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1. Introduction and main results

We are interested in the symmetry and monotonicity of solutions to the problem
−∆1u = f (u), in Ω,

u > 0 in Ω,

u = 0, on ∂Ω,

(1.1)

where ∆1u = div( Du
|Du| ), Ω is a smooth bounded domain in RN , N ≥ 2, and strictly convex. The purpose

of the paper is to investigate a priori estimates and symmetric properties of the solutions when the
domain is assumed to have symmetric properties and f is supposed to satisfy the following conditions
(H1), (H2) and (H4). We also assume that f satisfies the following conditions (H3) and (H5) to use
mountain pass lemma to get a nontrivial solution.
(H1): f : [0,+∞) is a locally Lipschitz continuous function and f (s) ≥ 0 for ∀ s ∈ [0,+∞).
(H2): f (s) ≤ C1(1 + s1∗−1), for ∀ s ∈ [0,+∞), with 1∗ = N

N−1 and a constant C1 > 0.
(H3): There exists θ > 1, and k0 > 0 such that

0 < θF(s) ≤ s f (s), s ≥ k0.
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(H4): There exists a constant C2 > 0 such that

lim inf
s→+∞

1∗F(s) − s f (s)
s f (s)

≥ C2,

where F(s) =
∫ s

0
f (t)dt.

(H5): There exists a constant α ∈ (0, 1
N−1 ) such that

lim
s→0

| f (s)|
sα

< ∞.

We point out that the similar p-Laplace problems (p > 1) have many applications and have been
studied for a long time, more precisely, Dirichlet problems for the p-Laplace operator,

−∆pu = f (u), in Ω,

u > 0 in Ω,

u = 0, on ∂Ω.

(1.2)

In the case p = 2, the problem (1.2) −∆pu = f (u) has been widely studied. Gidas and Spruck [27] prove
a priori bounds for nonlinearities f for N ≥ 3 behave as a subcritical power at infinity, introducing the
blow up method together with Liouville type theorems for solutions in RN . Figneiredo, Lions and
Nussbaum [19] consider the existence and a priori estimates of positive solutions of the problem (1.2)
when f satisfies the superlinear grow at infinity. They prove a priori bound for positive solutions of the
problem (1.2) under the hypothesis lims→∞

f (s)

s
N+2
N−2

= 0, together with the monotonic results by Gidas, Ni
and Nirenberg [28] obtained by the Alexandrov-Serrin moving plane method [37]. The moving plane
method has been improved and simplified by Beresticky and Nirenberg [7] with the aid of the maximum
principle in small domain. With the help of the blow up procedure, Azizieh and Clément [5] prove a
priori estimates for the problem (1.2) in the case of Ω being a strictly convex domain and f satisfying
some suitable assumption. Damascelli and Pacella [14, 15] apply the moving plane method to prove
some monotonic and symmetric results for the p-Laplace equation in the singular case 1 < p < 2, also
see [6, 13]. The results are later extended to the case p > 2 in the papers [12, 17, 18]. Damascelli and
Pardo [16] used the technique introduced in [19] that allowed to give the a priori estimates for solutions
in case 1 < p < N, case p = N, and case p > N. Esposito, Montoro and Sciunzi [24] study symmetric
and monotonic properties of singular positive solutions to the problem (1.2) via moving plane method
under suitable assumptions on f . However, all the above mentioned papers can not deal with the case
p = 1. In this paper, we can extend the case p > 1 to the case p = 1.

Obviously, the problem of ∆1 is different from ∆p (p > 1). When p = 1, it is necessary to replace
W1,1 by BV , the space of functions of bounded variation. A function u ∈ L1(Ω) is called a function of
bounded variation, whose partial derivatives in the sense of distribution are Radon measures. We point
out that the space W1,p(Ω) is reflexive, however, the space BV(Ω) is not reflexive, so that we can not
follow the arguments on ∆p. The 1-Laplace operator ∆1 introduces some extra difficulties and special
features. The first difficulty occurs by defining the quotient Du

|Du| , Du being just a Radon measure. To
deal with the 1-Laplacian operator, we need the theory of pairing of L∞ divergence measure vector
fields (see the pioneering works [3, 4, 8]).

Demengel [21] is concerned with existence of solution in BV(Ω) to the problem −divz + zsignu =

f |u|1
∗−2u with z · ∇u = ∇u in Ω and −z ·γ = u on ∂Ω. Demengel [22] is devoted to the elliptic equations
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with 1-Laplacian operator {
−∆1u = f (x, u), in Ω,

u = 0, on ∂Ω,
(1.3)

and introduces the concept of locally almost 1-harmonic functions in Ω. The comparison principle, the
first eigenvalue and related eigenfunctions for the 1-Laplacian operator are established in [22]. Kawohl
and Schuricht [30] consider a number of problems that are associated with the 1-Laplace operator
∆1, the formal limit of the p-Laplace operator as p → 1, by investigating the underlying variational
problem. Since the corresponding solution typically belongs to BV and not to W1,1, they have to study
the minimizers of the functionals containing the total variation. In particular, they look for constrained
minimizers subject to a prescribed L1 norm which can be considered as an eigenvalue problem for
the 1-Laplace operator. Degiovanni and Magrone [20] are concerned with the problem (1.3) with
f (x, u) = λ u

|u| + |u|
1∗−2u. It is proved that for every λ ≥ λ1, the problem (1.3) admits a nontrivial solution

by the non-standard linking methods. Salas and Segura de León [35] study the problem (1.3) with
f (x, u) satisfying subcritical growth; i.e., | f (x, u)| ≤ C(1 + |u|q) with 0 < q < 1∗−1. They prove that for
the problem (1.3) there exists at least two nontrivial solutions, one nonnegative and one nonpositive,
by using known existence results for the p-Laplacian (p > 1) and considering the limit as p → 1+.
De Cicco, Giachetti, Oliva and Petitta [9] study the existence and regularity of special distributional
nonnegative solutions to the boundary value singular problem (1.3) with f (x, u) = h(u)g(x). They show
existence of nonnegative solutions to (1.3) with umax{1,γ} ∈ BV(Ω). These solutions are obtained as a
limit as p→ 1+ of nonnegative solutions of the p-Laplacian problems −∆pup = h(up)g with up = 0 on
∂Ω. We also refer to [33–36, 38] for the a priori estimates and gradient estimates of solutions. In this
paper we can study the monotonicity and symmetry of positive solution to the 1-Laplace problem and
show the a priori estimates for the solution.

