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Abstract: In this paper, we present a linearized finite difference scheme and a compact finite
difference scheme for the time fractional nonlinear diffusion-wave equations with space fourth order
derivative based on their equivalent partial integro-differential equations. The finite difference scheme
is constructed by using the Crank-Nicolson method combined with the midpoint formula, the weighted
and shifted Grünwald difference formula and the second order convolution quadrature formula to deal
with the temporal discretizations. Meanwhile, the classical central difference formula and fourth order
Stephenson scheme are used in the spatial direction. Then, the compact finite difference scheme
is developed by using the fourth order compact difference formula for the spatial direction. The
proposed schemes can deal with the nonlinear terms in a flexible way while meeting weak smoothness
requirements in time. Under the relatively weak smoothness conditions, the stability and convergence
of the proposed schemes are strictly proved by using the discrete energy method. Finally, some
numerical experiments are presented to support our theoretical results.
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1. Introduction

Fractional partial differential equations (FPDEs) have attracted considerable attention in various
fields. Though research shows that many phenomena can be described by FPDEs such as physics [1],
engineering [2], and other sciences [3, 4]. However, finding the exact solutions of FPDEs by using
current analytical methods such as Laplace transform, Green’s function, and Fourier-Laplace transform
(see [5, 6] for examples) are often difficult to achieve [7]. Thus, proposing numerical methods to find
approximate solutions of these equations has practical importance. Due to this fact, in recent years a
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large number of numerical methods have been proposed for solving FPDEs, for instances see [8–12]
and the references therein.

The time fractional diffusion-wave equation is obtained from the classical diffusion-wave equation
by replacing the second order time derivative term with a fractional derivative of order α, 1 < α < 2,
and it can describe the intermediate process between parabolic diffusion equations and hyperbolic wave
equations. Many of the universal mechanical, acoustic and electromagnetic responses can be accurately
described by the time fractional diffusion-wave equation, see [13, 14] for examples. The fourth order
space derivative arises in the wave propagation in beams and modeling formation of grooves on a flat
surface, thus considerable attention has been devoted to fourth order fractional diffusion-wave equation
and its applications, see [15]. In this paper, the following nonlinear time fractional diffusion-wave
equation with fourth order derivative in space and homogeneous initial boundary conditions will be
considered

∂2u(x, t)
∂t2 + C

0 Dα
t u(x, t) + Kc

∂4u(x, t)
∂x4 =

∂2u(x, t)
∂x2 + g(u) + f (x, t), (1.1)

where 1 < α < 2, f (x, t) is a known function, g(u) is a nonlinear function of u with g(0) = 0 and
satisfies the Lipschitz condition, and C

0 Dα
t u(x, t) denotes the temporal Caputo derivative with order α

defined as

C
0 Dα

t u(x, t) =
1

Γ(2 − α)

∫ t

0
(t − s)1−α∂

2u(x, s)
∂s2 ds.

Recently, there exist many works on numerical methods for time fractional diffusion-wave
equations (TFDWEs), see [16–22] and the references therein. Chen et al. [17] proposed the method of
separation of variables with constructing the implicit difference scheme for fractional diffusion-wave
equation with damping. Heydari et al. [19] have proposed Legendre wavelets (LWs) for solving
TFDWEs where fractional operational matrix of integration for LWs was derived. Bhrawy et al. [16]
have proposed Jacobi tau spectral procedure combined with the Jacobi operational matrix for solving
TFDWEs. Ebadian et al. [18] have proposed triangular function (TFs) methods for solving a class of
nonlinear TFDWEs where fractional operational matrix of integration for the TFs was derived.
Mohammed et al. [21] have proposed shifted Legengre collocation scheme and sinc function for
solving TFDWEs with variable coefficients. Zhou et al. [22] have applied Chebyshev wavelets
collocation for solving a class of TFDWEs where fractional integral formula of a single Chebyshev
wavelets in the Riemann-Liouville sense was derived. Khalid et al. [20] have proposed the third
degree modified extended B-spline functions for solving TFDWEs with reaction and damping terms.
Some other numerical methods were presented for solving time fractional diffusion equations, one
can see [23–26] and the references therein.

To the best of our knowledge, there is no existing numerical method which can be used to solve Eq
(1.1) neither directly nor by transferring Eq (1.1) into an equivalent integro-differential equation.
Thus, the aim of this study is devoted to constructing the high order numerical schemes to solve Eq
(1.1), and carrying out the corresponding numerical analysis for the proposed schemes. Herein, we
firstly transform Eq (1.1) into the equivalent partial integro-differential equations by using the integral
operator. Secondly, the Crank-Nicolson technique is applied to deal with the temporal direction.
Then, we use the midpoint formula to discretize the first order derivative, use the weighted and shifted
Grünwald difference formula to discretize the Caputo derivative, and apply the second order
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convolution quadrature formula to approximate the first order integral. The classical central difference
formula, the fourth order Stephenson scheme, and the fourth order compact difference formula are
applied for spatial approximations.

The rest of this paper is organized as follows. In Section 2, some preparations and useful lemmas
are provided and discussed. In Section 3, the finite difference scheme is constructed and analyzed. In
Section 4, the compact finite difference scheme is deduced, and the convergence and the unconditional
stability are strictly proved. Numerical experiments are provided to support the theoretical results in
Section 5. Finally, some concluding remarks are given.

2. Preliminaries

Lemma 2.1. (see Lemma 6.2 in [27]) Eq (1.1) is equivalent to the following partial integro-differential
equation,

∂u(x, t)
∂t

+ C
0 Dα−1

t u(x, t) + Kc · 0Jt
∂4u(x, t)
∂x4 = 0Jt

∂2u(x, t)
∂x2 + 0Jtg(u) + F(x, t), (2.1)

where F(x, t) = 0Jt f (x, t) and 0Jt is first order integral operator, i.e., 0Jtu(·, t) =
∫ t

0
u(·, s)ds.

