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1. Introduction

The drift parametric estimation of the Ornstein-Uhlenbeck process has been paid more and more
attention in the past decades. These years, researchers not only considered the process with standard
Brownian motion or Levy process but also the fractional case (see e.g., [15, 17]). The MLE and its
large deviation of the mixed fractional case has been studied by Chigansky et al. [12,19]. In this paper
we will consider still the MLE of the drift parameter but with an extra part in some space which can
maximizer the Fisher information which is called experiment design.

Let us define X = (Xt, 0 ≤ t ≤ T ) a real-valued process, representing the observation, which is
governed by:

dXt = −ϑXtdt + u(t)dt + dξt, t ∈ [0,T ], X0 = 0 (1.1)

where ξ = (ξt, 0 ≤ t ≤ T ) is a mixed fractional fractional Brownian motion (mfBm for short) which is
defined by ξt = Wt + BH

t , here W = (Wt, 0 ≤ t ≤ T ) and BH = (BH
t , 0 ≤ t ≤ T are independent standard
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Brownian motion and fractional Brownian motion with H ∈ (0, 1), H , 1/2.
In the statistical aspect, the classical approach for experiment design consists on a two-step

procedure: maximize the Fisher information under energy constraint of the input and find an adaptive
estimation procedure. Ovseevich et al. [20] has first consider this type problem for the diffusion
equation with continuous observation. When the kernel in [20] is not with explicit formula in the
fractional diffusion case, Brouste et al. [3, 4] deduce the lower bound and upper bound with the
method of spectral gap and solve the same problem. Base on this method, Brouste and Cai [1] have
extended the result to the partially observed fractional Ornestein-Uhlenbeck process, in this work the
asymptotical normality has been demonstrated with linear filtering of Gaussian processes and Laplace
transform presented in [2, 14–16, 18]. These previous work, the common point is that: the optimal
input does not depend on the unknown parameter and maximum likelihood estimator can be found
directly from the likelihood equation. The one-step estimator will be used following the
Newton-Raphson method and this work was introduced by Cai and LV [8].

For a fixed value of parameter ϑ, let PT
ϑ denote the probability measure, induced by XT on the

function space C[0,T ] and let F X
t be the nature filtration of X, F X

t = σ(Xs, 0 ≤ s ≤ t). Let L(ϑ, XT )
be the likelihood, i.e., the Radon-Nikodym derivative of PT

ϑ , restricted to F Y
T with respect to some

reference measure on C[0,T ]. In this setting, Fisher information stands for

IT (ϑ, u) = −Eϑ

∂2

∂ϑ2 lnL(ϑ, XT ).

Let us denote UT some functional space of controls, that is defined by Eqs (2.7) and (2.6). Let us
therefore note

JT (ϑ) = sup
u∈UT

IT (ϑ, u). (1.2)

our main goal is to find estimator ϑT of the parameter ϑ which is asymptotically efficient in the sense
that, for any compact K ∈ R+

∗ = {ϑ ∈ R, ϑ > 0} ,

sup
ϑ∈K

JT (ϑ)Eϑ

(
ϑT − ϑ

)2
= 1 + o(1) , (1.3)

as T → ∞.
As the optimal input does not depend on ϑ (see Proposition 2.1), a possible candidate is the

Maximum Likelihood Estimator (MLE) ϑ̂T , defined as the maximizer of the likelihood:

ϑ̂T = arg max
ϑ>0
L(ϑ, XT ).

We want to find the asymptotical normality of the MLE of ϑ.
The interest to mixed fractional Brownian motion was triggered by Cheridito [9]. The resent works

of Cai, Chigansky, Kleptsyna and Marushkevych ( [6, 11, 12, 19]) present a great value for the purpose
of this paper. The process ξt satisfies a number of curious properties with applications in mathematical
finance, see [5]. In particular, as shown in [9,10] , it is a semimartingale if and only if H ∈ {12 }

⋃
(3

4 , 1]
and the measure µξ induced by ξ on the space of continuous functions on [0, T ], is equivalent to the
standard Wiener measure µB for H > 3

4 . On the other hand, µξ and µBH
are equivalent if and only if

H < 1
4 .