By the theory of pairing of L∞ divergence measure vector fields, we introduce the following
definition of solutions to the problem (1.1).
Definition 1.1. We say that u ∈ BVloc(Ω), u > 0, is a solution to problem (1.1) if there exists a vector
field z ∈ DM∞(Ω) with ‖z‖L∞ ≤ 1 such that

− divz = f (u), inD′(Ω), (1.4)

(z,Du) = |Du| as measures in Ω, (1.5)

[z, γ] ∈ sign(−u) on ∂Ω, (1.6)

where γ is the unit exterior normal on ∂Ω, and the spaces BVloc(Ω) andDM∞(Ω) are given in Section
2.

To state more precisely some known result about the monotonicity and symmetry of solutions of
the problem (1.1), we need some notations. Let ν be a direction in RN . For a real number µ we define

T ν
µ = {x ∈ RN | x · ν = µ}

Ων
µ = {x ∈ Ω | x · ν < µ}

xνµ = Rν
µ(x) = x + 2(µ − x · ν)ν, x ∈ RN
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and

a(ν) = inf
x∈Ω

x · ν. (1.7)

If µ > a(ν) then Ων
µ is nonempty, thus we set

(Ων
µ)
′ = Rν

µ(Ω
ν
µ).

Following [6] and [12–18], we observe that µ− a(ν) small then (Ων
µ)
′ is contained in Ω and will remain

in it, at least until one of the following occurs:
(A) (Ων

µ)
′ becomes internally tangent to ∂Ω.

(B) T ν
µ is orthogonal to ∂Ω.

Let Π1(ν) be the set of those µ > a(ν) such that for each η < µ none of the conditions (A) and (B) holds
and define

µ1(ν) = sup Π1(ν). (1.8)

Moreover, let

Π2(ν) = {µ > a(ν) | (Ων
η)
′ ⊂ Ω,∀η ∈ (a(ν), µ]}

and

µ2(ν) = sup Π2(ν). (1.9)

Since Ω is supposed to be smooth, note that neither Π1(ν) nor Π2(ν) are empty and Π1(ν) ⊂ Π2(ν), so
that µ1(ν) ≤ µ2(ν).

We deal with solutions to the problem (1.1) in the sense of Definition 1.1. Our main result is stated
as follows.
Theorem 1.2. Let Ω be a smooth bounded domain in RN , N ≥ 2, which is strictly convex. Assume the
nonlinearity f satisfies the conditions (H1) − (H5). Then there exists a nontrivial positive solution u to
the problem (1.1) in the sense Definition 1.1, bounded in L∞(Ω) (i.e., u ∈ L∞(Ω)), and for any direction
ν and for µ in the interval (a(ν), µ1(ν)],

u(x) ≤ u(xνµ), a.e. x ∈ Ων
µ, (1.10)

where a(ν) and µ1(ν) are given by (1.7) and (1.8) respectively.
If f is locally Lipschitz continuous in the closed interval [0,+∞), the condition (1.10) holds for any

µ in the interval (a(ν), µ2(ν)].
Corollary 1.3. Let the smooth bounded domain Ω ⊂ RN , N ≥ 2, be strictly convex with respect to a
direction ν and symmetric with respect to the hyperplane T ν

0 = {x ∈ RN | x · ν = 0}. Assume that the
nonlinearity f satisfies the conditions (H1) − (H5), which is locally Lipschitz continuous in the closed
interval [0,+∞) and strictly positive in (0,+∞). Then there exists a nontrivial positive solution u to
the problem (1.1) in the sense Definition 1.1, bounded in L∞(Ω), almost everywhere symmetric, i.e.,
u(x) = u(xν0) and nondecreasing in the ν-direction a.e. in Ων

0.
Remark 1.4. Since the moving plane procedure can be performed in the same way but in the opposite
direction, then it is obvious that Corollary 1.3 is obtained by Theorem 1.2 (see Corollary 2.4 of [16]).
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2. Preliminaries on BV space

Throughout this paper, Ω denotes an bounded subset of RN with Lipschitz boundary. The symbol
|Ω| stands for its N dimensional Lebesgue measure and HN−1(E) for the N − 1 dimensional Hausdorff
measure of a set E ⊂ RN . An outward normal with vector γ = γ(x) is defined for HN−1 a.e. x ∈ ∂Ω.
We will denote by W1,p

0 (Ω) the usual Sobolev space, of measureable functions having weak gradient
in Lp(Ω;RN) and zero trace on ∂Ω. If 1 < p < N, denote by p∗ =

N p
N−p its critical Sobolev exponent.

BV(Ω) will denote the space of functions of bounded variation

BV(Ω) = {v ∈ L1(Ω) | Dv is a bounded Radon measure}

where Dv : Ω→ RN is the distributional gradient of u. It is endowed with the norm by

‖v‖BV =

∫
Ω

|Dv| +
∫

Ω

|v|dx,

where ∫
Ω

|Dv| = sup{
∫

Ω

vdivϕdx | ϕ ∈ C1
0(Ω;RN), |ϕ(x)| ≤ 1, x ∈ Ω}.

BV(Ω) is a Banach space which is non-reflexive and non-separable. The notion of a trace on the
boundary can be extended to functions v ∈ BV(Ω) and this fact allows us to write v|∂Ω. Moreover, the
trace defines a linear bounded operator i : BV(Ω) ↪→ L1(∂Ω) which is onto. By the trace, we have an
equivalent norm on BV(Ω)

‖v‖BV =

∫
Ω

|Dv| +
∫
∂Ω

|v|dHN−1,

where HN−1 denotes the N − 1 dimensional Hausdorff measure. We will often use this norm in what
follows. In addition, the following continuous embeddings hold

BV(Ω) ↪→ Lm(Ω), 1 ≤ m ≤
N

N − 1
,

which are compact for 1 ≤ m < N
N−1 (see for instance [25,41]). We denote byM(Ω) the space of Radon

measures with finite total variation over Ω, by

DM
∞(Ω) = {z ∈ L∞(Ω;RN) | divz ∈ M(Ω)}

and by
DM

∞
loc(Ω) = {z ∈ L∞(Ω;RN) | divz ∈ M(Ω′), Ω′ ⊂⊂ Ω}.

