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Abstract: In this paper, we consider the efficient numerical scheme for solving time-fractional
mobile/immobile transport equation. By utilizing the compact difference operator to approximate the
Laplacian, we develop an efficient Crank-Nicolson compact difference scheme based on the modified
L1 method. It is proved that the proposed scheme is stable with the accuracy of O(τ2−α + h4), where τ
and h are respectively the temporal and spatial stepsizes, and the fractional order α ∈ (0, 1). In addition,
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1. Introduction

In this paper, we focus on the efficient numerical scheme for solving the two-dimensional time-
fractional mobile/immobile transport equation:

κ1∂tu(x, t) + κ2 RLDα
0,tu(x, t) = µ∆u(x, t) + f (x, t), (x, t) ∈ Ω × (0,T ], (1.1)

where Ω ⊂ R2 is a bounded rectangle domain and T is the positive final time. The corresponding initial
and boundary conditions satisfy u(x, 0) = v(x), x ∈ Ω and u(x, t) = 0, (x, t) ∈ ∂Ω × [0,T ], respectively.
Here, µ, κ1, and κ2 are some fixed positive constants, f and v are two given smooth functions, 0 < α < 1,
and RLDα

0,t is the Riemann-Liouville derivative defined by:

RLDα
0,tu(·, t) =

1
Γ(1 − α)

∂

∂t

∫ t

0
(t − s)−αu(·, s)ds,
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where Γ(·) is the Gamma function.
The fractional mobile/immobile transport Eq (1.1) can be viewed as the limiting equation that

govern continuous time random walks with heavy tailed random waiting times [1]. The solution
regularity of (1.1) can be derived by using the Laplace transform tools and operator approach, please
refer to our earlier paper [2] for similar discussion. We do not intend to go into further discussion on
this point, because this would detract from our focus in this paper.

Until now, the numerical solution of the Eq (1.1) has been partially investigated by some
researchers [3, 4]. By assuming the solution is sufficiently smooth, Liu et al. developed a fast compact
finite difference scheme based on an equivalent form involving the Caputo derivative for solving the
one-dimensional fractional mobile/immobile transport Eq [3]. Their fast solution technique is based
on the fast Fourier transform to improve the computational performance in the time-marching system.
Qiu et al. utilized the weighted and shifted Grünwald formula to obtain alternating direction implicit
Galerkin finite element scheme for solving the distributed-order time-fractional mobile/immobile
equation involving zero initial and Dirichlet boundary conditions [4]. We can see that the methods
mentioned above are effective for solving smooth solution problems, but not for non-smooth solution
ones, even though the non-smoothness of fractional models has gradually received considerable
attention from researchers.

A variety of strategies can be found in [5–8] for dealing with the non-smooth solution case, just to
name a few. One of the most commonly used is to employ the method of adding correction terms which
is initiated in [9] and revisited in [10]. For the fractional model (1.1), there is a few literatures on such
subject. In [11], Yin et al. derived the stable finite element scheme and considered the method of adding
correction terms to overcome the initial singularity of the time fractional derivative. Inspired by this,
and noting that the Crank-Nicolson scheme can be derived naturally by the modified L1 method [12],
we shall therefore focus on the modified L1 method with correction terms to derive the efficient Crank-
Nicolson scheme for solving the non-smooth problem in (1.1).

Fast algorithms for the fractional model (1.1) are also another focus of this paper. It is known that
the nonlocal property of the fractional derivative always seriously impact the computational
performance of the existing numerical schemes, especially for the high-dimensional problems. By
employing the local radial basis functions, Nikan et al. proposed an efficient meshless approach for
solving the two-dimensional time-fractional Klein-Kramers model [13]. In [14], the authors applied
the fourth-order compact finite difference method to discrete the Poisson equation with Dirichlet
boundary value condition, and solved the resulting discretized system efficiently with fast discrete
sine transform (DST). This allows their algorithm to avoid computing matrix inversion directly. With
the fast Fourier transform (FFT), the computational cost is reduced from O(M2

1 M2
2) to

O(M1M2 log(M1M2)) for two-dimensional problem. Here, M1 and M2 denote the total number grid
points in x- and y-axis direction, respectively. So, for the model problem (1.1), we shall further
employ the compact finite difference operator to discrete the Laplacian and then combining the DST
technique to obtain the efficient fast Crank-Nicolson compact difference scheme. So far as we know,
the use of DST technique with proper correction terms to efficiently solve the fractional model (1.1)
has not been found in the existing literatures yet.

