendant edge to each of certain
m — 1 pendant vertices of S ,_+1-

Let
Sx,y) = 4 +f, where x,y > 1,
Xy
and
3 1 5 -
f(n,x):(n—x)(n—7x+§)+§(x— l)+n—, wheren > 2, x > 1 and x < g

One can easily get the following Lemmas 2.1-2.4.

Lemma 2.1. Let fi(x) = S(x,t+ 1) - S(x,0) = 25— 7 + )lc, where x,t > 1. Then f,(x) is decreasing for

X.
Lemma 2.2. Let h(t) =t + % - ﬁ, where t > 1. Then h(t) is increasing for t.

Lemma 2.3. Let T be a tree. If dy(x, z) is maximum, where x,z € V(T), then z is a pendant vertex.

Lemma24. Let T € 5, andy € V(T). Then | Nr(y) N PV(T) |< 1.
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Lemma 2.5. [16]Let T € T 2. If x,z € V(T) and dy(x, z) is maximum, then z is adjacent to a vertex
of degree two.

Theorem 2.6. Let T € T »,,,,, where m > 1. Then

2 1 1
SDD(T) < fQm,m) = = +3m— — — =
2 m 2

*
2m,m’

with equality only when T =T

Proof. By inductiononm. Ilf m =1, T = T§,1 and SDD(T) =2 = f(2,1).

Suppose the theorem holds for all trees on fewer than 2m > 4 vertices with a perfect matching. Let
x be a vertex satisfying dr(x, z) = max{dr(x,y),y € V(T)}. Since T € T 5., and |V(T)| = 2m > 4, then
dr(x,z) > 3 (notice that dr(x,z) =3 only if T = P, =T 12 holds). By Lemma 2.3, it follows that z is a
pendant vertex. Let uz € E(T). By lemma 2.5, dr(u) = 2. Let Ny(u) = {v, z} (v belongs to the vertices
of the path from x to u in T') and Ny (v) = {vy, v2,- -+ , v, w}, where w belongs to the vertices of the path
from x tovin T and v; = u (notice that if w = x, then T = P4 = TZ,2)~ We discuss in two cases.

Casel. vw ¢ M.

In this case, there exists w € Nr(w) and v; € Nr(v) such that ww’ € M and vv; € M, where
i # 1. Assume without loss of generality that vv, € M. Thus it can be seen that v, is a pendant vertex.
Otherwise, there exists vertex v, € Nz(v,) \ {v}. By Lemma 2.4, v/ is a pendant vertex. Since T € 5,
we have v,v; € M , which contradicts vv, € M. By Lemma 2.5, we have dr(v;) =2,1 <i <t - 1. Let
Nrvp\{v} ={z},1 <i<t-1,wherez; =z Noticethatv;z; e M, 1 <i<t—1.SetT' =T —v; — 7.
Thus 7" € T 24n-1)m-1- By the definition of S DD index, induction hypothesis and Lemmas 2.1, 2.2,
we have

SDD(T) =S DD(T") + [S(dr(w), dr(v)) = S (dr(w),dr(v) = 1)]
+ S (dr(v1),dr(v)) + S(dr(v1),dr(z1))

-1
+ D [SW@r(), dr(v) = S (dr(v), dr(v) = 1)]
i=2

+ 8 (dr(v), dr(v)) = S(dr(v),dr(v) = 1)
<SDD(T")+[S2,dr(v)) =S 2,dr(v) — D] +S2,dr(v)) + S(2, 1)
-1

+ Z[S 2,dr(v)) =S 2,dr(v) = D1+ S, dr(v)) = S(1,dr(v) - 1)

i=2

1 2 2 2 t 1
<fQR(m-1 -1 -Dl=+ — - =+ —+ -+ =
<f@m=1,m=1+{ )(2+t+1 r)+r+1+2+2
+5+1+ ! !