To discretize Eq (2.1), we introduce the temporal step size τ = T/N with a positive integer N, tn = nτ,
and tn+1/2 = (n + 1/2)τ. Similarly, define the spatial step size h = L/M with a positive integer M, and
denote xi = ih. Then, define a grid function space Θh = {vn

i | 0 ≤ n ≤ N, 0 ≤ i ≤ M, vn
0 = vn

M = 0}, and
introduce the following notations, inner product, and norm, i.e., for un, vn ∈ Θh, we define

∆xun
i =

1
2h

(
un

i+1 − un
i−1

)
, δ2

xu
n
i =

1
h2

(
un

i−1 − 2un
i + un

i+1
)
,

〈un, vn〉 =h
M−1∑
i=1

un
i vn

i , ||un||2 = 〈un, un〉,

Hun
i =


(
1 + h2

12δ
2
x

)
un

i = 1
12

(
un

i−1 + 10un
i + un

i+1

)
, 1 ≤ i ≤ M − 1,

un
i , i = 0 or M.

Lemma 2.2. (see Lemmas 2.2 and 2.3 in [28]) If u(·, t) ∈ C2([0,T ]) and 0 < γ < 1, then it holds

0Jtu(·, tn+1/2) =
1
2

[0Jtu(·, tn+1) + 0Jtu(·, tn)] + O(τ2).

Furthermore, if u(·, t) ∈ C3([0,T ]), then we have

ut(·, tn+1/2) =
u(·, tn+1) − u(·, tn)

τ
+ O(τ2) = δtu(·, tn+1/2) + O(τ2)

and

C
0 Dγ

t u(·, tn+1/2) =
1
2

(
C
0 Dγ

t u(·, tn+1) + C
0 Dγ

t u(·, tn)
)

+ O(τ2).
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Lemma 2.3. (see Theorem 4.1 in [29]) Let {ωk} be the weights from generating function(
3/2 − 2z + z2/2

)−1
, i.e., ωk = 1 − 3−(k+1). If u(·, t) ∈ C2 ([0,T ]) and u(·, 0) = ut(·, 0) = 0, then we have

0Jtn+1u(·, t) − τ
n+1∑
k=0

ωn+1−ku(·, tk) = O(τ2).

Lemma 2.4. (see Theorem 2.4 in [30]) For u(·, t) ∈ L1(R), RL
−∞Dγ+2

t u(·, t) and its Fourier transform
belong to L1(R), if we use the weighted and shifted Grünwald difference operator to approximate the
Riemann-Liouville derivative, then it holds

RL
0 Dγ

0u(·, tk+1) = τ−γ
k+1∑
j=0

σ
(γ)
j u(·, tk+1− j) + O(τ2), 0 < γ < 1,

where

σ
(γ)
0 =

2 + γ

2
c(γ)

0 , σ
(γ)
j =

2 + γ

2
c(γ)

j −
γ

2
c(γ)

j−1, j ≥ 1,

and c(γ)
j = (−1) j

(
γ

j

)
for j ≥ 0.

Lemma 2.5. (see Lemma 1.2 in [31]) Suppose u(x, ·) ∈ C4([xi−1, xi+1]), let ζ(s) = u(4)(xi + sh, ·) +

u(4)(xi − sh, ·), then

δ2
xu(xi, ·) =

u(xi−1, ·) − 2u(xi, ·) + u(xi+1, ·)
h2 = uxx(xi, ·) +

h2

24

∫ 1

0
ζ(s)(1 − s)3ds.

Lemma 2.6. (see Page 6 of [32]) Assume that u(x, ·) ∈ C8 ([0, L]) with u(0, ·) = u(L, ·) = ux(0, ·) =

ux(L, ·) = 0, and define the operator δ4
x by

δ4
xu

n
i =

12
h2

(
∆xvn

i − δ
2
xu

n
i

)
,

where vn
i is a compact approximation of ux(xi, tn), i.e.,

1
6

vn
i−1 +

2
3

vn
i +

1
6

vn
i+1 = ∆xun

i .

Then, we have the following approximation

δ4
xu

n
i =

∂4u(xi, tn)
∂x4 + O(h4).

Furthermore, let un =
(
un

1, u
n
2, · · · , u

n
M−1

)T
, then the matrix representation of the operator δ4

x is

Sun =
6
h4

(
3KP−1K + 2D

)
un,
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where

K =



0 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 0


(M−1)×(M−1)

, P =



4 1
1 4 1

. . .
. . .

. . .

1 4 1
1 4


(M−1)×(M−1)

,

and D = 6I − P with the identity matrix I.

Lemma 2.7. (see Lemma 3.3 in [32]) The matrix S defined in Lemma 2.6 is symmetric positive definite.

It follows from Lemma 2.7, there is an invertible matrix B such that, S = BT B. Then for wn, vn ∈ Θh,
we have

〈Swn, vn〉 = 〈BT Bwn, vn〉 = 〈Bwn,Bvn〉. (2.2)

The following lemma is required when we use compact operatorH to increase the spatial accuracy.

Lemma 2.8. (see Lemma 1.2 in [31]) Suppose u(x, ·) ∈ C6 ([xi−1, xi+1]), 1 ≤ i ≤ M − 1, and ζ(s) =

5 (1 − s)3
− 3 (1 − s)5. Then it holds that

1
12

[uxx(xi−1, ·) + 10uxx(xi, ·) + uxx(xi+1, ·)] −
1
h2 [u(xi−1, ·) − 2u(xi, ·) + u(xi+1, ·)]

=
h4

360

∫ 1

0

[
u(6)(xi − sh, ·) + u(6)(xi + sh, ·)

]
ζ(s)ds.

In order to linearize the nonlinear function g(u), we can easily get the following lemma by Taylor
expansions.

Lemma 2.9. Assume that u(·, t) ∈ C1([0,T ]) ∩C2((0,T ]), then the following approximation holds

u(·, tn+1) = 2u(·, tn) − u(·, tn−1) + O(τ2).

3. Derivation and analysis of the finite difference scheme

3.1. The derivation of the finite difference scheme

In this subsection, a finite difference scheme with the accuracy O(τ2 + h2) for nonlinear Problem
(2.1) is constructed.