The contributions of this paper are listed as follows. First, we develop a fast Crank-Nicolson
compact difference scheme by employing the modified L1 method and DST technique; see the
scheme (4.1). Second, The non-smooth issue in the fractional model (1.1) is addressed by adding
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appropriate correction terms. And more importantly, the added correction terms have no impact on the
stability of the original scheme; see the scheme (4.2). Third, we show theoretically and numerically
that our scheme (4.2) solves the fractional model (1.1) rapidly and efficiently with the accuracy of
O(τ2−α + h4); see Theorems 3.1 and 3.2, and Tables 1–5. The organization of this paper is as follows.
In Section 2, we derive the Crank-Nicolson compact difference scheme based on the modified L1
method. The stability and error estimates of the proposed scheme are proved rigorously in Section 3.
In Section 4, we further apply the DST technology and the method of adding correction terms to deal
with the non-smooth solution case. Numerical examples are demonstrated to conform the
effectiveness of the scheme in Section 5. Finally, we give the conclusions of the paper in Section 6.

In what follows, the symbol c (with or without subscript) is used to denote the constant, which may
vary in different scenario but is independent of the temporal and spatial stepsizes.

2. Derivation of the scheme

In this section, we provide the derivation of the numerical scheme for numerically solving (1.1).
Let nT be a positive integer. The temporal stepsize τ is given by τ = T/nT . We denote the grid point

tn = nτ for n ≥ 0. If g(t) ∈ C2[0,T ], we have the following modified L1 method for the approximation
of Riemann-Liouville derivative at t = tn+ 1

2
(:= (tn + tn+1)/2):

RLDα
0,tg(tn+ 1

2
) = D

α

τgn+ 1
2 + Rn+ 1

2 , (2.1)

where the error |Rn+ 1
2 | ≤ cτ2−α maxt∈[0,T ] |g′′(t)| (cf. [12, Lemma 3.1]) and

D
α

τgn+ 1
2 = τ−α

[
b0g(tn+ 1

2
) −

n∑
k=1

(bn−k − bn−k+1)g(tk− 1
2
) − (bn − Bn)g(t 1

2
) − Ang(t0)

]
. (2.2)

Here, the weights bk, Bk, and Ak are defined by
bk =

1
Γ(2 − α)

((k + 1)1−α − k1−α),

Bk =
2

Γ(2 − α)

(
(k +

1
2

)1−α − k1−α
)
,

and
An = Bn −

1 − α
Γ(2 − α)

(
n +

1
2

)−α
.

Letting t = tn+1/2 in (1.1) yields

κ1∂tu(x, tn+1/2) + κ2 RLDα
0,tu(x, tn+1/2) = µ∆u(x, tn+1/2) + f (x, tn+1/2).

Notice that ∂tu(x, tn+1/2) = δtun+1/2 +O(τ2) where δtun+1/2 = (un+1−un)/τ, we readily have the following
form:

κ1δtun+1/2 + κ2 D
α

τun+1/2 = µ∆un+1/2 + f n+1/2 + Rn+1/2
x , (2.3)

where the local truncation Rn+1/2
x = O(τ2−α) and un+1/2 = (un+1 + un)/2.

Next, we consider the fourth-order compact difference operator for spatial discretization.
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To enable our numerical scheme and theoretical analysis to be easily extended to other
high-dimensional problems, here we use partially the notations of the paper [15]. Denote the spatial
stepsize hk = (xR

k − xL
k )/Mk where Mk is a positive integer and the grid point xk, jk = xL

k + jkhk for
jk = 0, 1, · · · ,Mk. The subscript k(1 ≤ k ≤ d) here represents the spatial direction at kth position. In
this paper, we focus on the two-dimensional case: d = 2.