The theory of L∞ divergence measure vector fields is due to Anzellotti [4] and Chen and Frid [8]. We
define the following distribution (z,Dv)

〈(z,Dv), ϕ〉 = −

∫
Ω

vϕdivzdx −
∫

Ω

vz · ∇ϕdx (2.1)

for ∀ ϕ ∈ C1
c (Ω). In Anzellotti’s theory we need some compatibility conditions, such as divz ∈ L1(Ω)

and v ∈ BV(Ω) ∩ L∞(Ω) or divz a Radon measure with finite total variation and v ∈ BV(Ω) ∩ L∞(Ω) ∩
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C(Ω).
Lemma 2.1 ( [34, 35]). Let v ∈ BVloc(Ω) ∩ L1(Ω, µ) and z ∈ DM∞

loc(Ω). Then the distribution (z,Dv)
defined in (2.1) previously satisfies

|〈(z,Dv), ϕ〉| ≤ ‖ϕ‖L∞‖z‖L∞(U)

∫
U
|Dv|,

for all open set U ⊂⊂ Ω and all ϕ ∈ C1
c (U).

Lemma 2.2 ( [34, 35]). The distribution (z,Dv) is a Radon measure. It and its total variation |(z,Dv)|
are absolutely continuous with respect to the measure |Dv| and

|

∫
B
(z,Dv)| ≤

∫
B
|(z,Dv)| ≤ ‖z‖L∞(U)

∫
B
|Dv|,

holds for all Borel sets B and for all open sets U such that B ⊂ U ⊂ Ω.
Lemma 2.3 ( [10, 11, 34]). Let z ∈ DM∞

loc(Ω) and let v ∈ BV(Ω) ∩ L∞(Ω). Then zv ∈ DM∞
loc(Ω).

Moreover, the following formula holds in the sense of measures

div(z, v) = (divz)v + (z,Dv).

It follows from Anzellotti’s theory that every z ∈ DM∞(Ω) has a weak trace on ∂Ω of the normal
component of z which is denoted by [z, γ] with γ the unit exterior normal on ∂Ω, which satisfies

‖[z, γ]‖L∞(∂Ω) ≤ ‖z‖L∞ ,

and
v[z, γ] = [vz, γ]

for all z ∈ DM∞(Ω) and v ∈ BV(Ω) ∩ L∞(Ω).
Lemma 2.4 (Green formula [10, 11, 34]). Let z ∈ DM∞

loc(Ω), $ = divz and v ∈ BV(Ω) and assume
v ∈ L1(Ω, µ). Then vz ∈ DM∞(Ω) and the following holds∫

Ω

vd$ +

∫
Ω

(z,Dv) =

∫
∂Ω

[vz, γ]dHN−1.

Lemma 2.5 ( [34, 35]). Let z ∈ DM∞
loc(Ω) and v ∈ BV(Ω) ∩ L∞(Ω). If vz ∈ DM∞(Ω), then

|[vz, γ]| ≤ |v|∂Ω‖z‖L∞(Ω), HN−1 a.e. on ∂Ω.

3. Weak solution to p-Laplacian problem

Let p0 := min{θ, N
N−1 }, with θ > 1 given by (H3). For each 1 < p < p0, let us consider the following

problem 
−∆pw = f (w), in Ω,

w > 0 in Ω,

w = 0, on ∂Ω,

(3.1)
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where Ω is a bounded smooth domain in RN , N ≥ 2, 1 < p < p0 and f : [0,+∞) → R satisfies
the conditions (H1) − (H5). We need the following propositions and a priori estimates of p-Laplace
equation to prove Theorem 1.2.
Definition 3.1. We say up ∈ W1,p

0 (Ω), up ≥ 0, is a weak solution to the problem (3.1) in the sense that∫
Ω

|∇up|
p−2∇up · ∇ϕdx =

∫
Ω

f (up)ϕdx, (3.2)

for ∀ ϕ ∈ W1,p
0 (Ω).

If up ∈ W1,p(Ω) is a weak solution of the problem (3.1) with f satisfying the critical growth, then
up ∈ C1,α(Ω) with α ∈ (0, 1) (see [23, 31, 40]), so that we suppose from the beginning a C1 regularity
for the solution. Next, we recall some results on the monotonicity and estimates of solutions for the p-
Laplace equation. One can refer to [1,16,19,29,32] for the proof of the following Proposition 3.2–3.7.
Proposition 3.2 ( [16]). Let Ω be a smooth bounded domain in RN , N ≥ 2, 1 < p < ∞, f : [0,∞)→ R
a continuous function which is locally Lipschitz continuous in (0,∞) and strictly positive in (0,∞) if
p > 2. Let w ∈ C1(Ω) be a weak solution of (3.1). Then for any direction ν and for µ in the interval
(a(ν), µ1(ν)], we have

w(x) ≤ w(xνµ), a.e. x ∈ Ων
µ. (3.3)

If f is locally Lipschitz continuous in the closed interval [0,+∞), then (3.3) holds for any µ in the
interval (a(ν), µ2(ν)], where a(ν), µ1(ν) and µ2(ν) are given by (1.7), (1.8) and (1.9).
Proposition 3.3 ( [16, 19]). Let Ω be a strictly convex bounded smooth domain, and define Ωδ = {x ∈
Ω | dist(x, ∂Ω) > δ}, for δ > 0. Then the following result holds for a weak solution w ∈ C1(Ω) of the
problem (3.1) with f satisfying the condition (H1)

∃ σ, ε > 0 depending only on Ω, such that ∀ x ∈ Ω \Ωε there
is a part of a cone Ix with
(i) w(ξ) ≥ w(x), ∀ ξ ∈ Ix,

(ii) Ix ⊂ Ω ε
2
,

(iii) |Ix| ≥ σ.

Ix is a part of a cone Kx with vertex in x, where all the Kx are congruent to a fixed cone K, and if
x ∈ Ω \Ω ε

2
, then Ix = Kx ∩Ω ε

2
.

Proposition 3.4 ( [32]). Let us define

λ1 = inf
w∈W

1,p0
0 (Ω)

{

∫
Ω

|∇w|p0dx |
∫

Ω

|w|p0dx = 1}, with p0 = min{θ,
N

N − 1
} > 1,

where θ is given by (H3). Then, λ1 is the first eigenvalue of the operator −∆p0 (λ1 ≤ λ for any eigenvalue
λ), it is simple, i.e., there is only an eigenfunction up to multiplication by a constant, and it is isolated.
Moreover a first eigenfunction does not change sign in Ω and by the strong maximum principle it is in
fact either strictly positive or strictly negative in Ω. So we can select a unique eigenfunction φ1 such
that ∫

Ω

φ
p0
1 dx = 1, and φ1 > 0 in Ω.
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The following extension of the Picone’s identity for the p-Laplacian has been proved in [1].
Proposition 3.5 (Picone’s identity [1]). Let v1, v2 ≥ 0 be differentiable functions in an open set Ω, with
v2 > 0 and p > 1. Set

L(v1, v2) = |∇v1|
p + (p − 1)

vp
1

vp
2

|∇v2|
p − p

vp−1
1

vp−1
2

|∇v2|
p−2∇v1 · ∇v2

and

R(v1, v2) = |∇v1|
p − |∇v2|

p−2∇(
vp

1

vp−1
2

) · ∇v2.