2 tr+1 ¢
1 1 7
=fm-DH,m-1)+t+—— —— + —
F@m ),m )+ +t t+1+2

7

1 1+
m—-1 m 2

<fem-1),m-1)+m—-1+
=f(2m, m)
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since t < m — 1. With the equalities hold only if SDD(T”) = f2(m—-1),m—-1),t =m—1,dr(w) =2

and V(T) = {fw,w',v,v;} U{vi,va, -, viei} Uiz1,20, -+ ,2-1}. It implies that 77 = Tz(m—l),m—l’ and
T = T;m,m‘
Case 2. yw e M.

Note that (N7 (v) \ {w})NPV(T) = 0. Otherwise, for y’ € (Nz(v)\{w}H)NPV(T), y" is not M-saturated,
which contradicts T € & 5,,,,. Thus we have dr(v;) > 2, 1 < i < t. In view of Lemma 2.3, we can
get that (Nr(v;) \ {v}) € PV(T), 1 < i < t. And by Lemma 2.5, we have dy(v;) = 2,1 <i < t. Let
Nr(w)\{v} ={z}, 1 <i <t wherez; = z. Notice that viz; e M, 1 <i <t SetT' =T —v; —z;. Thus
T’ € I ym-1)m-1- By induction hypothesis and Lemmas 2.1, 2.2, we have

SDD(T) =SDD(T") + [S (dr(w), dr(v)) = S (dr(w), dr(v) — D]

+ Z[S (dr(vi),dr(v)) = S (dr(vi), dr(v) = D]

i=2
+ S dr(v1),dr(v)) + S(dr(v1),dr(z1))
<SDD(T")+[S(1,dr(v)) = S,dr(v) = 1)]

+ Z[S 2,dr(v)) -SQ2,dr(v) - D]+ S2,dr(v)) +S(2, 1)
i=2

1 1 1 2 2
<f@m=Dm=1)+(—= =+ 1)+ =5+ — - %)
f@an=Dm =1+ (== =~ 1)+ = D5+ = -

2 tr+1 5
t+1 2 2

1 1 7
=fem-1D),m-1)+t+— - —— + =
fQm—-1),m-1)+ e )

1 5
<fRm-1),m-1)+m+ -+

m—-1 m 2
=f(2m, m)

since t < m — 1. With equalities hold only if SDD(T") = f2(m — 1),m — 1), dr(w) = 1,t =m — 1 and
V(T) = {w,v} U{vi,va, - , v} U{z1,20,- -+ ,2}. Itimplies that = 1, w = x and T’ = T;l, Therefore
we have T = Tj’z. 0

Lemma 2.7. Let I(s, 1) = %s + ﬁ —-i= 35+ =S where s,t > 2 and s > t. Then I(s,t) is increasing

2 s(s—1)’
for s and t, respectively.

Proof. It is evident that I(s, f) is increasing for . Furthermore, since

a3 -1 +t_3+s2—(2s—l)t
ds 2 (s—12 2 2 s(s—1)2
L3, 9-@s-Ds 3 1 3 1
2 (s—12s2 2 (s=Ds 2 2~ 7
then I(s, ¢) is increasing for s. O
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Theorem 2.8. Let T €  ,,,,. Then
SDD(T) < f(n, m).

The equality holds only when T =T, .

Proof. By induction on n. If n = 2m, by Theorem 2.6, the result holds.

Suppose the result holds for all 7 on fewer than n (n > 2m) vertices. Let M be an m-matching.
Denoted by P;.; = x1x2---x441 a path of length d, where d is the diameter of 7. If d < 2, then
T'=S,=T,, and SDD(T) = f(n, 1). In what follows, we suppose d > 3. By Lemma 2.3, we can see
that x; is a pendant vertex. Denote Ny (x;) = {x3, uy, up, -+ ,u,—1} and Ny(x3) = {x2, X4, V1, V2, =+ , Vs_a},
where r, s > 2 and u; = x;. Itis evident that d7(x;) = 1 (1 <i < r—1). We discuss in two cases.