The discrete grids in space is given by Ωh = {xh = (x1, j1 , x2, j2 , · · · , xd, jd )|0 ≤ jk ≤ Mk, 1 ≤ k ≤ d}.
We further denote that Ωh = Ωh ∩ Ω and the boundary ∂Ωh = Ωh ∩ ∂Ω. The space of grid function is
denoted as Vh = {v|v = (vh)xh and vh = 0 for xh ∈ ∂Ωh}. For simplicity, we introduce the following
difference operator for the grid function vh = v(xh) with the index vector h = (i1, i2, · · · , id) at kth
position:

Hkvik :=
(
I +

h2
k

12
δ2

k

)
vik ,

with δ2
kvik = (δkvik+ 1

2
− δkvik− 1

2
)/hk and δkvik+ 1

2
:= (vik+1 − vik)/hk. The compact difference operator is

given by ∆kvik := δ2
k
Hk

vik . So we have the fourth-order spatial approximation of ∆v (xh) for xh ∈ Ωh as
follows: ∆hvh :=

∑
k ∆kvh.

Based on the above form (2.3), we apply the compact difference approximation in space to obtain

κ1δtu(xh)n+ 1
2 + κ2D

α

τu(xh)n+ 1
2 = µ∆hu(xh)n+ 1

2 + f n+ 1
2 + Rn+ 1

2
xt . (2.4)

The local truncation error is given by Rn+ 1
2

xt = O(τ2−α + h4). Omitting the small term Rn+ 1
2

xt , we obtain
the following fully discrete Crank-Nicolson compact difference scheme for the model (1.1): Find the
numerical solution un

h of u(xh, tn) for n ≥ 1, such that

κ1δtu
n+ 1

2
h + κ2D

α

τun+ 1
2

h = µ∆hun+ 1
2

h + f n+ 1
2 . (2.5)

The initial and boundary conditions are given by u0
h = v(xh) and u(xh)|xh∈∂Ωh = 0, respectively.

Remark 2.1. When α→ 1, the Crank-Nicolson compact difference scheme (2.5) recovers the classical
one

κ1δtu
n+ 1

2
h + κ2δtu

n+ 1
2

h = µ∆hun+ 1
2

h + f n+ 1
2 ,

for solving the corresponding diffusion equation:

κ1∂tu(x, t) + κ2∂tu(x, t) = µ∆u(x, t) + f (x, t).

One the other hand, when α→ 0, we have

κ1δtu
n+ 1

2
h + κ2un+ 1

2
h = µ∆hun+ 1

2
h + f n+ 1

2 ,

from which we can numerically solve the classical diffusion equation with a reaction term:

κ1∂tu(x, t) + κ2u(x, t) = µ∆u(x, t) + f (x, t).

Thus in this sense, we can say that the derived numerical scheme (2.5) is compatible with integer-order
one. Notice that the compatibility of the numerical scheme is important in solving nonlocal equations,
one can refer to [16] for more details.
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Remark 2.2. Formally, one can use the limiting properties of Riemann-Liouville derivative in the
fractional model (1.1) to naturally obtain the corresponding integer-order equation, however the
underlying physical interpretation needs to be studied further, see the similar discussion in Section
4.2 of the paper [1].

3. Stability and error estimates

In this section, we study the stability and error estimates for the Crank-Nicolson compact difference
scheme (2.5).

For any grid function v ∈ Vh, the discrete L2-norm is given by ‖v‖ =
√

(v, v)h with the discrete
inner product (u, v)h = (

∏d
k=1 hk)

∑
xh∈Ωh

uhvh. The discrete H1-seminorm and H1-norm are denoted as

|v|1 =

√∑d
k=1 ‖δkvh‖

2 and ‖v‖1 =

√
‖v‖2 + |v|21. In view of the embedding theorem, one can readily have

the equivalence of |v|1 and ‖v‖1 for any v ∈ Vh.
We shall need the boundedness of the discrete operator D

α

τ , which is given by the following lemma.

Lemma 3.1. For any real-valued functions gn, n ≥ 0 defined on Ω, the discrete operator D
α

τ defined by
(2.2) satisfies the following inequality:

−2(D
α

τgn+1/2, gn+1/2)h ≤ τ
−α

( n∑
k=1

bn−k‖gk−1/2‖2 −

n+1∑
k=1

bn+1−k‖gk−1/2‖2 + An‖g0‖2
)
.

Proof. One can refer to the Lemma 4.2 in [12] or Lemma 4.4 in [17] for similar discussion. Thus the
proof is completed. �

Now we are ready to present the stability of the scheme (2.5).

Theorem 3.1. The fully discrete Crank-Nicolson compact difference scheme (2.5) is stable in the sense
that

‖un+1
h ‖

2 ≤ c
(
‖u0

h‖
2 + τ

n+1∑
k=1

‖ f k−1/2‖2
)
.