The paper falls into five parts. In Section 2, we present some main results of this paper and the
Section 3 will contribute to the proofs of the main results. Section 4 is devoted to another special
constant case. Some Lemmas will be given in Appendix.
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2. Main results

2.1. Transformation of the model

Even if the mixed fractional Brownian motion ξ is a semimartingale when H > 3
4 , it is hard to write

the likelihood function directly. We will try to transform our model with the fundamental martingale in
[6] and get the explicit representation of the likelihood function. In what follows, all random variables
and processes are defined on a given stochastic basis (Ω,F , (Ft)t≥0,P) satisfying the usual conditions
and processes are (Ft)− adapted. Moreover the natural filtration of a process is understood as the
P-completion of the filtration generated by this process.

From the canonical innovation representation in [6], the fundamental martingale is defined as Mt =

E(Bt|F
ξ

t ), t ∈ [0, T ], then for H ∈ (0, 1) and H , 1/2 this martingale satisfies

Mt =

∫ t

0
g(s, t)dξs, 〈M〉t =

∫ t

0
g(s, t)ds (2.1)

where g(s, t) is the solution of the integro-differential equation

g(s, t) + H
d
ds

∫ t

0
g(r, t)|r − s|2H−1sign(s − r)dr = 1, 0 < s ≤ t ≤ T (2.2)

Following from [6], let us introduce a process Z = (Zt, 0 ≤ t ≤ T ) the fundamental semimartingale
associated to X, defined as

Zt =

∫ t

0
g(s, t)dXs.

Note that X can be represented as Xt =
∫ t

0
ĝ(s, t)dZs where

ĝ(s, t) = 1 −
d

d〈M〉s

∫ t

0
g(r, s)dr (2.3)

for 0 ≤ s ≤ t and there for the nature filtration of X and Z coincide. Moreover, we have the following
representations:

dZt = −ϑQtd〈M〉t + v(t)d〈M〉t + dMt, (2.4)

where

Qt =
d

d〈M〉t

∫ t

0
g(s, t)Xsds, v(t) =

d
d〈M〉t

∫ t

0
g(s, t)u(s)ds. (2.5)

2.2. Fisher information and optimal input

First of all, let us define the space of control for v(t):

VT =

{
h
∣∣∣∣ 1
T

∫ T

0
|v(t)|2d〈M〉t ≤ 1

}
. (2.6)

Remark that with (2.5) the following relationship between control u and its transformation v holds:

u(t) =
d
dt

∫ t

0
ĝ(t, s)v(s)d〈M〉s (2.7)
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we can set the admissible control asUT = {u|v ∈ VT }. Note that these set are non-empty.
From [12], we know Qt =

∫ t

0
ψ(s, t)dZs where

ψ(s, t) =
1
2

(
dt

d〈M〉t
+

ds
d〈M〉s

)
. (2.8)

Moreover, Qt = 1
2`(t)

∗ζt, where `(t) =

(
ψ(t, t)

1

)
, ∗ standing for the transposition and ζ = (ζt, t ≥ 0) is

the solution of the stochastic differential equation

dζt = −
ϑ

2
A(t)ζtd〈M〉t + b(t)v(t)d〈M〉t + b(t)dMt, ζ0 = 02×1, (2.9)

with

A(t) =

(
ψ(t, t) 1
ψ2(t, t) ψ(t, t)

)
, b(t) =

(
1

ψ(t, t)

)
. (2.10)

The classical Girsanov theorem gives

L(ϑ, ZT ) = Eϑ exp
{
−

∫ T

0
(−ϑQt + v(t))dZt −

1
2

∫ T

0
(−ϑQt + v(t))2d〈M〉t

}
. (2.11)

Now from (2.11) the Fisher information can be easily obtained by

IT (ϑ, v) = −Eϑ

∂2

∂ϑ2 lnL(ϑ,ZT )

=
1
4

Eϑ

∫ T

0
(`(t)∗ζt)

2 d〈M〉.