Assume that u(x, t) ∈ C8,3
x,t ([0, L] × [0,T ]), and u(·, 0) = ut(·, 0) = 0. Consider Eq (2.1) at the point

u(xi, tn+1/2), we have

∂u(xi, t)
∂t

∣∣∣∣∣
t=tn+1/2

= − C
0 Dα−1

tn+1/2
u(xi, t) − Kc · 0Jtn+1/2

∂4u(xi, t)
∂x4 + 0Jtn+1/2

∂2u(xi, t)
∂x2

+ 0Jtn+1/2g(u(xi, t)) + F(xi, tn+1/2).
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The Crank-Nicolson technique and Lemma 2.2 for the above equation yield

u(xi, tn+1) − u(xi, tn)
τ

= −
1
2

[
C
0 Dα−1

tn+1
u(xi, t) + C

0 Dα−1
tn u(xi, t)

]
−

Kc

2

[
0Jtn+1

∂4u(xi, t)
∂x4 + 0Jtn

∂4u(xi, t)
∂x4

]
+

1
2

[
0Jtn+1

∂2u(xi, t)
∂x2 + 0Jtn

∂2u(xi, t)
∂x2

]
+

1
2

[
0Jtn+1g(xi, t) + 0Jtng(xi, t)

]
+ F(xi, tn+1/2) + O(τ2). (3.1)

Let u(xi, tn) = un
i . Since the initial values are 0, thus the Riemann−liouville derivative is equivalent

to Caputo derivative. We apply Lemmas 2.3 and 2.4 to discretize the first order integral operator and
Caputo derivative in Eq (3.1) respectively, apply Lemma 2.6 to discretize ∂4u(xi,t)

∂x4 , and Lemma 2.5 to
discretize ∂2u(xi,t)

∂x2 , then we get

un+1
i − un

i

τ
= −

τ1−α

2

 n+1∑
k=0

σ(α−1)
k un+1−k

i +

n∑
k=0

σ(α−1)
k un−k

i

 − Kcτ

2

 n+1∑
k=0

ωkδ
4
xu

n+1−k
i +

n∑
k=0

ωkδ
4
xu

n−k
i


+
τ

2

 n+1∑
k=0

ωkδ
2
xu

n+1−k
i +

n∑
k=0

ωkδ
2
xu

n−k
i

 +
τ

2

 n+1∑
k=0

ωkg(un+1−k
i ) +

n∑
k=0

ωkg(un−k
i )


+ Fn+ 1

2
i + (R1)n+1

i , (3.2)

where (R1)n+1
i = O(τ2 + h2 + h4) = O(τ2 + h2).

It is clear that Eq (3.2) is a nonlinear system with respect to the unknown un+1
i . To linearly solve Eq

(3.2), we use u1
i = u0

i + τ(ut)0
i + O(τ2) and Lemma 2.9 to linearize Eq (3.2) for n = 0 and 1 ≤ n ≤ N −1,

respectively, and then multiply Eq (3.2) by τ, i.e.,

u1
i − u0

i = −
τ2−α

2

 1∑
k=0

σ(α−1)
k u1−k

i + σ(α−1)
0 u0

i

 − Kcτ
2

2

 1∑
k=0

ωkδ
4
xu

1−k
i + ω0δ

4
xu

0
i


+
τ2

2

 1∑
k=0

ωkδ
2
xu

1−k
i + ω0δ

2
xu

0
i

 +
τ2

2

[
ω0g(u0

i + τ(ut)0
i ) + ω1g(u0

i ) + ω0g(u0
i )
]

+ τFn+ 1
2

i + O(τ3 + τh2) (3.3)

and

un+1
i − un

i = −
τ2−α

2

 n+1∑
k=0

σ(α−1)
k un+1−k

i +

n∑
k=0

σ(α−1)
k un−k

i

 − Kcτ
2

2

 n+1∑
k=0

ωkδ
4
xu

n+1−k
i +

n∑
k=0

ωkδ
4
xu

n−k
i


+
τ2

2

 n+1∑
k=0

ωkδ
2
xu

n+1−k
i +

n∑
k=0

ωkδ
2
xu

n−k
i

 +
τ2

2

 n+1∑
k=1

ωkg(un+1−k
i ) +

n∑
k=0

ωkg(un−k
i )


+
τ2ω0

2
g(2un

i − un−1
i ) + τFn+ 1

2
i + O(τ3 + τh2), for 1 ≤ n ≤ N − 1. (3.4)

Noting (ut)0
i = 0, neglecting the truncation error term O(τ3+τh2) in both above equations, and replacing

the un
i with its numerical solution Un

i , we deduce the following finite difference scheme for Problem
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(2.1)

U1
i − U0

i = −
τ2−α

2

 1∑
k=0

σ(α−1)
k U1−k

i + σ(α−1)
0 U0

i

 − Kcτ
2

2

 1∑
k=0

ωkδ
4
xU

1−k
i + ω0δ

4
xU

0
i


+
τ2

2

 1∑
k=0

ωkδ
2
xU

1−k
i + ω0δ

2
xU

0
i

 +
τ2

2

[
ω0g(U0

i ) + ω1g(U0
i ) + ω0g(U0

i )
]

+ τFn+ 1
2

i (3.5)

and

Un+1
i − Un

i = −
τ2−α

2

 n+1∑
k=0

σ(α−1)
k Un+1−k

i +

n∑
k=0

σ(α−1)
k Un−k

i

 − Kcτ
2

2

 n+1∑
k=0

ωkδ
4
xU

n+1−k
i +

n∑
k=0

ωkδ
4
xU

n−k
i


+
τ2

2

 n+1∑
k=0

ωkδ
2
xU

n+1−k
i +

n∑
k=0

ωkδ
2
xU

n−k
i

 +
τ2

2

 n+1∑
k=1

ωkg(Un+1−k
i ) +

n∑
k=0

ωkg(Un−k
i )


+
τ2ω0

2
g(2Un

i − Un−1
i ) + τFn+ 1

2
i , for 1 ≤ n ≤ N − 1. (3.6)

Remark 3.1. In case of g(u) = f (x, t) = 0, the only solution of the finite difference Scheme (3.5) and
(3.6) is zero solution.