Then R(v1, v2) = L(v1, v2) ≥ 0.
As a consequence we have

|∇v2|
p−2∇(

vp
1

vp−1
2

) · ∇v2 ≤ |∇v1|
p.

The following extension of the Pohozaev’s identity for the p-Laplacian has been given by [29].
Proposition 3.6 (Pohozaev’s identity for p-Laplace [29]). Let w ∈ W1,p

0 (Ω)∩ L∞(Ω), p > 1, be a weak
solution of the problem {

−∆pw = f (w), in Ω,

w = 0, on ∂Ω,

where Ω is a bounded smooth domain in RN , N ≥ 2 and f : [0,+∞) → R is a continuous function.
Denote F(w) =

∫ w

0
f (s)ds. Then

N
∫

Ω

F(w)dx −
N − p

p

∫
Ω

f (w)wdx =
p − 1

p

∫
∂Ω

|
∂w
∂γ
|p(x · γ)dHN−1,

where γ is the unit exterior normal on ∂Ω.
We need also local W1,∞(Ω) result at the boundary. This result follows from the global estimates by

Lieberman [31] extending the local interior estimates by Dibenedetto [23].
Proposition 3.7 ( [16]). Let Ω be a smooth bounded domain in RN , N ≥ 2, and w ∈ C1(Ω) be a solution
of the problem 

−∆pw = h, in Ω,

w > 0 in Ω,

w = 0, on ∂Ω,

with h ∈ L(p∗)′(Ω). For δ > 0, let Ωδ = {x ∈ Ω | dist(x, ∂Ω) > δ} and suppose that w, h ∈ L∞(Ω \ Ωδ)
with

‖h‖L∞(Ω\Ωδ) ≤ M and ‖w‖L∞(Ω\Ωδ) ≤ M.

Then there exists a constant C > 0 only depending on M and δ such that

‖∇w‖L∞(∂Ω) ≤ C.
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Next, we will give the estimate of the solution for the problem (3.1).
Theorem 3.8. If up is a weak solution to the problem (3.1) and f satisfies the conditions (H2) − (H4),
then up satisfies

‖up‖W1,p
0 (Ω) ≤ C′, (3.4)

where the constant C′ > 0 is not dependent on p.
Proof. By 1 < p < p0, Proposition 3.4, Proposition 3.5 with v2 = up, v1 = φ1 and Young’s inequality,
we have ∫

Ω

f (up)

up−1
p

φ
p
1dx =

∫
Ω

−div(|∇up|
p−2∇up)

φ
p
1

up−1
p

dx

=

∫
Ω

|∇up|
p−2∇up · ∇(

φ
p
1

up−1
p

)dx

≤

∫
Ω

|∇φ1|
pdx

≤
p
p0

∫
Ω

|∇φ1|
p0dx +

p0 − p
p0
|Ω|

≤

∫
Ω

|∇φ1|
p0dx + |Ω|

≤ λ1 + |Ω|. (3.5)

By the condition (H3), there exists a constant C3 > 0 such that

sθ−1 ≤ C3 f (s), for s ≥ k1,

that is

sθ−p ≤ C3
f (s)
sp−1 , for s ≥ k1, (3.6)

where k1 = max{k0, 1} and k0 is given by (H3).
Indeed, from (H3), it holds

θ

t
≤

f (t)
F(t)

, for t ≥ k0. (3.7)

Setting k1 = max{k0, 1} and integrating the above inequality (3.7) with respect to t on the interval [k1, s],
one has

θ ln
s
k1
≤ ln

F(s)
F(k1)

, for s ≥ k1.

That is
F(s) ≥ F(k1)(

s
k1

)θ, for s ≥ k1. (3.8)

Setting C3 := kθ1
θF(k1) in (3.8), we get

F(s) ≥
sθ

θC3
, for s ≥ k1. (3.9)
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Considering (3.9) and s f (s) ≥ θF(s), for s ≥ k1, one gets the inequality (3.6).
Now, taking into account (3.5), (3.6) with s = up and Young’s inequality, we get∫

Ω

uθ−p
p φ

p
1dx =

∫
{0≤up≤k1}

uθ−p
p φ

p
1dx +

∫
{up>k1}

uθ−p
p φ

p
1dx

≤ kθ−p
1

∫
{0≤up≤k1}

φ
p
1dx + C3

∫
{up>k1}

f (up)

up−1
p

φ
p
1dx

≤ kθ−p
1

∫
Ω

φ
p
1dx + C3

∫
{up>k1}

f (up)

up−1
p

φ
p
1dx

= kθ−p
1

∫
Ω

φ
p
1dx + C3

∫
Ω

f (up)

up−1
p

φ
p
1dx −C3

∫
{0<up≤k1}

f (up)

up−1
p

φ
p
1dx

≤ kθ−p
1

∫
Ω

φ
p
1dx + (λ1 + |Ω|)C3

∫
Ω

φ
p
1dx

≤ (kθ−p
1 + (λ1 + |Ω|)C3)

∫
Ω

φ
p
1dx

≤ (kθ−p
1 + (λ1 + |Ω|)C3)(

p
p0

∫
Ω

φ
p0
1 dx +

p0 − p
p0
|Ω|)

≤ (kτ1 + (λ1 + |Ω|)C3)(|Ω| + 1) := C4, (3.10)

where λ1 + |Ω| is given by (3.5) and −C3

∫
{0<up≤k0}

f (up)

up−1
p
φ

p
1dx ≤ 0 is given by the condition (H1) ( f (s) ≥ 0,

for all s ≥ 0) respectively, and the last inequality is given by Proposition 3.4 with
∫

Ω
φ

p0
1 dx = 1 and

k1 = max{k0, 1} ≥ 1. By Proposition 3.3 and (3.10), for any x ∈ Ω \Ωδ, we have that

σ( inf
x∈Ω δ

2

φ
p
1)[up(x)]θ−p ≤

∫
Ix

[up(y)]θ−pφ
p
1(y)dy

≤

∫
Ω

[up(y)]θ−pφ
p
1(y)dy

≤ C4,

i.e.,

up(x) ≤ (
C4

σ infx∈Ω δ
2
φ

p
1

)
1
θ−p

= (
C4

σ(infx∈Ω δ
2
φ1)p )