Case 1. xo,x3 € M.

Now u; = x is not M-saturated. Set Ty = T —u;. Then T| € & ,,_1,,. Since there exist at least m — 1
edges for each matching in T —{x,, x3, uy, up, - -+ ,u,_1}, thenn—(r+1) > 2(m—1), thatisr < n—-2m+1.
By induction hypothesis and Lemmas 2.1, 2.2, it follows that

SDD(T) =SDD(T,)+S(,r)+S(s,r) =S(s,r =1+ -=2)(S(1,r)=-S(1,r-1))
<SDD(T)+SU,n+S2,rn-SC,r-D+r-2)(SA,n-5S{1,r-1))
1 1

3
< -1 2r — — —
<f(n ,m) +2r 5 r—1+r

3 1 1
Sf(n_l’m)+2(n_2m+1)_E_n—2m+n—2m+1

1 n-1 n-2
+

2 2 n-m n-m-1
3 1 1
+2n-2m+1)- = - +
(n—=2m+1) 2 n-2m n-2m+1
3 n-1 n-2 1 1
_ 3 _ 1
f(n,m) 2m n—m+n—m_l n—2m+n—2m+1+
3 -1
<fnm) = 2m+ —— +1

2 m-mm-m-1)
<f(n,m) - %m+ %
<f(n,m).

Case 2. xox3 ¢ M.

Since M is an m-matching in 7', now there is u; € Ny(x,) with x,u; € M. Without loss of generality,
assume that x,u; € M.

Case 2.1. r = 2.

SetTr =T —u; — x,. Then T; € gn—Z,m—l-

Case 2.1.1. s = 2.

By induction hypothesis and Lemma 2.1, it follows that

SDD(T) =SDD(T,) + S(d(x4),2) = S(d(x4), 1) +S(2,2) + S(2,1)

<f(n-2,m- 1)+S(2,2)—S(2,1)+2+§
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=fn-2,m—-1)+4

3 n-1 n-3 3
= — Zn+2m-— et
f(n,m) 2n+ m n—m+n—m—1+2
3 n-2m+1 3
=f(n,m)— zn +2m — + =
Jam) = S am e D= ' 2
<f(n,m) ) +2m + )
n,m)— —n+2m+ —
- 2 2
3 3
<f(n,m) - 5(2m+ 1) +2m+ 3
<f(n,m)—m
<f(n,m).

Case 2.1.2. s > 3.

Without loss of generality, we suppose that d(v;) = d(v,) = --- = d(v,) = 1 and d(v;11),
dWy2), -+ ,d(vgn) > 2. If d = 3, then d(xy) = 1, d(vi) = d(v,) = --- = d(vy_) = 1 and this
implies 7' = T, ,. So we assume that d > 4. Since there exist at least m — 3 M-saturated vertices in
V(D\{x1, x2, -+, X5, vi,va, -+, vga), then V() = n > [{x1, x2, -+, X5, v, V2, o+, Vol +m=3 = s+m,

thatis s <n—m.
Case 2.1.2.1.t < 1.
By induction hypothesis and Lemmas 2.1, 2.2, it follows that

SDD(T) =SDD(T3) + S(d(x4),s) — S(d(x4), s — 1)+ S(d(vy), s) = S(d(vy),s - 1)

s—2
+ Z(S(d(v,-), $)—=SAW),s—-1)+S52,5)+S52,1)
i=2

<fm=2,m-1)+(s-2)(S2,5)-S5S2,s-1))
+S(Ls) =S, s=D+S2,5)+52,1)

5 1 1
=fm-2,m-1)+s+-—--+
2 s s-1
3 5 -1 -3
Sf(n,m)——n+2m———n + =
2 2 n-m n-m-1

1 1
+n-m+ — — +
o 2 n—-m n-m-1

n n-—2m
) e = =)
<f(n,m) — g +m
<f(n,m).

Case 2.1.2.2. t > 2.