3.2. Analysis of the finite difference Scheme (3.5) and (3.6)

In this subsection, the convergence and stability of the finite difference Scheme (3.5) and (3.6) will
be discussed. For convenience, let C be a generic constant, whose value is independent of discretization
parameters and may be different from one line to another. To begin, we provide two lemmas that will
be used in our convergence and stability analysis.

Lemma 3.2. (see Proposition 5.2 in [33] and Lemma 3.2 in [34]) Let {ωk} and {σ(α−1)
k } be the weights

defined in Lemmas 2.3 and 2.4, respectively. Then for any positive integer K and real vector
(V1,V2, · · · ,VK)T , the inequalities

K−1∑
n=0

 n∑
j=0

ω jVn+1− j

 Vn+1 ≥ 0

and

K−1∑
n=0

 n∑
j=0

σ(α−1)
j Vn+1− j

 Vn+1 ≥ 0

hold.

Lemma 3.3. (see Lemma 4.2.2 in [35]) For any grid function wn, vn ∈ Θh, it holds

〈δ2
xw

n, vn〉 = −〈δxwn, δxvn〉.
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Theorem 3.4. Assume u(x, t) ∈ C8,3
x,t ([0, L] × [0,T ]) and u(·, 0) = ut(·, 0) = 0, and let u(x, t) be the

exact solution of Eq (2.1) and {Un
i | 0 ≤ i ≤ M, 1 ≤ n ≤ N} be the numerical solution for Scheme (3.7)

and (3.8). Then, for 1 ≤ n ≤ N, it holds that

‖un − Un‖ ≤ C(τ2 + h2).

Proof. Let us start by analyzing the error of (3.6). Subtracting Eq (3.6) from Eq (3.4), we have

en+1
i − en

i = −
τ2−α

2

 n+1∑
k=0

σ(α−1)
k en+1−k

i +

n∑
k=0

σ(α−1)
k en−k

i


−

Kcτ
2

2

 n+1∑
k=0

ωkδ
4
xe

n+1−k
i +

n∑
k=0

ωkδ
4
xe

n−k
i

 +
τ2

2

 n+1∑
k=0

ωkδ
2
xe

n+1−k
i +

n∑
k=0

ωkδ
2
xe

n−k
i


+
τ2

2

n∑
k=0

(ωk+1 + ωk)
[
g(un−k

i ) − g(Un−k
i )

]
+
τ2ω0

2

[
g(2un

i − un−1
i ) − g(2Un

i − Un−1
i )

]
+ O(τ3 + τh2),

where en
i = un

i − Un
i . Since e0

i = 0, the above equation becomes

en+1
i − en

i = −
τ2−α

2

 n∑
k=0

σ(α−1)
k (en+1−k

i + en−k
i )

 − Kcτ
2

2

 n∑
k=0

ωkδ
4
x

(
en+1−k

i + en−k
i

)
+
τ2

2

 n∑
k=0

ωkδ
2
x

(
en+1−k

i + en−k
i

) +
τ2

2

n∑
k=0

(ωk+1 + ωk)
[
g(un−k

i ) − g(Un−k
i )

]
+
τ2ω0

2

[
g(2un

i − un−1
i ) − g(2Un

i − Un−1
i )

]
+ O(τ3 + τh2).

Multiplying the both sides of the above equation by h(en+1
i + en

i ) and summing over 1 ≤ i ≤ M − 1.
Then using Lemmas 3.3, 2.6, and Eq (2.2), we have

‖en+1‖2 − ‖en‖2 = −
τ2−α

2

n∑
k=0

σ(α−1)
k 〈en+1−k + en−k, en+1 + en〉

−
Kcτ

2

2

n∑
k=0

ωk〈B(en+1−k + en−k),B(en+1 + en)〉

−
τ2

2

n∑
k=0

ωk〈δx(en+1−k + en−k), δx(en+1 + en)〉

+
τ2

2

n∑
k=0

(ωk+1 + ωk)〈g(un−k) − g(Un−k), en+1 + en〉

+
τ2ω0

2
〈g(2un − un−1) − g(2Un − Un−1), en+1 + en〉

+ 〈O(τ3 + τh2), en+1 + en〉.
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Summing the above equation over n from 1 to J − 1 leads to

‖eJ‖2 − ‖e1‖2 = −
τ2−α

2

J−1∑
n=1

n∑
k=0

σ(α−1)
k 〈en+1−k + en−k, en+1 + en〉

−
Kcτ

2

2

J−1∑
n=1

n∑
k=0

ωk〈B(en+1−k + en−k),B(en+1 + en)〉

−
τ2

2

J−1∑
n=1

n∑
k=0

ωk〈δx(en+1−k + en−k), δx(en+1 + en)〉

+
τ2

2

J−1∑
n=1

n∑
k=0

(ωk+1 + ωk)〈g(un−k) − g(Un−k), en+1 + en〉

+
τ2ω0

2

J−1∑
n=1

〈g(2un − un−1) − g(2Un − Un−1), en+1 + en〉

+

J−1∑
n=1

〈O(τ3 + τh2), en+1 + en〉. (3.7)

Now, we turn to analyze ‖e1‖. Subtracting Eq (3.5) from Eq (3.3), and by the similar deductions as
above, we can derive that

‖e1‖2 = −
τ2−α

2
σ(α−1)

0 〈e1 + e0, e1 + e0〉 −
Kcτ

2

2
ω0〈B(e1 + e0),B(e1 + e0)〉

−
τ2

2
ω0〈δx(e1 + e0), δx(e1 + e0)〉 + τ2ω0〈g(u0) − g(U0), e1 + e0〉

+
τ2ω1

2
〈g(u0) − g(U0), e1 + e0〉 + 〈O(τ3 + τh2), e1 + e0〉. (3.8)

Sum up Eq (3.7) and Eq (3.8), and apply Lemma 3.2, it deduces that

‖eJ‖2 ≤
τ2

2

J−1∑
n=1

n∑
k=0

(ωk+1 + ωk)〈g(un−k) − g(Un−k), en+1 + en〉

+
τ2ω0

2

J−1∑
n=1

〈g(2un − un−1) − g(2Un − Un−1), en+1 + en〉

+ τ2ω0〈g(u0) − g(U0), e1 + e0〉 +
τ2ω1

2
〈g(u0) − g(U0), e1 + e0〉

+ C
J−1∑
n=1

〈τ3 + τh2, en+1 + en〉. (3.9)

Using the Lipschitz condition of g and exchanging the order of two summations in the above inequality,
we have

‖eJ‖2 ≤Cτ2
J−1∑
k=0

J−1∑
n=k

(ωn+1−k + ωn−k)‖ek‖‖en+1 + en‖ + Cτ2
J−1∑
n=1

‖en‖‖en+1 + en‖ + C
J−1∑
n=1

(τ3 + τh2)‖en+1 + en‖.