Then we have the following results for the optimal input:

Theorem 2.1. The asymptotic optimal input in the class of controls UT is
uopt(t) = d

dt

∫ t

0
ĝ(s, t)ψ(s, s)d〈M〉s where ĝ(s, t), ψ(s, t), 〈M〉t are defined in (2.1), (2.3), (2.8). Moreover,

lim
T→+∞

JT (ϑ)
T

= I(ϑ),

where
I(ϑ) =

1
2ϑ

+
1
ϑ2 . (2.12)

The JT (ϑ) is defined in (1.2).

2.3. Asymptotical normality and strong consistency of the MLE

From the Theorem 2.1, we can see that the optimal input uopt(t) does not depend on the unknown
parameter ϑ, we can easily obtain the estimator error of the MLE of the ϑ̂T :

ϑ̂T − ϑ =

∫ T

0
QtdMt∫ T

0
Q2

t d〈M〉t
. (2.13)

Then, the MLE reaches efficiency and we deduce its large sample asymptotic properties:
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Theorem 2.2. The MLE is uniformly consistent on compacts K ⊂ R+
∗ , i.e. for any ν > 0,

lim
T→∞

sup
ϑ∈K

PT
ϑ

{∣∣∣ϑ̂T − ϑ
∣∣∣ > ν} = 0 ,

uniformly on compacts asymptotically normal: as T tends to +∞,

lim
T→∞

sup
ϑ∈K

∣∣∣∣Eϑ f
(√

T
(
ϑ̂T − ϑ

))
− E f (η)

∣∣∣∣ = 0 ∀ f ∈ Cb

and ξ is a zero mean Gaussian random variable of variance I(ϑ)−1 (see (2.12) for the explicit value)
which does not depend on H and we have the uniform on ϑ ∈ K convergence of the moments: for any
p > 0,

lim
T→∞

sup
ϑ∈K

∣∣∣∣Eϑ

∣∣∣∣√T
(
ϑ̂T − ϑ

)∣∣∣∣p − E |η|p
∣∣∣∣ = 0.

Finally, the MLE is efficient in the sense of (1.3).

Theorem 2.3. The MLE ϑ̂T is strong consistency that is

ϑ̂T
a.s.
−−→ ϑ, T → ∞.

3. Proofs of main results

3.1. Proof of Theorem 2.1

We will compute the Fisher information with the same method in [1], that is to separate the Fisher
information into two parts, on into the control, the other without, we focus on the following
decomposition:

IT (ϑ, v) =
1
4

Eϑ

{∫ T

0
(`(t)∗ζt − Eϑ`(t)∗ζt + Eϑ`(t)∗ζt)2

}
= I1,T (ϑ, v) + I2,T (ϑ, v) (3.1)

where

I1,T (ϑ, v) =
1
4

∫ T

0
Eϑ(`(t)∗ζt − Eϑ`(t)∗ζt)2〈M〉t (3.2)

and

I2,T (ϑ, v) =
1
4

∫ T

0
(`(t)∗Eϑζt)2d〈M〉t. (3.3)

The deterministic function (P(t) = Eϑζt, t ≥ 0) satisfies the following equation:

dP(t)
d〈M〉t

= −
1
2
ϑA(t)P(t) + b(t)v(t),P(0) = 02×1, (3.4)

at the same time the process P = (Pt = ζt − Eϑζt, t ≥ 0) satisfies the following stochastic equation:

dPt = −
1
2
ϑA(t)Ptd〈M〉t + b(t)dMt,
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which is just the ζt with v(t) = 0 which can be found in [12].
With the technical separation of (3.1) and the precedent remarks, we have

JT (ϑ) = I1,T (ϑ) +J2,T (ϑ),

where

J2,T (ϑ) = sup
v∈VT

I2,T (ϑ, v).