Since there are at least # — 1 pendant vertices which are not M-saturated, then n — (r — 1) > 2m, that
ist<n—-2m+1.SetT; =T —vy. Then T; € & ,_1,,. By induction hypothesis and Lemmas 2.1, 2.7,
it follows that

SDD(T) =SDD(T3) + S(d(x4),5) = S(d(x4), s —1)+S2,5)-S2,s—1)+S(1,s)
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t s—2
+US1)=SUs= D)+ > (S@w), 5) = S (@), s = 1))
=2

i=t+1
<fm—1,m)+(s—-0(S2,5)-S2,s—1)+85(,s)
+(-D(SA,9)-S,s-1))
2s —t—1 N 2s —t

:f(n—l,m)+%+%(s—2)+2—

s—1 s
t 3 t t-1
= _15 - s _1
f(n m)+2+2s S+S_1
r 3 t r—1
<f(n-1 —+Z(n-m)- ~1
<f(n ,m)+2+2(n m) n—m+n—m—l
-2 1 3 -2 1 -2
<fn—1,m+ =T Py AT Ty
2 2 n—-m n—-m-—1
=f(n,m).

The equalities hold only if d(x4) =2, t =n—-2m+1, s =n—-mand T3 = T:_Lm. This implies 7 =T, .
Case 2.2. r > 3.
In this case, u,, - - - , u,_; is not M-saturated and n— (r —2) > 2m, thatisr < n—2m+2. Since d > 3,
then x3x4 € E(T). Set Ty =T —uy. Then Ty € T 1. f m =2, then T = Tz,z- If m > 3, By induction
hypothesis and Lemmas 2.1, 2.2, it follows that

SDD(T) =SDD(Ty4) + S(d(x3),r) = Sd(x3),r = 1)+SA,n-SA,r-=1)+5,r)

r—1
+ ) (81,H=S(1,r=1)
i=3
<fr—1,m)+SQ2,r)=SQ2,r = 1)+ (r=2)(S(1,r) =S, r— 1) +S(1,7

1
= -1lm+2r+—-—-— =
fin m) ’ r r—1 2

1 1 3
<f(n-1,m)+2(n-2m+2)+

n-2m+2 n-2m+1 2
3
<f(n—1,m)+2(n—2m+2)—§

3 1 1

:f(n,m)——m+3+(m—l)( — )
2 n—-m—-1 n-m

<f(n,m) 3 +3+ !

n,m) = 5m 3
<f(n,m)
since ;1—,:1—1 — ﬁ < ﬁ - % forn —m > m (n > 2m).
The proof is completed. O

Suppose G ia a bipartite graph on n vertices with matching number m and independence number /.
That, as we all know, m + 8 = n for any bipartite graph G, see [15]. Since a tree is a bipartite graph, by
Theorem 2.8, the Theorem 2.9 is immediate.
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Theorem 2.9. Suppose T is a tree on n vertices with independence number 3. Then
SDD(T) < f(n,n—p).

With equality if and only if T = T;n_ﬁ.

3. SDD index of trees with given domination number

It is evident that k(T') = 1 for a tree T on n vertices if and only if 7 = §,,. It is well known that for a
graph G on n vertices, k(G) < 7 [17]. Fink et al [18] determined the n-vertex graphs G with x(G) = 7.
Let T, . be the n-vertex trees with domination number «. Note that for 7" € T, , with A(T') = n —«, then
T=T,..

Theorem 3.1. Let T € T,,, where n > 3 and k < 5. Then
SDD(T) < f(n, k).

The equality holds only when T =T, ,.

Proof. It n =3, T = Py =T, and SDD(P3) =5 = f(3,1). Ifn =4, T =Py =T, 0or S, =T},
and SDD(P,) =7 = f(4,2), SDD(S4) = 10 = f(4,1). Now, suppose n > 5 and the theorem holds for
any T on fewer than n vertices. We use Py,; = x1x; - - - X441 to denote a path of length d, where d is the
diameter of T. If d = 2, then T = §,, and (S ) = 1, the result is ture. So in what follows, we suppose
that x(T) > 2. Denote N7(xp) = {x1, X3, Uy, Uz, -+ , U2} and Nr(x3) = {x2, X4, V1, V2, -, Vs_2}, Where
r,s>2.SetT, =T — {x1}.