Proof. Taking the discrete inner product of (2.5) with 2τun+1/2
h , one has

2τκ1(δtu
n+1/2
h , un+1/2

h )h + 2τκ2(D
α

τun+1/2
h , un+1/2

h )h = 2τµ(∆hun+1/2
h , un+1/2

h )h + 2τ( f n+1/2, un+1/2
h )h.

Since the matrix corresponding to Hk in ∆h is positive definite with the eigenvalues of the form:
λk, jk = 5

6 + 1
6 cos( jkπ

Mk
), one can obtain the boundedness of ∆h in discrete inner product, that is

3
2 (∆hun+1/2

h , un+1/2
h )h < (∆hun+1/2

h , un+1/2
h )h < (∆hun+1/2

h , un+1/2
h )h with the notation ∆hun

h =
∑d

k=1 δ
2
kun

h

(cf. [15, Theorem 3.1]). Notice that (∆hun+1/2
h , un+1/2

h )h = −|un+1/2
h |21, So discarding this nonpositive

term and applying Lemma 3.1, we obtain

κ1(‖un+1
h ‖

2 − ‖un
h‖

2) ≤ τ1−ακ2

( n∑
k=1

bn−k‖u
k−1/2
h ‖2 −

n+1∑
k=1

bn+1−k‖u
k−1/2
h ‖2 + An‖u0

h‖
2
)

+2τ( f n+1/2, un+1/2
h )h.
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Denote Gn = κ1‖un
h‖

2 + τ1−ακ2
∑n

k=1 bn−k‖u
k−1/2
h ‖2. Then the above inequality can be written as a more

compact form:
Gn+1 ≤ Gn + τ1−ακ2An‖u0

h‖
2 + 2τ( f n+1/2, un+1/2

h )h.

Summing up n from 1 to m and replacing m with n, we arrive at

Gn+1 ≤ G1 + τ1−ακ2

n∑
k=1

Ak‖u0
h‖

2 + 2τ
n∑

k=1

( f k+1/2, uk+1/2
h )h.

By the Cauchy-Schwarz inequality, the third term on the right-hand side of the above inequality has
the following estimates:

2τ
n∑

k=1

( f k+1/2, uk+1/2
h )h ≤ τ

1−ακ2

n+1∑
k=1

bn+1−k‖u
k−1/2
h ‖2 +

n+1∑
k=2

τ1+α

κ2bn+1−k
‖ f k−1/2‖2,

from which we have

κ1‖un+1
h ‖

2 ≤ G1 + τ1−ακ2

n∑
k=1

Ak‖u0
h‖

2 +
τ1+α

κ2

n+1∑
k=2

1
bn+1−k

‖ f k−1/2‖2. (3.1)

It remains to estimate the G1. To this end, we consider the case n = 0 for the scheme (2.5). Similarly,
by taking the discrete inner product of (2.5) with 2τu1/2

h , we have

2τκ1(δtu
1/2
h , u1/2

h )h + 2τκ2(D
α

τu1/2
h , u1/2

h )h = 2τµ(∆hu1/2
h , u1/2

h )h + 2τ( f 1/2, u1/2
h )h.

After expanding the above equation, we get

κ1(‖u1
h‖

2 − ‖u0
h‖

2) + 2κ2τ
1−αB0‖u

1/2
h ‖

2 − 2κ2A0τ
1−α(u0

h, u
1/2
h )h + 2τµ|u1/2

h |
2
1 = 2τ( f 1/2, u1/2

h )h,

which leads to the inequality:

κ1‖u1
h‖

2 + 2κ2τ
1−αB0‖u

1/2
h ‖

2 ≤ κ1‖u0
h‖

2 + 2κ2A0τ
1−α(u0

h, u
1/2
h )h + 2τ( f 1/2, u1/2

h )h.