From [12], we know

lim
T→∞

I1,T (ϑ)
T

=
1

2ϑ
,

so we just need to check that lim
T→∞

J2,T (ϑ)
T = 1

ϑ2 . From (3.4), we get

P(t) = ϕ(t)
∫ t

0
ϕ−1(s)b(s)v(s)d〈M〉s, (3.5)

where ϕ(t) is the matrix defined by

dϕ(t)
d〈M〉t

= −
ϑ

2
A(t)ϕ(t), ϕ(0) = Id2×2 (3.6)

with Id2×2 the 2 × 2 identity matrix. Substituting into (3.3), we get

I1,T (ϑ, v) =

∫ T

0

∫ T

0
KT (s, σ)

1√
ψ(s, s)

v(s)
1√

ψ(σ, σ)
v(σ)dsdσ, (3.7)

where the operator

KT (s, σ) =

∫ T

max(s, σ)
G(t, s)G(t, σ)dt (3.8)

and

G(t, σ) =
1
2

 1√
ψ(t, t)

`(t)∗ϕ(t)ϕ−1(σ)b(σ)
1√

ψ(σ, σ)

 . (3.9)

Then

J2,T (ϑ) = T sup
ṽ∈L2[0,T ],‖̃v‖≤1

∫ T

0

∫ T

0
KT (s, σ)̃v(s)̃v(σ)dsdσ,

= T sup
ṽ∈L2[0,T ],‖̃v‖≤1

(KT ṽ, ṽ) (3.10)

where ṽ(s) =
v(s)
√

T
1√
ψ(t,t)

and ‖ • ‖ stands for the usual norm in L2[0, T ]. Thus, Lemma 5.1 completes

our proof.
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3.2. Proof of Theorem 2.2

The proof of Theorem 2.2 is based on the Ibragimov-Khasminskii program of Theorem I.10.1 in
[13]. Taking vopt(t) =

√
ψ(t, t) into the Eq (2.11), then the likelihood function is

L(ϑ, ZT ) = Eϑ exp
{
−

∫ T

0
(−ϑQt + vopt(t))dZt −

1
2

∫ T

0
(−ϑQt + vopt(t))2d〈M〉t

}
,

then the MLE will be

ϑ̂T =

∫ T

0
vopt(t)Qtd〈M〉t −

∫ T

0
QtdZt∫ T

0
Q2

t d〈M〉t
(3.11)

and the estimation error has the form

ϑ̂T − ϑ = −

∫ T

0
QtdMt∫ T

0
Q2

t d〈M〉t
, (3.12)

just take attention that here the Qt will be with the relationship with vopt(t). Because
∫ t

0
QsdMs, 0 ≤

t ≤ T is a martingale and
∫ t

0
Q2

sd〈M〉s is its quadratic variation, In order to prove the Theorem 2.2, we
only need to check the Laplace transform of the quadratic variation and Lemma 5.2 achieves the proof.

3.3. Proof of theorem 2.3

With the law of large numbers, in order to obtain the strong consistency of ϑ, we only need to prove
that

lim
T→∞

∫ T

0
Q2

t d〈M〉t = +∞ (3.13)

or there exists a positive constant µ such that the limit of the Laplace transform

lim
T→∞

E exp
(
−µ

∫ T

0
Q2

t d〈M〉t

)
= 0.

In Lemma 5.4 if we take a big enough µ > 0 such that the limit is negative (the µ can be easily found),
then the Eq (3.13) is directly from this Lemma which implies the strong consistency.

4. The Laplace transform proof for the constance case

In fact, the previous method of the Laplace transform is also useful for the case u(t) is a known
constant. This problem has been considered in [7], here we use Cameron-Martin formula to reprove
the result.