Case 1. x(Ty) = k(7).

By the definition of S DD index, induction hypothesis and Lemma 2.1, it follows that

SDD(T)=SDD(T))+S(,n+Sr,s)-Sr-1,9)+(r-2)SA,r)=-S(,r-1))
<fm-1,00+S(,N+Sr2)-Sr-1,2)+(r-2) S, n-S,r—-1))
n-2 n-1 1 1 3

5 1
=f(n,k) —2 — — - 2r+——— - —.
Fn. ) n+2K+2+n—K—1 n—1<+ r+r r—-1 2

Since k < #, thatis » < n — 2« + 2, by Lemma 2.2, it follows that

5 1 —2 ~1
SDD(T) <f(n,k) — 2n + 2k + ~ + — S i dm-2k+2)
2 2 n—-«k—-1 n-«

1 1 3

T —k+2 n—2k+l 2
n-—2 n-—1 1 1

- + - .
n—-«k—-1 n—-kx n—-2«k+2 n-2x+1

3
=f(n,k) — §K+ 3+
Itk =2,8DD(T) < f(n,«). The equalities hold if only s =2 and n = r + 2. This implies 7' = T ,. If
k > 3, we have

n-—2 n—1
n—-k—-1 n-«

SDD(T) <f(n,k) — %K+ 3+
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k—1
nm-Kn-k-1)

3
=f(n,k) — §K+3+

Since m < 1, then for k > 3, SDD(T) < f(n,k) — %K +4 < f(n,k) — % < f(n, k).

Case 2. x(Ty) = x(T) — 1.

In this case, we have r = 2, otherwise x, belongs to each minimum dominating set and implies
k(T1) = k(T). For s = n—«k,then T = T , and the theorem holds. So in what follows, we assume

nK°

that s < n — « — 1. By the case 1 above, assume that d(v;) < 2,i € {1,2,---,s — 2}. If x4 is a pendant
vertex or a support vertex with d(x4) = 2, then T = T, . In other cases, without loss of generality, let
dvy)) =---=ds) =1,dWg11) = =d(Vs4s5,) = 2, Where 51+ 5, = 5 — 2.

Case 2.1. 51 > 2.

Set T, = T — {v1}. Then «(T3) = k(T). By the definition of S DD index, induction hypothesis and
Lemma 2.1, it follows that

SDD(T) =SDD(T,) + S(s5,2) =S(s = 1,2) + S(s, 1) + S(s5,d(x4)) = S (s — 1,d(x4))
+ (s =D, D) =S(s=1,1)+ 52(5(s,2) = S(s = 1,2))

1 1 1 1 2 2
sSDD(T2)+s+—+(s1—1)(1+———)+(sz+2)(_+__ )
s s s—1 2 s

s—1
5 1 n-1 n—2 3 S S1— 8
<f(n,k) = 2n+ —k+ = — + +—s+——-1+
A LA I iy T LR s(s— 1)
5 n—1 n—2 3 S
JK)=2n+ —k+ = — + +=s+—=-1
B e R iy B R
Since s <n—k— 1,k <=0 and —2=1 4 22 = oot < 1. Therefore
5 1 3 n—-2«x+1
SDD(T K) =2+ Kkt -+ (k- 1)+ ————
(T) <f(n,k) n+2/<+2+2(n k—1)+ >

1
:f(naK) - 5 < f(n’K)'

Case 2.2. 51 < 1.