(3.10)
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Assuming ‖eP‖ = max
0≤p≤N

‖ep‖. Since τ

N∑
n=k

(ωn+1−k + ωn−k) is bounded (see [29]), then the above inequality

yields

‖eP‖ ≤ Cτ
P−1∑
k=0

‖ek‖ + C(τ2 + h2). (3.11)

Once the discrete Gronwall inequality has been applied to Inequality (3.11), we arrive at the estimate

‖eP‖ ≤ C(τ2 + h2),

thus the proof is completed. �

Theorem 3.5. Let {Un
i | 0 ≤ i ≤ M, 0 ≤ n ≤ N} be the numerical solution of Scheme (3.5) and (3.6) for

Problem (2.1). Then for 1 ≤ K ≤ N, it holds

‖UK‖ ≤ C
(

max
0≤n≤N

‖g(Un)‖ + max
0≤n≤N−1

‖Fn+ 1
2 ‖

)
. (3.12)

Proof. Multiplying (3.6) by h(Un+1
i + Un

i ) and summing up for i from 1 to M − 1, we have

‖Un+1‖2 − ‖Un‖2 = −
τ2−α

2

n∑
k=0

σ(α−1)
k 〈Un+1−k + Un−k,Un+1 + Un〉

−
Kcτ

2

2

n∑
k=0

ωk〈δ
4
x(U

n+1−k + Un−k),Un+1 + Un〉

+
τ2

2

n∑
k=0

ωk〈δ
2
x(U

n+1−k + Un−k),Un+1 + Un〉

+
τ2

2

n∑
k=0

(ωk+1 + ωk)〈g(Un−k),Un+1 + Un〉

+
τ2ω0

2
〈g(2Un − Un−1),Un+1 + Un〉

−
Kcτ

2

2
ωn+1〈δ

4
xU

0,Un+1 + Un〉 −
τ2−α

2
σ(α−1)

n+1 〈U
0,Un+1 + Un〉

+
τ2

2
ωn+1〈δ

2
xU

0,Un+1 + Un〉 + τ〈Fn+ 1
2 ,Un+1 + Un〉.

Note that Eq (1.1) is equipped with the homogeneous initial conditions, thus it deduces

‖Un+1‖2 − ‖Un‖2 = −
τ2−α

2

n∑
k=0

σ(α−1)
k 〈Un+1−k + Un−k,Un+1 + Un〉

−
Kcτ

2

2

n∑
k=0

ωk〈δ
4
x(U

n+1−k + Un−k),Un+1 + Un〉
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+
τ2

2

n∑
k=0

ωk〈δ
2
x(U

n+1−k + Un−k),Un+1 + Un〉

+
τ2

2

n∑
k=0

(ωk+1 + ωk)〈g(Un−k),Un+1 + Un〉

+
τ2ω0

2
〈g(2Un − Un−1),Un+1 + Un〉

+ τ〈Fn+ 1
2 ,Un+1 + Un〉.

Applying the similar deductions to get Eq (3.9), it achieves that

‖U J‖2 ≤Cτ
J−1∑
k=0

‖g(Uk)‖
(
‖Un+1‖ + ‖Un‖

)
+
τ2

2
ω0

J−1∑
n=1

‖g(2Un − Un−1)‖
(
‖Un+1‖ + ‖Un‖

)
+ Cτ

J−1∑
n=1

‖Fn+ 1
2 ‖

(
‖Un+1‖ + ‖Un‖

)
. (3.13)

One can estimate ‖g(2Un − Un−1)‖ as the following

‖g(2Un − Un−1)‖ =‖g(2Un − Un−1) − g(Un) + g(Un)‖,
≤‖g(2Un − Un−1) − g(Un)‖ + ‖g(Un)‖,
≤C(‖Un‖ + ‖Un−1‖) + ‖g(Un)‖. (3.14)

Substituting Eq (3.14) into Eq (3.13) and using Young’s inequality, then we have

‖U J‖2 ≤ Cτ
J−1∑
n=0

‖Un‖2 + C max
0≤n≤N

‖g(Un)‖2 + C max
0≤n≤N−1

‖Fn+ 1
2 ‖2. (3.15)

By applying the Gronwall inequality to (3.15), it becomes

‖U J‖2 ≤ C
(

max
0≤n≤N

‖g(Un)‖2 + max
0≤n≤N−1

‖Fn+ 1
2 ‖2

)
,

and this completes the proof. �

4. Derivation and analysis of the compact finite difference scheme

4.1. The derivation of the compact finite difference scheme

In this subsection, a compact finite difference scheme with accuracy O(τ2+h4) for nonlinear Problem
(2.1) is presented.