Applying the Cauchy-Schwarz inequality, we derive that

κ1‖u0
h‖

2 + 2κ2A0τ
1−α(u0

h, u
1/2
h )h + 2τ( f 1/2, u1/2

h )h

≤ κ1‖u0
h‖

2 + κ2A0τ
1−α

(
ε1‖u0

h‖
2 +

1
ε1
‖u1/2

h ‖
2
)

+ τ1+α
(
ε2‖ f 1/2‖2 +

τ−2α

ε2
‖u1/2

h ‖
2
)
,

where the two positive constants ε1 and ε2 are chosen such that
κ2A0

τ1−α

ε1
‖u1/2

h ‖
2 + τ1−α

ε2
‖u1/2

h ‖
2 ≤ κ2τ

1−αB0‖u
1/2
h ‖

2. So, we can obtain

G1 = κ1‖u1
h‖

2 + τ1−ακ2b0‖u
1/2
h ‖

2 ≤ κ1‖u1
h‖

2 + τ1−ακ2B0‖u
1/2
h ‖

2

≤ κ1‖u0
h‖

2 + κ2A0τ
1−αε1‖u0

h‖
2 + τ1+αε2‖ f

1
2 ‖2.

Thus, by (3.1), we have

‖un+1
h ‖

2 ≤ ‖u0
h‖

2 + c1τ
1−α‖u0

h‖
2 + c2τ

1+α‖ f
1
2 ‖2
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+τ1−α κ2

κ1

n∑
k=1

Ak‖u0
h‖

2 +
τ1+α

κ2κ1

n+1∑
k=2

1
bn+1−k

‖ f k−1/2‖2.

This together the two inequalities
∑n

k=1 Ak ≤
(1−α)2α

Γ(2−α) and τα
∑n+1

k=2
1

bn+1−k
≤ Tα

(1−α)Γ(2−α) (cf. [17, Theorem
4.5]) yields the desired results. �

The convergence result is presented by the following theorem.

Theorem 3.2. Suppose that u ∈ C2(0,T ; C6(Ω)), f ∈ C(0,T ; C4(Ω)) and v ∈ C(Ω), then the numerical
solution un

h is convergent with respect to the discrete L2-norm. Especially, the following error estimate
holds:

‖u(xh, tn) − un
h‖ ≤ c(τ2−α + h4),

where n ≥ 1.

Proof. Denote the error en
h = u(xh, tn) − un

h for xh ∈ Ωh, then subtracting (2.5) from (2.4), we get the
following error equation:

κ1δte
n+ 1

2
h + κ2D

α

τen+ 1
2

h = µ∆hen+ 1
2

h + Rn+ 1
2

xt .

Apply the Theorem 3.1, we obtain

‖en
h‖

2 ≤ c(‖e0
h‖

2 + τ

n∑
k=1

‖Rk−1/2
xt ‖2) ≤ c(τ2−α + h4)2,

where the last inequality holds since nτ ≤ cT . Thus the proof is completed. �

4. Corrected scheme with fast solver

In order to avoid the direct calculations for the original scheme (2.5), we employ the DST in
spatial direction to improve the computational performance. For the grid function vh, the discrete sine
transform of vh at the kth position is given by vik =

∑Mk−1
jk=1 v̂ jk sin(ik jkπ/Mk). So, in view of the compact

difference operator, we derive that

v̂′′jk ≈ v̂ jk
12
h2

k

·
s jk − 1
s jk + 5

= v̂ jkλ
( jk ,Mk),

where s jk = cos( jkπ
Mk

) and 1 ≤ jk ≤ Mk−1. One can refer to [14,15] for more details about the derivation.
Therefore, the scheme (2.5) with fast solver has the following form:

κ1δt̂u
n+ 1

2
ν + κ2D

α

τ ûn+ 1
2

ν = µ
( d∑

k=1

λ( jk ,Mk)
)̂
un+ 1

2
ν + f̂ n+ 1

2 , (4.1)

from which we can obtain the numerical solution un
h by the inverse DST of ûn

ν for n ≥ 1. Here, the index
set ν = {( j1, j2, · · · , jd)|1 ≤ jk ≤ Mk − 1, 1 ≤ k ≤ d}. ûn

ν and f̂ n+ 1
2 are obtained from un

h and f n+ 1
2 by

means of DST. From the scheme (4.1), we avoid directly computing the matrix inversion in the linear
discrete system (2.5) at each temporal layer, thus greatly improving the computational efficiency, i.e.,
the computational cost will be O(M1M2 log(M1M2)) instead of O(M2

1 M2
2).

AIMS Mathematics Volume 6, Issue 6, 6242–6254.