Set T35 = T — {x1,x2}. By the definition of S DD index, induction hypothesis and Lemma 2.1, it
follows that

SDD(T) =SDD(T3) + S(s,d(x4)) = S(s = 1,d(x4)) + S(s,d(v1)) = S(s = 1,d(vy))
+50,2)+S(1L,2)+(s=3)(S(s,2) = S(s - 1,2))

11 2\ S 1 2 2
<SDD(T3) + 1+ - — +(f+—)+—+(s—2)(—+———)
s s-—1 2 s 2 2 s s

5 1 1
<fm—-2,k—1)+s+ <+ - -
2 s-1 s
5 n-1 n-3 5 1 1
- —n+2k—-=- +s5+ =+ - =
Sfn k)= on+ 2K 2 ik n—x—1 T2 50T
Since s Sn—k—1, 5y =1 = 5 < 5 and ~5 + 2 = Sl < (). Therefore
3 1
SDD(T)<f(n,K)—§n+2K+I’l—K—1+§
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n 1
—f(l’l,K)—§+K—§

1
<f(n,k) - > < f(n, ).

The proof is completed. O
4. SDD index of trees with given segments or number of pendant vertices

Let T,(f; and T,(fg, be the n-vertex trees with s segments and p pendant vertices, respectively. Tflli is
a path, TS; is empty and Tfii_l is a tree containing no vertex of degree 2 (see [19]). In [18], Vasilyev
proved that S, has the maximum S DD index for any tree 7" on n vertices, so S, also has the maximum
SDD index for T € szl,r)z—r Furthermore, T,(f% is a path, Tfj;_l is star. Thus we only consider the case

of3<s<n-23<p<n-2,respectively) when T € T,(}z (T € T?

np» T€Spectively). Let

5 1
g(n,x):2n+x2—5x—§+—, wheren >5and2 <x<n-2.
X

Let 7, be the tree of order n obtained from P,_,,; by attaching s — 1 pendant edge to one pendant
vertex of P,_g,1.

Theorem 4.1. Let T € T,(fz wheren>5and3 < s <n-—2. Then
SDD(T) < g(n, s)

with equality only when T =T, ;.

Proof. By induction on n. If n = 5,then s = 3, T = T 53 and SDD(T 53) = g(5,3), the result holds.
Now, suppose n > 6 and the result holds for any 7" of order n—1. Denoted by Py,1 = x1x; - - - X441 a path
of length d, where d is the diameter of 7. If d = 2, then T = §,,. Therefored > 3. Set 7" =T — {x}.
Case 1. d(xp) = 2.
Then T’ € TS—)M By induction hypothesis and Lemma 2.1, it follows that

SDD(T) =SDD(T")+ S(1,2) + S(2,d(x3) = S(1, d(x3))
<gn—-1,5)+S5(12,2)
=g(n,s).

With equality only when d(x3) =2 and 7" =7 ,_; ;. This implies T = T, ;.

Case 2. d(xp) = 3.

Denote N7(xp) \ {x1, x3} = {uy, up,- -+, u,}, where t > 1. Then uy, up, - - - , u, are pendant vertices and
T € Tizl—)l,s—l' Since ¢ < 5 — 2, by induction hypothesis and Lemmas 2.1, 2.2, it follows that

SDD(T) =SDD(T") + S(1,1 +2) + Z(S (t+2,d(u)) — S(t + 1,d(w,)))
i=1
+8(t+2,d(x3) = S+ 1,d(x3))
<gn—1,s—D+SLt+2)+6SEt+2,1)-SEt+1,1))
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+St+2,2)-S(t+1,2)
1

5 1
=on—-1,s— D +2t+=4 — — ——
gn=1,s=1) 2 t+2 t+1

5 1 1
S8(”—1,S—1)+2(s—2)+§+—_
S

s—1
=g(n, 5).
The equalities hold if only d(x3) =2 and T’/ =7 ,,_; ;_1. This implies 7 = T, ;. O
By a similar proof of Theorem 4.1, we can get Theorem 4.2.