Let us consider u(t) = α a constant not 0. In this case we will denote the processes X, Z, Q by Xα,
Zα and Qα and it is not hart to find that the MLE of the unknown parameter ϑ is

ϑ̂αT =

∫ T

0
αQα

t d〈M〉t −
∫ T

0
Qα

t dZα
t∫ T

0
(Qα

t )2d〈M〉t
(4.1)
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where
dZα

t = (α − ϑQα
t )d〈M〉t + dMt, t ∈ [0,T ]. (4.2)

From [7] the estimation error can be presented by

ϑ̂αT − ϑ =

∫ T

0
Qα

t dMt∫ T

0
(Qα

t )2d〈M〉t
. (4.3)

In order to obtain the result in [7]
√

T (ϑ̂αT − ϑ)
d
−→ N(0, 2ϑ)

for H > 1/2 and
√

T (ϑ̂αT − ϑ)
d
−→ N

(
0,

2ϑ2

2α2 + ϑ

)
for H < 1/2, we prove the stronger result of the Laplace transform:

Lemma 4.1. For H > 1/2. the limit of the Laplace transform is

lim
T→∞
LαT (µ) = lim

T→∞
Eϑ exp

(
−
µ

T

∫ T

0
(Qα

t )2d〈M〉t

)
= exp

(
−
µ

2ϑ

)
, ∀µ > 0

and for H < 1/2,

lim
T→∞
LαT (µ) = lim

T→∞
Eϑ exp

(
−
µ

T

∫ T

0
(Qα

t )2d〈M〉t

)
= exp

(
−µ

(
1

2ϑ
+

(
α

ϑ

)2
))
, ∀µ > 0.

The proof will be presented in the Appendix.

Remark 4.2. The strong consistency of ϑ̂αT can also be obtained with the same proof of Theorem 2.3.

Remark 4.3. If we only consider this special case with u(t) = α, the Laplace transform has no
advantage because we can find a very kind solution of Xα with respect to the classical O-U process
and every term of the estimator error can be easily computed as presented in [7]. But from the optimal
input case, even we can find the explicit solution but the components of the estimator error are
complicated, so the Laplace transform will be more efficient.

Remark 4.4. We only consider the MLE of ϑ when u(t) is known, but the Laplace transform will be
more useful for the case of O-U process with periodic drift of the form

dXt =

 p∑
i=1

µiϕi(t) − ϑXt

 dt + dξt, X0 = 0

where µi and ϑ are all unknown and to be estimated. We will use the Cameron-Martin formula for the
quadratic variation of the martingale of p + 1 dimension especially when H < 1/2 and this will be our
future work.
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5. Appendix

Lemma 5.1. For the kernel KT (s, σ) defined in Eq (3.10)

lim
T→∞

sup
ṽ∈L2[0,T ],‖̃v‖≤1

(KT ṽ, ṽ) =
1
ϑ2 (5.1)

with an optimal input vopt(t) =
√
ψ(t, t)

Proof. When we take v(t) = vopt(t) =
√
ψ(t, t), then

dP(t)
d〈M〉t

= −
1
2
ϑA(t)P(t) + b(t)vopt(t),P(0) = 02×1.

Because for H > 1/2, d〈M〉t
dt = g2(t, t). From [12]

〈M〉T ∼ T 2−2Hλ−1
H , T → ∞, λH =

2HΓ(3 − 2H)Γ(H + 1/2)
Γ(3/2 − H)

.

then with the calculus of [4] we can easily obtain

lim
T→∞

1
4T

∫ T

0
(`(t)∗P(t))2d〈M〉t =

1
ϑ2 . (5.2)

On the other hand for H < 1/2 we have

lim
T→∞

〈M〉T
T

= 1

and we can also easily obtain the result of (5.2), that is to say the lower bound at least will be 1
ϑ2 .

Now we will try to find the upper bound. Let us introduce the Gaussian process (ξt, 0 ≤ t ≤ T )

ξt =

 1√
ψ(σ,σ)

`(σ)∗ϕ(σ) � dWσ

ϕ−1(t), ξT = 0

where (Wσ, σ ≥ 0) is a Wiener process and � denotes the Itô backward integral (see [21]). It is worth
emphasizing that

KT (s, σ) =
1
4

E
ξsb(s)

1√
ψ(s, s)

ξσb(σ)
1√

ψ(σ,σ)

 = E(XσXs).

where X is the centered Gaussian process defined by Xt = 1
2ξtb(t) 1√

ψ(s,s)
. The process (ξt, 0 ≤ t ≤ T )

satisfies the following dynamic

−dξt = −
ϑ

2
ξtA(t)d〈M〉t + `(t)∗

1√
ψ(t, t)

� dWt, ξT = 0.