6249

Next, we further use the method of adding suitable correction terms to deal with non-smoothness
of the solution. Consider the numerical approximation at t = tn+ 1

2
, we can modify the method (2.1) as

RLDα
0,tg(t)

∣∣∣∣
t=tn+ 1

2

≈ D
α

τg(tn+ 1
2
) +

m∑
k=1

w(α)
n,kg(tk),

in which the starting weights w(α)
n,k are chosen such that the above scheme is exact for some g(t) =

tσr , (0 ≤ r ≤ m), that is, they can be determined by the following linear system:
m∑

k=1

w(α)
n,k tσr

k =
Γ(1 + σr)

Γ(1 + σr − α)
tσr−α

n+ 1
2
− D

α

τ tσr

n+ 1
2
.

The corrected scheme for the first-order time derivative can be written as

dg(t)
dt

∣∣∣∣
t=tn+ 1

2

≈ δtg(tn+ 1
2
) +

m∑
k=1

w(1)
n,kg(tk).

Similarly, the starting weights w(1)
n,k are obtained by solving the linear system:

m∑
k=1

w(1)
n,kt

σr
k = σrt

σr−1
n+ 1

2
−

tσr
n+1 − tσr

n

τ
.

Thus, the fast Nicolson compact difference scheme (4.1) with correction terms has the following form:

κ1δt̂u
n+ 1

2
ν + κ2D

α

τ ûn+ 1
2

ν +

m∑
k=1

(w(1)
n,k + w(α)

n,k )̂uk
ν = µ

( d∑
k=1

λ( jk ,Mk)
)̂
un+ 1

2
ν + f̂ n+ 1

2 . (4.2)

It is worth noting that the numerical scheme (4.2) with suitable correction terms does not affect the
stability of the original scheme (4.1), see [18] for similar discussion. Although calculating the starting
weights raises some computational complexity, it improves the accuracy in the temporal direction for
solution of equation (1.1) with low regularity.

5. Numerical examples

In this part, we present two numerical examples to verify the theoretical result in Section 3 and the
effectiveness of the scheme (4.2) in Section 4. We measure the L2-norm error at t = tn by
e(n, h) = ‖u(xh, tn) − un

h‖. The corresponding temporal and spatial convergent orders are calculated by
log(e(n, h)/e(2n, h)) and log(e(n, h)/e(n, h/2)), respectively. The parameters µ, κ1 and κ2 in equation
(1.1) are all set to one. The computational domain are restricted to Ω = (0, 1)2. All the numerical
results are obtained at t = T with the final time T = 1. The numerical examples are tested in
MATLAB software (R2020a) on an Apple OS platform with a quad-core 2.3 GHz processor and 8
GB of memory.

Example 5.1 (Smooth solution). Consider the following problem with zero Dirichlet boundary
conditions: {

∂tu(x, y, t) + RLDα
0,tu(x, y, t) = ∆u(x, y, t) + f (x, y, t), (x, y) ∈ Ω,

u(x, y, 0) = sin(πx) sin(πy),
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where
f (x, y, t) = sin(πx) sin(πy)

(
γtγ−1 + 2π2(1 + tγ) +

t−α

Γ(1 − α)
+

Γ(γ + 1)
Γ(γ + 1 − α)

tγ−α
)
.

The exact solution is u = sin(πx) sin(πy)(1 + tγ). In order to test the correctness of the theoretical result
in Section 3, we let γ = 2.1. By the fast Crank-Nicolson compact difference scheme (4.1), the errors
and convergence orders are obtained and demonstrated in Tables 1 and 2. From the data in these two
tables, it can be observed that the temporal and spatial convergence orders of the numerical scheme in
this example are consistent with the theoretical analysis.

Next, we compare the implemented CPU time applied by the fast Crank-Nicolson compact difference
scheme (4.1) with the original compact difference scheme (2.5) in Table 3. As can be seen from the
table, both schemes (2.5) and (4.1) achieve almost the same accuracy for the fixed temporal and spatial
stepsizes and fractional order α, however, it is clear that numerical scheme (4.1) with DST requires
less CPU execution time than (2.5). And when the temporal stepsize τ is fixed, the computational
advantage of numerical scheme (4.1) is more obvious as the spatial stepsize h keeps decreasing, which
shows that numerical scheme with DST can effectively handle high-dimensional problems.