Theorem 4.2. Let T € T®

np Wheren > 5and 3 < p <n-—2. Then

SDD(T) < g(n, p)
with equality if and only if T =T, .
5. SDD index of trees with given diameter

Let T,(i)l be the n-vertex trees with diameter d. Since Tf% = §,, so we consider the case of 3 < d <
n—1whenT € Tl(i)l.

Theorem 5.1. Let T € TS[)I, where 3 <d <n-—1. Then
SDD(T) < gln,n—d+1)

with equality only when T =T, _441.

Proof. By inductiononn. If n =4, thend =3, T = P, =T 4, and S DD(P4) = g(4,2), the result holds.
Now, suppose n > 5 and the theorem holds for any 7" on n — 1 vertices. We use Py = X1X; - - - X441 tO
denote a path of lengthd inT. Set T" = T — {x;}.

Case 1. d(xp) = 2.

If the diameter of 7" is d, since 1 < n —d < n — 3, by induction hypothesis and Lemma 2.1, it
follows that

SDD(T) =SDD(T")+ S(1,2) + S(2,d(x3) = S(1,d(x3))
<gln—-1,n—-d)+S(2,2)
1 N 1
n—-d+1 n-d

3
=g(n,n—-d+1)-2(n—-d)+ 5~
3 1
Sg(n,n—d+1)—2+§+1—§ <gln,n—d+1).
The equalities hold if only d(x3) =2,n—d = 1and 7" = 7 ,_; ,4. But these cannot hold together, so

SDD(T) < gln,n—d +1).
If the diameter of 7" is d — 1, by induction hypothesis and Lemma 2.1, it follows that

SDD(T) <gn—1,n—d+1)+S(2,2)
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=g(n,n—d+1).

The equality holds if only d(x3) =2 and T" = T ,,_1 _4+1- This implies T =T, ,_441.

Case 2. d(xp) = 3.

Denote N7 (xp) \ {x1, x3} = {uy,up,- -+ ,u;}, where t > 1 and uy, us, - - - , u, are pendant vertices. Then
the diameter of 7’ is d. Since t < n — (d + 1), by induction hypothesis and Lemmas 2.1, 2.2, we have

SDDUU:SDDUU+SUJ+2)+§]SU+2¢MM)—SU+Ldmm)
i=1
+8(t+2,d(x3) = S+ 1,d(x3))
1 1

5
<gn—-ln—d)+2+>+—— ——
sgn=ln=d)+20+ 5+ 7= -7

5 1 1
<gm-1,n-d)y+2mn-d-1)+ < - +
8(n n-d)+2n ) 2 n—-d n—-d+1
=g(n,n—d+1).
The equalities hold if only d(x3) =2 and T" =T ;4. This implies T =T ,, ,,_4+1- O

The center of a tree T is the set of vertices with minimum eccentricity (see [14]). A tree T has
exactly one or two adjacent center vertices. Let d and r be the diameter and radius of 7', respectively.
Then

J= 2r — 1, if T is bicentral,
1 2 if T has unique center vertex.

We can easily conclude that SDD(T ,,,—2-+2) > SDD(T ,,-2-+1)- Thus we have the following
Theorem 5.2.

Theorem 5.2. Let T be a tree of order n with radius r, where 2 < r < % Then
SDD(T) < g(n,n—2r+2)

with equality if and only if T =T, 2742
6. Conclusions

The mathematical properties of S DD index deserves further study since it can be applied in
detecting the chemical compounds which may have desirable properties. S DD index has been studied
extensively since it was proved to be an applicable and viable molecular descriptor in 2018. In this
paper, by analyzing the vertex degree of the path whose length is the diameter in a tree and using the
method of mathematical induction, we present the maximum S DD indices of trees with given matching
number or independence number or domination number or segments or diameter or radius or number
of pendant vertices, and identify the corresponding extremal trees. It can be seen that S DD index is in
a manner a (local) measure of irregularity. Thus, by adding the pendant vertices as much as possible
on the maximum degree vertex to increase the irregularity in a tree with given parameter, one can also
explore the extremal trees with other given parameters.
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