1
θ−p

= (
C4

σ
)

1
θ−p ( inf

x∈Ω δ
2

φ1)−
p

θ−p

≤ (
C4

σ
+ 1)

1
θ−p0 [( inf

x∈Ω δ
2

φ1)−
1
θ−1 + ( inf

x∈Ω δ
2

φ1)−
p0

θ−p0 ] := C5, (3.11)

where the constant C5 may be depend on C4, σ, θ, p0 and φ1 by (3.11), but are independent of p.
Estimate (3.11) gives the uniform L∞ bounds near the boundary: ∃ δ > 0 and C5 > 0 such that

‖up‖L∞(Ω\Ωδ) ≤ C5, (3.12)
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for ∀ up ∈ W1,p
0 (Ω) satisfying the problem (3.1). On the other hand, from the condition (H2) and (3.12),

we have
‖ f (up)‖L∞(Ω\Ωδ) ≤ C1(1 + ‖up‖

1
N−1
L∞(Ω\Ωδ)

) ≤ C6. (3.13)

It is clear that f (up(·)) ∈ L(p∗)′ is given by the condition (H2) and Sobolev embedding. By Proposition
3.7, (3.12) and (3.13), we get

‖
∂up

∂γ
‖L∞(∂Ω) ≤ C7, (3.14)

where the constant C7 > 0 is only depending on C5, C6 and δ. By Proposition 3.6 (Pohozaev’s identity)

p∗
∫

Ω

F(s)dx −
∫

Ω

f (up)updx =
p − 1
N − p

∫
∂Ω

|
∂up

∂γ
|p(x · γ)dHN−1,

p∗ =
N p

N−p >
N

N−1 = 1∗ and (H4), there exists a large enough constant k2 > 0 such that

f (s)s ≤ C2(1∗F(s) − f (s)s)
≤ C2(p∗F(s) − f (s)s) (3.15)

as s ≥ k2, so that by the condition (H2) and taking s = up in (3.15)∫
Ω

|∇up|
pdx =

∫
Ω

f (up)updx

=

∫
{0<up≤k2}

f (up)updx +

∫
{up>k2}

f (up)updx

≤ C1k2(1 + k
1

N−1
2 )|Ω| + C2

p − 1
N − p

C7|∂Ω|

≤ C1k2(1 + k
1

N−1
2 )|Ω| + C2

p0 − 1
N − p0

C7|∂Ω| := C8. (3.16)

That is
‖up‖W1,p

0 (Ω) ≤ C
1
p

8 ≤ C8 + 1 := C′.

From the definitions of C5, C6, C7 and C8, i.e., (3.11)–(3.14) and (3.16), we obtain that the constant C′

is not dependent on p. The proof of Theorem 3.8 is completed.
The following existence result holds.

Theorem 3.9. Let f satisfy the conditions (H1), (H2), (H3) and (H5). Then there exists a nontrivial
positive solution up to the problem (3.1).
Proof. By the conditions (H1), (H2), (H3) and (H5), it is well known that there exists a nontrivial
solution up ≥ 0 to the problem (3.1). The positive solution up is obtained using the mountain pass
lemma by Ambrosetti and Rabinowitz [2] for the following truncated functional J+

p : W1,p
0 (Ω) → R

given by

J+
p (w) =

1
p

∫
Ω

|∇w|pdx −
∫

Ω

F+(w)dx, (3.17)

where F+(s) =
∫ s

0
f+(t)dt and

f+(s) =

{
f (s), s ≥ 0,
0, s < 0.

(3.18)
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We claim that J+
p satisfies the structure of mountain pass lemma and the (P − S ) condition.

Indeed, by the condition (H5), 0 is a local minimum of J+
p . From the condition (H3), there exist two

constants C̃, Ĉ > 0, such that
F+(s) ≥ C̃sθ − Ĉ,

for all s ∈ [0,+∞) with θ > 1. This implies that

J+
p (w) ≤

1
p
‖w‖p

W1,p
0

− C̃‖w‖θLθ + Ĉ|Ω|, (3.19)

for ∀ w ∈ W1,p
0 (Ω). We can choose a w0 ∈ W1,p

0 (Ω) and ‖w0‖W1,p
0

= 1 such that

J+
p (tw0) ≤

tp

p
− C̃tθ‖w0‖

θ
Lθ + Ĉ|Ω| → −∞,

as t → +∞, with 1 < p < p0 := min{θ, N
N−1 }. Whence there exists a large number t0 > 0 such that

J+
p (t0w0) < 0. (3.20)

We set e := t0w0 ∈ W1,p
0 (Ω). Since (H2) and the embedding W1,p

0 (Ω) ↪→ L1∗(Ω), 1∗ = N
N−1 <

N p
N−p = p∗,

is compact, we obtain that f+ satisfies the subcritical grow, i.e.,

| f+(s)| ≤ C1(1 + s1∗−1), with 1∗ < p∗. (3.21)

Considering (3.21) and (H3), J+
p satisfies the (P − S ) condition.

4. The proof of Theorem 1.2

In this section we prove our main results concerning the case p = 1, namely Theorem 1.2. Under
the same assumption of Theorem 1.2, we divide the proof into few steps.
Step 1. Existence of a solution u and a field z.
Step 2. (z,Du) = |Du| as measures in Ω.
Step 3. [z, γ] ∈ sign(−u) on ∂Ω.
Step 4. The monotonicity of solution u.
Step 5. u ∈ L∞(Ω).
Step 6. u is nontrivial.