Obviously, KT (s, σ) is a compact symmetric operator for fixed T , so we should estimate the spectral
gap (the first eigenvalue ν1(T )) of the operator. The estimation of the spectral gap is based on the
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Laplace transform computation. Let us compute, for sufficiently small negative a < 0 the Laplace
transform of

∫ T

0
X2

t dt:

LT (a) = Eϑ exp
(
−a

∫ T

0
X2

t dt
)

= Eϑ exp

−a
∫ T

0

1
2
ξtb(t)

1√
ψ(t, t)

2

dt


On one hand, for a > − 1

ν1(T ) , sinceX is a centered Gaussian process with covariance operatorKT , using
Mercer’s theorem and Parseval’s inequality, LT (a) can be represented as :

LT (a) =
∏
i≥1

(1 + 2aνi(T ))−
1
2 , (5.3)

where νi(T ), i ≥ 1 is the sequence of positive eigenvalues of the covariance operator. On the other
hand,

LT (a) = Eϑ

(
−

a
4

∫ T

0
ξtb(t)b(t)∗ξ∗t d〈M〉t

)
= exp

(
1
2

∫ T

0
trace(H(t)M(t)d〈M〉t

)
whereM(t) = `(t)∗`(t) andH(t) is the solution of Ricatti differential equation:

dH(t)
d〈M〉t

= H(t)A(t)∗ +A(t)H +H(t)M(t)H(t) −
a
2

b(t)b(t)∗,

with A(t) = −ϑ2 A(t) and the initial condition H(0) = 02×2, provided that the solution of this equation
exists for any 0 ≤ t ≤ T .

It is well know that if det Ψ1(t) > 0, for any t ∈ [0,T ], then H(t) = Ψ−1
1 (t)Ψ2(t), where the pair of

2 × 2 matrices (Ψ1, Ψ2) satisfies the system of linear differential equations:

dΨ1(t)
d〈M〉t

= −Ψ1(t)A(t) − Ψ2(t)M(t), Ψ1(0) = Id2×2,

dΨ2(t)
d〈M〉t

= −
a
2

Ψ1(t)b(t)b(t)∗ + Ψ2(t)A(t)∗, Ψ2(0) = 02×2

(5.4)

and

LT (a) = exp
(
−

1
2

∫ T

0
trace (A(t)) d〈N〉t

)
(det Ψ1(T ))−

1
2 . (5.5)

Rewriting the system (5.4) in the following form

d(Ψ1(t), Ψ2(t)J)
d〈M〉t

= (Ψ1(t), Ψ2(t)J) · (Υ ⊗ A(t)), (5.6)

where J =

(
0 1
1 0

)
and Υ =

(
ϑ
2 −a

2
−1 −ϑ2

)
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When −ϑ
2

2 ≤ a ≤ 0, we have two real eigenvalues of the matrix Υ, we denote them (xi)i=1,2. It can
be checked that there exists a constant C > 0 such that

det Ψ1(T ) = exp ((x1)T ) (C + O
T→∞

(
1
T

))

where x1 =

√
ϑ2

4 + a
2 . Therefore, due to the (5.5), we have

∏
i≥1(1 + 2aνi(T )) > 0 for any a > −ϑ

2

2 . It
means that

ν1(T ) ≤
1
ϑ2

�

Lemma 5.2. For v(t) = vopt(t) defined in Lemma 5.1, the Laplace Transform

LT (µ) = Eϑ exp
(
−
µ

T

∫ T

0
Q2

t d〈M〉t

)
−−−−→
T→∞

exp
(
−µ

(
1

2ϑ
+

1
ϑ2

))
(5.7)

for every µ > 0.