Now let us act on both sides of Eq (3.1) with the compact operatorH . Then, by using Lemma 2.8,
we obtain

H

[
u(xi, tn+1) − u(xi, tn)

τ

]
= −

1
2
H

[
C
0 Dα−1

tn+1
u(xi, t) + C

0 Dα−1
tn u(xi, t)

]
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−
Kc

2
H

[
0Jtn+1

∂4u(xi, t)
∂x4 + 0Jtn

∂4u(xi, t)
∂x4

]
+

1
2

[
0Jtn+1δ

2
xu(xi, t) + 0Jtnδ

2
xu(xi, t)

]
+

1
2
H

[
0Jtn+1g(xi, t) + 0Jtng(xi, t)

]
+HFn+ 1

2
i + O(τ2 + h4). (4.1)

Apply the similar deductions to get Eqs (3.3) and (3.4), it achieves

H
[
u1

i − u0
i

]
= −

τ2−α

2
H

 1∑
k=0

σ(α−1)
k u1−k

i + σ(α−1)
0 u0

i

 − Kcτ
2

2
H

 1∑
k=0

ωkδ
4
xu

1−k
i + ω0δ

4
xu

0
i


+
τ2

2

 1∑
k=0

ωkδ
2
xu

1−k
i + ω0δ

2
xu

0
i

 +
τ2

2
H

[
ω0g(u0

i ) + ω1g(u0
i ) + ω0g(u0

i )
]

+ τHFn+ 1
2

i + O(τ3 + τh4) (4.2)

and

H
[
un+1

i − un
i

]
= −

τ2−α

2
H

 n+1∑
k=0

σ(α−1)
k un+1−k

i +

n∑
k=0

σ(α−1)
k un−k

i

 − Kcτ
2

2
H

 n+1∑
k=0

ωkδ
4
xu

n+1−k
i +

n∑
k=0

ωkδ
4
xu

n−k
i


+
τ2

2

 n+1∑
k=0

ωkδ
2
xu

n+1−k
i +

n∑
k=0

ωkδ
2
xu

n−k
i

 +
τ2

2
H

 n+1∑
k=1

ωkg(un+1−k
i ) +

n∑
k=0

ωkg(un−k
i )


+
τ2ω0

2
Hg(2un

i − un−1
i ) + τHFn+ 1

2
i + O(τ3 + τh4), for 1 ≤ n ≤ N − 1. (4.3)

Neglecting the truncation error term O(τ3 + τh4) in both above equations, and replacing the un
i with its

numerical solution Un
i , we deduce the following compact finite difference scheme for Problem (2.1)

H
[
U1

i − U0
i

]
= −

τ2−α

2
H

 1∑
k=0

σ(α−1)
k U1−k

i + σ(α−1)
0 U0

i

 − Kcτ
2

2
H

 1∑
k=0

ωkδ
4
xU

1−k
i + ω0δ

4
xU

0
i


+
τ2

2

 1∑
k=0

ωkδ
2
xU

1−k
i + ω0δ

2
xU

0
i

 +
τ2

2
H

[
ω0g(U0

i ) + ω1g(U0
i ) + ω0g(U0

i )
]

+ τHFn+ 1
2

i (4.4)

and

H
[
Un+1

i − Un
i

]
= −

τ2−α

2
H

 n+1∑
k=0

σ(α−1)
k Un+1−k

i +

n∑
k=0

σ(α−1)
k Un−k

i


−

Kcτ
2

2
H

 n+1∑
k=0

ωkδ
4
xU

n+1−k
i +

n∑
k=0

ωkδ
4
xU

n−k
i
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+
τ2

2

 n+1∑
k=0

ωkδ
2
xU

n+1−k
i +

n∑
k=0

ωkδ
2
xU

n−k
i


+
τ2

2
H

 n+1∑
k=1

ωkg(Un+1−k
i ) +

n∑
k=0

ωkg(Un−k
i )


+
τ2ω0

2
Hg(2Un

i − Un−1
i ) + τHFn+ 1

2
i , for 1 ≤ n ≤ N − 1. (4.5)

Remark 4.1. In case of g(u) = f (x, t) = 0, the only solution of the compact finite difference Scheme
(4.4) and (4.5) is zero solution.

4.2. Analysis of the compact finite difference Scheme (4.4) and (4.5)

In this subsection, we turn to analyze the convergence and stability of the compact finite difference
Scheme (4.4) and (4.5). Firstly, we provide the following lemmas, which will be used in our
convergence and stability analysis.

Lemma 4.2. (see Lemma 5 in [36]) Let {σ(α−1)
k } be the weighted coefficients defined in Lemma 2.4,

then for any positive integer n and wn ∈ Θh, it holds that

n∑
m=0

m∑
k=0

σ(α−1)
k 〈Hwm−k,wm〉 ≥ 0.

Lemma 4.3. (see Lemma 4.2 in [37]) For any grid function wn ∈ Θh, we have

2
3
‖wn‖2 ≤ 〈Hwn,wn〉 ≤ ‖wn‖2.

Theorem 4.4. Assume u(x, t) ∈ C8,3
x,t ([0, L] × [0,T ]) and u(·, 0) = ut(·, 0) = 0, and let u(x, t) be the

exact solution of Eq (2.1) and {Un
i | 0 ≤ i ≤ M, 1 ≤ n ≤ N} be the numerical solution for Scheme (4.4)

and (4.5). Then, for 1 ≤ n ≤ N, it holds that

‖un − Un‖ ≤ C(τ2 + h4).

Proof. Let us start by analyzing the error of (4.5). Subtracting Eq (3.5) from Eq (4.3), we have

H
[
en+1

i − en
i

]
= −

τ2−α

2
H

 n+1∑
k=0

σ(α−1)
k en+1−k

i +

n∑
k=0

σ(α−1)
k en−k

i

 − Kcτ
2

2
H

 n+1∑
k=0

ωkδ
4
xe

n+1−k
i +

n∑
k=0

ωkδ
4
xe

n−k
i


+
τ2

2

 n+1∑
k=0

ωkδ
2
xe

n+1−k
i +

n∑
k=0

ωkδ
2
xe

n−k
i

 +
τ2

2
H

n∑
k=0

(ωk+1 + ωk)
[
g(un−k

i ) − g(Un−k
i )

]
+
τ2ω0

2
H

[
g(2un

i − un−1
i ) − g(2Un

i − Un−1
i )

]
+ O(τ3 + τh4),

where en
i = un

i − Un
i . Since e0

i = 0, the above equation becomes

H
[
en+1

i − en
i

]
= −

τ2−α

2

 n∑
k=0

σ(α−1)
k H(en+1−k

i + en−k
i )

 − Kcτ
2

2

 n∑
k=0

ωkHδ
4
x

(
en+1−k

i + en−k
i

)
AIMS Mathematics Volume 6, Issue 6, 6356–6376.
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+
τ2

2

 n∑
k=0

ωkδ
2
x

(
en+1−k

i + en−k
i

) +
τ2

2

n∑
k=0

(ωk+1 + ωk)H
[
g(un−k

i ) − g(Un−k
i )

]
+
τ2ω0

2
H

[
g(2un

i − un−1
i ) − g(2Un

i − Un−1
i )

]
+ O(τ3 + τh4).