Step 1. Existence of a solution u for the problem (1.1) and existence of a field z ∈ DM∞(Ω) satisfying
(1.4) and ‖z‖L∞ ≤ 1.
Proof of Step 1: From Theorem 3.8, we obtain that up is bounded in W1,p

0 (Ω) ↪→ Lm(Ω), with 1 ≤ m ≤
N

N−1 < p∗ =
N p

N−p , 1 < p < p0 < 2 ≤ N.

up → u strongly in Lm(Ω), (4.1)

up(x)→ u(x) a.e. x ∈ Ω, (4.2)

∃ g ∈ Lm(Ω), such that |up(x)| ≤ g(x), (4.3)
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as p→ 1+.
Next, we will show that there exists a vector field z satisfying (1.4). Recalling Theorem 3.8, we obtain
that {up} is bounded in W1,p

0 (Ω) ⊂ BV(Ω). So that for 1 ≤ r < p′ =
p

p−1 , we have∫
Ω

||∇up|
p−2∇up|

rdx =

∫
Ω

|∇up|
r(p−1)dx

≤ (
∫

Ω

|∇up|
pdx)

r
p′ |Ω|

1− r
p′ ,

and thus

‖|∇up|
p−2∇up‖Lr(Ω) ≤ C

1
p′

8 |Ω|
1
r −

1
p′ , (4.4)

where the constant C8 is given by (3.16). This implies that |∇up|
p−2∇up is bounded in Lr(Ω;RN) with

respect to p. Then there exists zr ∈ Lr(Ω;RN) such that

|∇up|
p−2∇up ⇀ zr, weakly in Lr(Ω;RN), (4.5)

as p → 1+. A standard diagonal argument shows that there exists a unique vector field z which is
defined on Ω independently of r, such that

|∇up|
p−2∇up ⇀ z, weakly in Lr(Ω;RN), (4.6)

as p→ 1+. By applying the semicontinuity of the Lr norm the previous inequality (4.4) implies

‖z‖Lr(Ω) ≤ lim inf
p→1+

‖|∇up|
p−2∇up‖Lr ≤ |Ω|

1
r , ∀ r < ∞,

so that, letting r → ∞ we have z ∈ L∞(Ω;RN) and

‖z‖L∞(Ω;RN ) ≤ 1.

Using ϕ ∈ C1
c (Ω) with ϕ ≥ 0 as a test function in (3.1), we have∫

Ω

|∇up|
p−1∇up∇ϕdx =

∫
Ω

f (up)ϕdx. (4.7)

Taking p→ 1+ in the left hand side of (4.7) and by (4.6), we get

lim
p→1+

∫
Ω

|∇up|
p−1∇up∇ϕdx =

∫
Ω

z · ∇ϕdx, (4.8)

for ∀ ϕ ∈ C1
c (Ω). On the other hand, thanks to (4.2) and f (s) a locally Lipschitz continuous function,

we have
f (up(x))→ f (u(x)), a.e. x ∈ Ω.

Moreover, we deduce from (H2) and (4.3) that

| f (up(·))| ≤ C1(1 + |up(·)|
1

N−1 ) ≤ C1(1 + |g(·)|
1

N−1 ) ∈ LN(Ω).
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Consequently, by the Dominated Convergence Theorem, we get

lim
p→1+

∫
Ω

f (up(x))ϕ(x)dx =

∫
Ω

f (u(x))ϕ(x)dx, (4.9)

for ∀ ϕ ∈ C1
c (Ω). Therefore, (4.7), (4.8) and (4.9) imply that

−divz = f (u) inD′(Ω). (4.10)

Step 2. (z,Du) = |Du| as measures in Ω.
Before proving (z,Du) = |Du|, we need the following lemma for which one can refer to [9].
Lemma 4.1 ( [9]). Under the same assumptions of Theorem 1.2, the following identity holds

−

∫
Ω

uϕdivzdx =

∫
Ω

f (u)uϕdx, (4.11)

for ∀ ϕ ∈ C1
c (Ω).

Proof of Step 2: We take upϕ ∈ W1,p
0 (Ω) as a test function in (3.1) with 0 ≤ ϕ ∈ C1

c (Ω), maxx∈Ω |ϕ(x)| =
M0 and get ∫

Ω

|∇up|
pϕdx +

∫
Ω

up|∇up|
p−2∇up · ∇ϕdx =

∫
Ω

f (up)upϕdx. (4.12)

By Young’s inequality and Fatou’s Lemma, we estimate the first integral term in (4.12)∫
Ω

|Du|ϕdx ≤ lim inf
p→1+

∫
Ω

|∇up|ϕdx

≤ lim inf
p→1+

[
1
p

∫
Ω

|∇up|
pϕdx +

p − 1
p

∫
Ω

ϕdx]

= lim inf
p→1+

∫
Ω

|∇up|
pϕdx (4.13)

On the other hand, by (4.6) we have

lim
p→1+

∫
Ω

up|∇up|
p−2∇up · ∇ϕdx =

∫
Ω

uz · ∇ϕdx. (4.14)

From
| f (up)upϕ| ≤ M0C1|up|(1 + |up|

1
N−1 ) ≤ M0C1|g(·)|(1 + |g(·)|

1
N−1 ) ∈ L1(Ω),

and the Dominated Convergence Theorem, we obtain the right hand side of (4.12) is as follows

lim
p→1+

∫
Ω

f (up)upϕdx =

∫
Ω

f (u)uϕdx. (4.15)

From (4.12)–(4.15), we have∫
Ω

|Du|ϕdx +

∫
Ω

uz · ∇ϕdx ≤
∫

Ω

f (u)uϕdx. (4.16)
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By (4.16) and Lemma 4.1, we also have∫
Ω

|Du|ϕdx +

∫
Ω

uz · ∇ϕdx ≤ −
∫

Ω

uϕdivzdx.

Therefore, by (2.1), we get∫
Ω

|Du|ϕdx ≤ −
∫

Ω

uz · ∇ϕdx −
∫

Ω

uϕdivzdx =

∫
Ω

(z,Du)ϕdx.

The arbitrariness of ϕ implies that
|Du| ≤ (z,Du)

as measures in Ω. On the other hand, since ‖z‖L∞ ≤ 1, and

(z,Du) ≤ ‖z‖L∞ |Du| ≤ |Du|

as measures in Ω, we have
|Du| = (z,Du).

Step 3. The boundary condition [z, γ] ∈ sign(−u) on ∂Ω.
Proof of Step 3: It is easy to check that this fact is equivalent to show∫

∂Ω

(|u| + u[z, γ])dHN−1 = 0. (4.17)

Choosing up as a test function in (3.1), we have∫
Ω

|∇up|
pdx =

∫
Ω

f (up)updx.