Proof. First, we replace Qt with ζt and rewrite the Laplace transform, that is

LT (µ) = Eϑ exp
{
−
µ

T

∫ T

0
ζtR(t)ζ∗t d〈M〉t

}

where ζt is defined in (2.9) and R(t) = 1
4

(
ψ2(t, t) ψ(t, t)
ψ(t, t) 1

)
. Following from [14], we have

LT (µ) = exp
{
−
µ

T

∫ T

0
[tr(Γ(t)R(t)) + Z∗(t)R(t)Z(t)] d〈M〉t

}
where

dΓ(t)
d〈M〉t

= −
ϑ

2
A(t)Γ(t) −

ϑ

2
Γ(t)A(t)∗ + b(t)b(t)∗ −

2µ
T

Γ(t)R(t)Γ(t)

and

Z(t) = Eϑζt −
µ

T

∫ t

0
ϕ(t)ϕ−1Γ(s)R(s)Z(s)d〈M〉s (5.8)

with
dϕ(t)
d〈M〉t

= −
ϑ

2
A(t)ϕ(t).

From [12] we know that

lim
T→∞

exp
(
−
µ

T

∫ T

0
( tr (Γ(t)R(t)))d〈M〉t = exp

(
µ

2ϑ

))
On the other hand we know Eζt = P(t) defined in Lemma 5.1 with v(t) = vopt(t), thus

lim
T→∞

exp
(
−
µ

T
EζtR(t)(Eζt)∗

)
= lim

T→∞
exp

(
−
µ

4T

∫ T

0
(`∗(t)P(t))2d〈M〉t

)
= exp

(
−
µ

ϑ2

)
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Now, the conclusion is true provided that

lim
T→∞

(
µ

T

∫ t

0
ϕ(t)ϕ−1Γ(s)R(s)Z(s)d〈M〉s

)
R(t)

(
µ

T

∫ t

0
ϕ(t)ϕ−1Γ(s)R(s)Z(s)d〈M〉s

)∗
= 0.

On one hand, from [4] and [12] when t is large enough∫ t

0
|F(t, s)|ds =

∣∣∣∣∣∣ µT
∫ t

0
ϕ(t)ϕ−1Γ(s)R(s)

∣∣∣∣∣∣ = O
(

1
T

)
, T → ∞ (5.9)

where
F(t, s) =

∣∣∣∣∣ µT ϕ(t)ϕ−1Γ(s)R(s)
∣∣∣∣∣

and | · | denotes L1 norm of the vector. On the other hand, If we define the operator S by

S ( f )(t) =

∫ t

0

∫ t

0
|F(t, s)| f (s)ds

then Eq (5.8) leads to
|Z(t)| ≤ |P(t)| + S (|Z|)(t)

or we can say (I − S )(|Z|)(t) ≤ |P(t)| ≤ Const. From Eq (5.9) we have for t and T large enough

|Z(t)| ≤ (I − S )−1(Const)(t) =

∞∏
n=1

S n(Const.)(t) ≤ Const. (5.10)

The Const. means some constant, but in different equation they may be different. Combining (5.9) and
(5.10) we have for t large enough∫ t

0
|F(t, s)||Z(s)| = O

(
1
T

)
, T → ∞

which achieves the proof. �

In the following we will use the same method to prove the Lemma 4.1. When u(t) = α, our two
dimensional observed process ζα = (ζαt , 0 ≤ t ≤ T ) satisfies the following equation:

dζαt = αb(t)d〈M〉t −
ϑ

2
A(t)ζαt d〈M〉t + b(t)dMt (5.11)

where A(t), b(t) are defined in (2.10). From the previous proof we know

LαT (µ) = exp
{
−
µ

T

∫ T

0
[ tr (Γ(t)R(t)) +Z∗(t)R(t)Z(t)] d〈M〉t

}
(5.12)

where

Z(t) = Eζαt −
µ

T

∫ t

0
ϕ(t)ϕ−1Γ(s)R(s)Z(s)d〈M〉s. (5.13)
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The functions Γ(t), ϕ(t) and the matrix R(t) are defined in the previous Lemma. Let us recall that

EQα
t = E

d
d〈M〉t

∫ t

0
g(s, t)Xα

s ds =
d

d〈M〉t

∫ t

0
g(s, t)EXα

s ds.