Multiplying the both sides of the above equation by h(en+1
i + en

i ) and summing over 1 ≤ i ≤ M − 1.
Then using Lemmas 2.6, 3.2, 4.2, and Eq (2.2), we have

‖en+1‖2 − ‖en‖2 ≤ −
τ2−α

2

n∑
k=0

σ(α−1)
k 〈H(en+1−k + en−k), en+1 + en〉

−
Kcτ

2

2

n∑
k=0

ωk〈HB(en+1−k + en−k),B(en+1 + en)〉

−
τ2

2

n∑
k=0

ωk〈δx(en+1−k + en−k), δx(en+1 + en)〉

+
τ2

2

n∑
k=0

(ωk+1 + ωk)〈H
(
g(un−k) − g(Un−k)

)
, en+1 + en〉

+
τ2ω0

2
〈H

(
g(2un − un−1) − g(2Un − Un−1)

)
, en+1 + en〉

+ C〈τ3 + τh4, en+1 + en〉.

Summing the above inequality over n from 1 to J − 1 leads to

‖eJ‖2 − ‖e1‖2 ≤ −
τ2−α

2

J−1∑
n=1

n∑
k=0

σ(α−1)
k 〈H(en+1−k + en−k), en+1 + en〉

−
Kcτ

2

2

J−1∑
n=1

n∑
k=0

ωk〈HB(en+1−k + en−k), B(en+1 + en)〉

−
τ2

2

J−1∑
n=1

n∑
k=0

ωk〈δx(en+1−k + en−k), δx(en+1 + en)〉

+
τ2

2

J−1∑
n=1

n∑
k=0

(ωk+1 + ωk)〈H
(
g(un−k) − g(Un−k)

)
, en+1 + en〉

+
τ2ω0

2

J−1∑
n=1

〈H
(
g(2un − un−1) − g(2Un − Un−1)

)
, en+1 + en〉

+ C
J−1∑
n=1

〈τ3 + τh4, en+1 + en〉. (4.6)

Now, we turn to analyze ‖e1‖. From Eqs (4.4), (4.2), and by the similar deductions as above, we can
derive that

‖e1‖2 ≤ −
τ2−α

2
σ(α−1)

0 〈H(e1 + e0), e1 + e0〉 −
Kcτ

2

2
ω0〈HB(e1 + e0),B(e1 + e0)〉
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−
τ2

2
ω0〈δx(e1 + e0), δx(e1 + e0)〉 +

τ2ω1

2
〈H

(
g(u0) − g(U0)

)
, e1 + e0〉

+ τ2ω0〈H
(
g(u0) − g(U0)

)
, e1 + e0〉 + C〈τ3 + τh4, e1 + e0〉. (4.7)

Sum up Eqs (4.6) and (4.7), and apply Lemmas 3.2 and 4.2, it deduces that

‖eJ‖2 ≤
τ2

2

J−1∑
n=1

n∑
k=0

(ωk+1 + ωk)〈H
(
g(un−k) − g(Un−k)

)
, en+1 + en〉

+
τ2ω0

2

J−1∑
n=1

〈H
(
g(2un − un−1) − g(2Un − Un−1)

)
, en+1 + en〉

+
τ2ω1

2
〈H

(
g(u0) − g(U0)

)
, en+1 + en〉

+ τ2ω0〈H
(
g(u0) − g(U0)

)
, en+1 + en〉 + C

J−1∑
n=1

〈τ3 + τh4, en+1 + en〉.

According to the same technique as for dealing with (3.9), we can achieve

‖eP‖ ≤ C(τ2 + h4),

thus completes the proof. �

Theorem 4.5. Let {Un
i | 0 ≤ i ≤ M, 0 ≤ n ≤ N} be the numerical solution of Scheme (4.4) and (4.5) for

Problem (2.1). Then for 1 ≤ K ≤ N, it holds

‖UK‖ ≤ C
(

max
0≤n≤N

‖g(Un)‖ + max
0≤n≤N−1

‖Fn+ 1
2 ‖

)
.

5. Numerical experiments

In this section, we carry out numerical experiments to verify the theoretical results and
demonstrate the performance of our new schemes. All of the computations are performed by using a
MATLAB on a computer with Intel(R) Core(TM) i5-8265U CPU 1.60GHz 1.80GHz and 8G RAM.

Example 5.1. Consider the following problem with exact solution u(x, t) = t2+α sin2(πx)

∂2u(x, t)
∂t2 + C

0 Dα
t u(x, t) +

∂4u(x, t)
∂x4 =

∂2u(x, t)
∂x2 + f (x, t) + g(u),

where T = 1, 0 < x < 1, 0 < t ≤ T , and 1 < α < 2. The nonlinear function g(u) = u2 and f (x, t) is

f (x, t) = (2 + α)(1 + α)tα sin2(πx) +
Γ(3 + α)

2
t2 sin2(πx) − 8π4t2+α cos(2πx)

−2π2t2+α cos(2πx) − t2(2+α) sin4(πx).

It is clear that u(x, t) satisfies all smoothness conditions required by Theorems 3.4 and 4.4, so that both
of our schemes can be applied in this example. In Figures 1 and 2, we compare the exact solution
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with the numerical solution of finite difference Scheme (3.5) and (3.6) and compact finite difference
Scheme (4.4) and (4.5). We easily see that the exact solution can be well approximated by the numerical
solutions of our schemes.