Since up ∈ W1,p
0 (Ω) is bounded, by the fact that up = 0 on ∂Ω and Young’s inequality, we get∫

Ω

|∇up|dx +

∫
∂Ω

|up|dHN−1 ≤
1
p

∫
Ω

|∇up|
pdx +

p − 1
p
|Ω|

=
1
p

∫
Ω

f (up)updx +
p − 1

p
|Ω|. (4.18)

We use the lower semicontinuity (4.18) to pass to the limit as p→ 1+ and obtain∫
Ω

|Du|dx +

∫
∂Ω

|u|dHN−1 ≤ lim inf
p→1+

(
∫

Ω

|∇up|dx +

∫
∂Ω

|up|dHN−1)

≤ lim inf
p→1+

[
1
p

∫
Ω

f (up)updx +
p − 1

p
|Ω|]

=

∫
Ω

f (u)udx, (4.19)

where the last equality is given by the Dominated Convergence Theorem and

| f (up)up| ≤ C1|up|(1 + |up|
1

N−1 ) ≤ C1|g(·)|(1 + |g(·)|
1

N−1 ) ∈ L1(Ω).
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Furthermore, by Lemma 2.3 and Lemma 2.4, we have∫
Ω

f (u)udx = −

∫
Ω

udivzdx

=

∫
Ω

(z,Du)dx −
∫
∂Ω

u[z, γ]dHN−1. (4.20)

From (z,Du) = |Du|, (4.19) and (4.20), we have∫
∂Ω

(|u| + u[z, γ])dHN−1 ≤ 0. (4.21)

The inequality (4.21) and |u| ≥ |u|‖z‖L∞ ≥ |u[z, γ]| ≥ −u[z, γ] give the desired equality (4.17) and we
conclude that

[z, γ] ∈ sign(−u) on ∂Ω.

Step 4. The monotonicity of the solution u of problem (1.1).
Proof of Step 4: By Proposition 3.2, we obtain up satisfies the following result. For any direction ν
and µ in the interval (a(ν), µ1(ν)], then

up(x) ≤ up(xνµ), ∀ x ∈ Ων
µ, (4.22)

where a(ν) and µ1(ν) are given by (1.7) and (1.8). Considering this fact and up(x) → u(x) a.e. in Ω,
taking p→ 1+ in (4.22), we have

u(x) ≤ u(xνµ), a.e. x ∈ Ων
µ. (4.23)

We get the result of monotonicity for the solution u. Inequality (4.23) also holds for any
µ ∈ (a(ν), µ2(ν)] by Proposition 3.2, if f is locally Lipschitz continuous, and a(ν) and µ2(ν) are given
by (1.7) and (1.9).

Step 5. The boundedness of the solution u, i.e., u ∈ L∞(Ω).
Before proving u ∈ L∞(Ω), we need to prove the following lemma.
Lemma 4.2. For every ε > 0 there exists k3 > 0 which does not depend on p, such that∫

Ak

(1 + u
1

N−1
p )Ndx < ε (4.24)

for every k ≥ k3 and ∀ p ∈ (1, p0), with Ak = {x ∈ Ω | up(x) > k}.
Proof of Lemma 4.2: Using Sobolev embedding W1,p

0 (Ω) ⊂ BV(Ω) ↪→ L
N

N−1 (Ω), Theorem 3.8 and
Holder’s inequality, we obtain that

|Ak|
N−1

N ≤
1
k

(
∫

Ak

u
N

N−1
p dx)

N−1
N

≤
1
k

S 1

∫
Ak

|∇up|dx
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≤
S 1

k
|Ak|

p−1
p (
∫

Ak

|∇up|
pdx)

1
p

≤
S 1

k
|Ω|

p−1
p C

1
p

8

≤
S 1

k
(1 + |Ω|)(C8 + 1), (4.25)

where S 1 is given by the best Sobolev constant

S 1 =
{Γ(1 + N

2 )}
1
N

√
πN

,

see [26, 39], and |Ak| stands for its N dimensional Lebesgue measure. Inequality (4.25) implies that
limk→∞ |Ak| = 0. It holds that for ∀ ε > 0, there exists a large number k4 > 0 such that

|Ak| <
ε

2N , for all k ≥ k4. (4.26)

On the other hand, by Sobolev embedding up ∈ W1,p
0 (Ω) ⊂ BV(Ω) ↪→ L

N
N−1 (Ω), Theorem 3.8 and (4.3),

we get
up ∈ L

N
N−1 (Ω)

and
0 ≤
∫

Ak

|up(x)|
N

N−1 dx ≤
∫

Ak

|g(x)|
N

N−1 dx, (4.27)

which implies that up(x) < ∞ a.e. in Ω. Considering (4.27), limk→∞ |Ak| = 0 and by absolute continuity
of integrable function, we have

lim
k→∞

∫
Ak

|up(x)|
N

N−1 dx ≤ lim
k→∞

∫
Ak

|g(x)|
N

N−1 dx = 0. (4.28)

From (4.28), for ∀ ε > 0, ∃ k5 > 0 large enough (not depend on p) and δ > 0 small enough such that
as k ≥ k5, we have |Ak| < δ and ∫

Ak

|up(x)|
N

N−1 dx ≤
∫

Ak

|g(x)|
N

N−1 dx <
ε

2N , (4.29)

From (4.26) and (4.29), we obtain∫
Ak

(1 + u
1

N−1
p )Ndx ≤ 2N−1(|Ak| +

∫
Ak

|up(x)|
N

N−1 dx)

≤ 2N−1(
ε

2N +
ε

2N ) = ε,

for all k ≥ k3 := max{k4, k5}. The proof of Lemma 4.2 is completed.
Proof of Step 5: Next, we would like to use Stampacchia truncation [38] to prove the boundedness of
the positive solution u. For every k > 0, we define the auxiliary function Gk : [0,∞)→ R as

Gk(s) =

{
s − k, s > k,
0, 0 < s ≤ k.

(4.30)
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Then, choosing Gk(up) as a test function in (3.1), we get∫
Ω

|∇Gk(up)|pdx =

∫
Ω

f (up)Gk(up)dx. (4.31)

By (4.31), (H2), Sobolev embedding, Young’s inequality and Holder’s inequality, we have

(
∫

Ω

Gk(up)
N

N−1 dx)
N−1

N ≤ S 1

∫
Ω

|∇Gk(up)|dx

≤
S 1

p

∫
Ω

|∇Gk(up)|pdx +
S 1(p − 1)

p
|Ω|

=
S 1

p

∫
Ω

f (up)Gk(up)dx +
S 1(p − 1)

p
|Ω|

≤
S 1

p
C1

∫
Ω

(1 + u
1

N−1
p )Gk(up)dx +

S 1(p − 1)
p

|Ω|

≤ S 1C1[
∫

Ak

(1 + u
1

N−1
p )Ndx]

1
N (
∫

Ak

Gk(up)
N

N−1 dx)
N−1

N

+
S 1(p − 1)

p
|Ω|. (4.32)

By Lemma 4.2 and taking ε = 1
(2C1S 1)N , there exists k3 > 0 which does not depend on p, such that∫