When
dXα

t = (α − ϑXt)dt + dξt

we have
EXα

t =
α

ϑ
−
α

ϑ
e−ϑt.

It is obvious that when we calculate the limit of 1
T

∫ T

0
(EQα

t )2d〈M〉t, the term α
ϑ
e−ϑt has no contribution

and will be 0. Now

lim
T→∞

1
T

∫ T

0
(EQα

t )2d〈M〉t = lim
T→∞

(
α

ϑ

)2 1
T
〈M〉T .

From [12], this limit will be 0 when H > 1/2 and
(
α
β

)2
when H < 1/2. When

∫ T

0
(Eζαt R(t))(Eζαt )∗d〈M〉t =

∫ T

0

(
1
2
`∗(t)Eζαt R(t)

)2

d〈M〉t =

∫ T

0
(EQα

t )2d〈M〉t,

the conclusion is true provided that

lim
T→∞

(
µ

T

∫ t

0
ϕ(t)ϕ−1Γ(s)R(s)Z(s)d〈M〉s

)
R(t)

(
µ

T

∫ t

0
ϕ(t)ϕ−1Γ(s)R(s)Z(s)d〈M〉s

)∗
= 0

and this proof can be also found in the previous Lemma.

Remark 5.3. From the previous proof, we can see that the most difference compared with [12] is the
extra part (Z(t) orZ(t)) of the Laplace Transform coming from the function u(t). Even in our two cases
(optimal input and constant case) the extra part converges to 0 and does not have a decisive influence
on the final result but we still can not ignore it. On the other hard, the limit of the main part is the sum
of the uncontrolled mixed fractional O-U process and the additional part of u(t).

Lemma 5.4. For the controlled mixed fractional Ornstein-Uhlenbeck process with the drift parameter
ϑ, we have the following limit:

KT (µ) = −
µ

T
log E exp

(
−µ

∫ T

0
Q2

t d〈M〉t

)
→

µ

ϑ2 +
ϑ

2
−

√
ϑ2

4
+
µ

2
, T → ∞.

for all µ > −ϑ
2

2 .

Proof. This proof is directly from [19] and Lemma 5.2 or more specially, the term ϑ
2 −

√
ϑ2

4 +
µ

2 comes
from [19] and 1

ϑ2 from Lemma 5.2. �
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6. Conclusions

In this paper, we have considered the controlled drift parametric estimation of the mixed fractional
Ornstein-Uhlenbeck process

dXt = −ϑXtdt + u(t)dt + dWt + dBH
t , H ∈ (0, 1), H , 1/2.

First of all, we have found an explicit controlled function uopt(t) which maximize the Fisher information
of the unknown drift parameter ϑ. Then under this special function we use the Laplace transform to
compute the asymptotical normality and strong consistency of the maximum likelihood estimator. On
the other hand, we use the same Laplace transform method to analyze the MLE of ϑ when u(t) is a
known constant.

Of course, when u(t) is known we can find the solution of Xt and use relations between our
controlled model and the uncontrolled one to study the MLE of ϑ such as presented in [7]. But there
was no doubt that the direct Laplace transform is easier to understand and manipulate.

Remark 6.1. For the simulation of the MLE, even in the mixed fractional O-U process case with

u(t) = 0 we do not have a proper method because the process Qt =
d
∫ t

0 g(s,t)Xsds
d〈M〉t

is hard to simulate.
However, we can use the one-step MLE to achieve this goal: that is with the initial Least Square
Estimator (LSE) and local asymptotical property (LAN) of the process X = (Xt, 0 ≤ t ≤ T ). It will
be our future work when the LAN property needs more tools such as the Malliavin calculus and Wick
product.
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