First, we in Tables 1, 2 and 3 show that the errors, time and space convergence order ≈ 2 and CPU
times (second) of the finite difference Scheme (3.5) and (3.6) for α = 1.25, 1.5, 1.75. The average CPU
time, expressed as the mean time (mean) for α = 1.25, 1.5, 1.75. Specifically, Table 1 tests the case
that when τ = h. In Table 2, we set h = 0.001, a value small enough such that the spatial discretization
errors are negligible as compared with the temporal errors, and choose different time step size. In Table
3, we set τ = 0.001, a value small enough such that the temporal discretization errors are negligible as
compared with the spatial errors, and choose different space step size. From all scenarios above, we
conclude that the temporal and spatial convergence order is 2. It verifies Theorem 3.4.

On the other hand, we check the numerical convergence orders and CPU times (second) in time and
space of the compact finite difference Scheme (4.4) and (4.5) for α = 1.25, 1.5, 1.75 in Tables 4 and 5,
respectively. The average CPU time, expressed as the mean time (mean) for α = 1.25, 1.5, 1.75. As
expected, the numerical results reflect that the compact finite difference has a convergence order of 2
and 4 in time and space, respectively, which verifies our Theorem 4.4.

Table 1. The errors, CPU times (second) for different α, and numerical convergence orders
of Scheme (3.5) and (3.6) for different τ = h.

τ = h
α = 1.25 α = 1.5 α = 1.75 CPU time

error order error order error order mean
1/5 6.6627 × 10−2 7.8031 × 10−2 8.9815 × 10−2 0.0896
1/10 1.8412 × 10−2 1.8555 2.1839 × 10−2 1.8371 2.5456 × 10−2 1.8190 0.0973
1/20 4.8132 × 10−3 1.9355 5.7273 × 10−3 1.9310 6.6917 × 10−3 1.9275 0.0994
1/40 1.2137 × 10−3 1.9876 1.4621 × 10−3 1.9698 1.7210 × 10−3 1.9591 0.1359

Table 2. The errors, CPU times (second) for different α, and temporal numerical convergence
orders of Scheme (3.5) and (3.6) for h = 0.001 and different τ.

τ
α = 1.25 α = 1.5 α = 1.75 CPU time

error order error order error order mean
1/5 7.0844 × 10−2 8.2130 × 10−2 9.3783 × 10−2 0.5852
1/10 1.9012 × 10−2 1.8977 2.2432 × 10−2 1.8724 2.6040 × 10−2 1.8486 1.0501
1/20 4.9405 × 10−3 1.9442 5.8537 × 10−3 1.9381 6.8169 × 10−3 1.9335 2.4071
1/40 1.2435 × 10−3 1.9903 1.4917 × 10−3 1.9724 1.7504 × 10−3 1.9615 6.7799
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Table 3. The errors, CPU times (second) for different α, and spatial numerical convergence
orders of Scheme (3.5) and (3.6) for τ = 0.001 and different h.

h
α = 1.25 α = 1.5 α = 1.75 CPU time

error order error order error order mean
1/5 4.7813 × 10−3 4.7510 × 10−3 4.7111 × 10−3 2.2382
1/10 6.1943 × 10−4 2.9484 6.1518 × 10−4 2.9492 6.0963 × 10−4 2.9501 2.2952
1/20 1.2773 × 10−4 2.2778 1.2654 × 10−4 2.2815 1.2503 × 10−4 2.2857 2.5410
1/40 2.8950 × 10−5 2.1415 2.8363 × 10−5 2.1575 2.7665 × 10−5 2.1761 3.4293
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Figure 1. The comparison of numerical solution of Scheme (3.5) and (3.6) with the exact
solution for τ = h = 0.01 and α = 1.6.
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Figure 2. The comparison of numerical solution of the compact finite difference Scheme
(4.4) and (4.5) with the exact solution for τ = h = 0.01 and α = 1.6.

Table 4. The errors, CPU times (second) for different α, and temporal convergence orders of
Scheme (4.4) and (4.5) for h = 0.001 and different τ.

τ
α = 1.25 α = 1.5 α = 1.75 CPU time

error order error order error order mean
1/5 7.0844 × 10−2 8.2129 × 10−2 9.3783 × 10−2 0.9501
1/10 1.9012 × 10−2 1.8978 2.2432 × 10−2 1.8724 2.6040 × 10−2 1.8486 2.3622
1/20 4.9407 × 10−3 1.9441 5.8538 × 10−3 1.9381 6.8169 × 10−3 1.9335 7.6793
1/40 1.2436 × 10−3 1.9901 1.4919 × 10−3 1.9723 1.7506 × 10−3 1.9612 28.9326

Table 5. The errors, CPU times (second) for different α, and spatial convergence orders of
Scheme (4.4) and (4.5) for τ = 0.0005 and different h.

h
α = 1.25 α = 1.5 α = 1.75 CPU time

error order error order error order mean
1/5 3.8110 × 10−3 3.7871 × 10−3 3.7555 × 10−3 12.5566
1/10 2.5308 × 10−4 3.9125 2.5141 × 10−4 3.9130 2.4922 × 10−4 3.9135 14.0490
1/20 2.2087 × 10−5 3.5183 2.1851 × 10−5 3.5243 2.1557 × 10−5 3.5312 18.1726
1/40 1.8261 × 10−6 3.5964 1.7163 × 10−6 3.6703 1.5904 × 10−6 3.7607 43.9104
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6. Conclusions

We in this paper constructed two linearized finite difference schemes for time fractional nonlinear
diffusion-wave equations with the space fourth-order derivative. The equations were transformed into
equivalent partial integro-differential equations. Then, the Crank-Nicolson technique, the midpoint
formula, the weighted and shifted Grünwald difference formula, the second order convolution formula,
the classical central difference formula, the fourth-order approximation and the compact difference
technique were applied to construct the two proposed schemes. The finite difference Scheme (3.5) and
(3.6) has the accuracy O(τ2+h2). The compact finite difference Scheme (4.4) and (4.5) has the accuracy
O(τ2 +h4). It should be mentioned that our schemes require the exact solution u(·, t) ∈ C3([0,T ]), while
it requires u(·, t) ∈ C4([0,T ]) if one discretizes Eq (1.1) directly to get the second order accuracy in
time. Theoretically, the convergence and the unconditional stability of the two proposed schemes are
proved and discussed. All of the numerical experiments can support our theoretical results.
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