Ak

(1 + u
1

N−1
p )Ndx <

1
(2C1S 1)N , (4.33)

for all k ≥ k3 and p ∈ (1, p0). Consequently, from (4.32) and (4.33) we obtain

0 ≤
∫

Ω

Gk(up)
N

N−1 dx ≤ [
2S 1(p − 1)|Ω|

p
]

N
N−1 . (4.34)

Since up(x) → u(x) a.e. x ∈ Ω and Fatou’s Lemma, we can pass to the limit on p → 1+ in (4.34), to
conclude that ∫

Ω

(u(x) − k)
N

N−1 dx = 0,

for ∀ k ≥ k3 > 0. Thus u ∈ L∞(Ω).
Step 6. u is nontrivial.
Proof of Step 6: For ∀ v ∈ BV(Ω), we define the functional J+ : BV(Ω)→ R as

J+(v) =

∫
Ω

|Dv| +
∫
∂Ω

|v|dHN−1 −

∫
Ω

F+(v)dx,

where F+(s) =
∫ s

0
f+(t)dt and f+ is given by (3.18).

We will say that v0 ∈ BV(Ω) is a critical point of J+ if there exists z ∈ DM∞(Ω) with ‖z‖L∞ ≤ 1 such
that

−

∫
Ω

ϕdivzdx =

∫
Ω

f (v0)ϕdx, for all ϕ ∈ C1
c (Ω),

(z,Dv0) = |Dv0| as measures in Ω,
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[z, γ] ∈ sign(−v0) on ∂Ω,

where γ is the unit exterior normal on ∂Ω. The critical points of J+ coincide with solutions to the
problem (1.1) in the sense Definition 1.1, for which one can refer to [9] or [35].

We shall show that 0 is a local minimum of J+.
Indeed, by the condition (H5), there exists small enough δ > 0 such that

| f (s)| ≤ C9|s|α,

for ∀ |s| ∈ (0, δ) and for some constant C9 > 0 with α ∈ (0, 1
N−1 ). Moreover, by the definition of F+(s),

we have

F+(s) =

∫ s

0
f+(t)dt ≤

∫ s

0
| f (t)|dt ≤

C9

1 + α
|s|1+α (4.35)

for ∀ |s| ∈ (0, δ). By (4.35) and the norm ‖v‖BV =
∫

Ω
|Dv| +

∫
∂Ω
|v|dHN−1, v ∈ BV(Ω), it holds

J+(v) = ‖v‖BV −

∫
Ω

F+(v)dx

≥ ‖v‖BV −
C9

1 + α

∫
Ω

|v|1+αdx

≥ ‖v‖BV −C10‖v‖1+α
BV ,

where the last inequality is given by the embedding BV(Ω) ↪→ L1+α(Ω), α ∈ (0, 1
N−1 ). Choosing a

positive constant ρ < min{δ, ( 1
2C10

)
1
α }, we obtain

J+(v) ≥
1
2
‖v‖BV > 0, (4.36)

for ∀ v ∈ BV(Ω) and ‖v‖BV ≤ ρ. This implies that 0 is a local minimum of J+.
Now, we introduce the auxiliary functional

Ip(w) = J+
p (w) +

p − 1
p
|Ω|, (4.37)

where J+
p is given by (3.17). By Young’s inequality and (4.18), we can fix p ∈ (1, p0) and obtain

Ip(w) = J+
p (w) +

p − 1
p
|Ω|

=
1
p

∫
Ω

|∇w|pdx −
∫

Ω

F+(w)dx +
p − 1

p
|Ω|

≥

∫
Ω

|∇w|dx +

∫
∂Ω

|w|dHN−1 −

∫
Ω

F+(w)dx = J+(w), (4.38)

for ∀ w ∈ W1,p
0 (Ω) ⊂ BV(Ω), with p0 = min{θ, N

N−1 }. From (4.38) and (3.19), one gets

J+(w) ≤ J+
p (w) +

p − 1
p
|Ω| ≤

1
p
‖w‖p

W1,p
0

− C̃‖w‖θLθ + (
p − 1

p
+ Ĉ)|Ω|, (4.39)
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for all w ∈ W1,p
0 (Ω) with p < p0 < θ. Recalling the structure of mountain pass lemma in Theorem 3.9,

we can deduce that there exists e = t0w0 ∈ W1,p
0 (Ω) ⊂ BV(Ω) and ‖e‖BV > ρ such that J(e) < 0 by

(3.20).
Obviously, the critical points of Ip are identical with the critical points of J+

p . Then up given by
Theorem 3.9 is a critical point of J+

p , and also a critical point of Ip, which implies that the critical point
up satisfies

Ip(up) = inf
η∈Γp

max
t∈[0,1]

Ip(η(t)), (4.40)

where Γp = {η ∈ C([0, 1],W1,p
0 (Ω)) | η(0) = 0, η(1) = e}. Considering any path η ∈ Γp and the

continuity of the map t → Ip(η(t)), there exists t0 > 0 such that ‖η(t0)‖BV = ρ. From (4.36), (4.38),
(4.40) and ‖η(t0)‖BV = ρ, we obtain that

Ip(up) = inf
η∈Γp

max
t∈[0,1]

Ip(η(t)) ≥
ρ

2
. (4.41)

On the other hand, choosing up as a test function in (3.1), by the Dominated Convergence Theorem,
(4.2) and (4.20), we have

lim
p→1+

1
p

∫
Ω

|∇up|
pdx = lim

p→1+

1
p

∫
Ω

f (up)updx

=

∫
Ω

f (u)udx

=

∫
Ω

(z,Du) −
∫
∂Ω

u[z, γ]dHN−1

=

∫
Ω

|Du| +
∫
∂Ω

|u|dHN−1, (4.42)

where the last equality is given by Step 2 and Step 3. From (H2), (4.2) and (4.3), we can apply the
Dominated Convergence Theorem to obtain

lim
p→1+

∫
Ω

F+(up)dx =

∫
Ω

F+(u)dx. (4.43)

By (4.37), (4.42) and (4.43), we can get

lim
p→1+

Ip(up) = lim
p→1+

[J+
p (up) +

p − 1
p
|Ω|] = lim

p→1+
J+

p (up) = J+(u). (4.44)

Summarizing (4.41) and (4.44) we obtain that

J+(u) ≥
ρ

2
> 0,

with 0 < ρ < min{δ, ( 1
2C10

)
1
α }, and then u is nontrivial, because J+(0) = 0.

The proof of Theorem 1.2 is completed.
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