Table 1. The L2 norm errors in time for Example 5.1 with h = 1/128.

nT
α = 0.1 α = 0.5 α = 0.9

L2 error Rate L2 error Rate L2 error Rate
20 3.51E-04 - 2.20E-04 - 5.71E-04 -
40 8.74E-05 2.01 3.97E-05 2.47 3.45E-04 0.73
80 2.18E-05 2.01 4.52E-06 3.13 1.81E-04 0.93
160 5.41E-06 2.01 7.80E-07 2.54 8.92E-05 1.02

Table 2. The L2 norm errors in space for Example 5.1 with τ = T/4000.

1/h
α = 0.1 α = 0.5 α = 0.9

L2 error Rate L2 error Rate L2 error Rate
4 1.47E-03 - 1.47E-03 - 1.47E-03 -
8 9.03E-05 4.03 9.02E-05 4.03 9.30E-05 3.99

16 5.61E-06 4.01 5.65E-06 4.00 8.35E-06 3.48

Table 3. Comparison of CPU time of two methods (2.5) and (4.1) for Example 5.1 with
τ = T/128 and h = 0.1/2k.

α Meth.
k = 2 k = 3 k = 4 k = 5

L2 error CPU(s) L2 error CPU(s) L2 error CPU(s) L2 error CPU(s)
0.1 (2.5) 8.57E-06 0.44 8.48E-06 1.70 8.47E-06 7.19 8.47E-06 35.10

(4.1) 8.33E-06 0.16 8.46E-06 0.40 8.47E-06 1.03 8.47E-06 3.40
0.5 (2.5) 4.54E-08 0.34 1.35E-07 1.83 1.41E-07 7.42 1.41E-07 34.78

(4.1) 2.84E-07 0.14 1.50E-07 0.38 1.41E-07 1.01 1.41E-07 3.43
0.9 (2.5) 1.12E-04 0.33 1.12E-04 1.70 1.12E-04 7.21 1.12E-04 35.23

(4.1) 1.13E-04 0.13 1.12E-04 0.38 1.12E-04 1.04 1.12E-04 3.37
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Example 5.2 (Non-smooth solution). Consider the following problem data:

f (x, y, t) = sin(πx) sin(πy)
(
γtγ−1 + 2π2tγ +

Γ(γ + 1)
Γ(γ + 1 − α)

tγ−α
)
,

with the zero initial value condition and zero boundary condition. Then the exact solution is given by
u = sin(πx) sin(πy)tγ.

In this example, we test the effectiveness of the fast Crank-Nicolson compact difference scheme with
correction terms (4.2) for dealing with the non-smooth solution case. To this end, we set γ = 0.1. So
the first-order partial derivative of u with respect to t is unbounded at t = 0. The numerical results are
presented in Tables 4 and 5. For Table 4, it can be noticed that when there is no correction term in
(4.2), the temporal accuracy of the numerical scheme is damaged as the regularity of the solution does
not satisfy the smoothness requirement specified in the theoretical analysis. However, with the addition
of the correction terms (i.e., m = 1 and m = 3, see the last four columns of Table 4), the temporal
accuracy of the numerical scheme is somewhat maintained and therefore some improvement in the
convergence orders can be observed. Similar results are also observed in Table 5. So, this indicates
that the addition of suitable correction terms can surely improve the accuracy of the numerical scheme,
thus confirming that the fast Crank-Nicolson compact difference scheme (4.2) with correction terms is
efficient for the non-smooth issue of the fractional model (1.1).

Table 4. The L2 norm errors in time for Example 5.2 with h = 1/128.

α nT
m = 0 m = 1 m = 3

L2 error Rate L2 error Rate L2 error Rate
80 6.45E-05 - 5.59E-06 - 5.66E-06 -

0.1 160 6.05E-05 0.09 2.82E-06 0.99 2.85E-06 0.99
320 5.66E-05 0.10 1.38E-06 1.04 1.38E-06 1.04
640 5.28E-05 0.10 6.58E-07 1.06 6.61E-07 1.07
80 2.38E-04 - 3.29E-05 - 2.27E-05 -

0.5 160 2.18E-04 0.13 1.80E-05 0.87 1.13E-05 1.00
320 2.01E-04 0.12 1.01E-05 0.83 5.69E-06 0.99
640 1.86E-04 0.11 5.84E-06 0.79 2.91E-06 0.97
80 1.92E-04 - 4.71E-05 - 8.34E-06 -

0.9 160 1.67E-04 0.20 3.73E-05 0.34 4.45E-06 0.91
320 1.48E-04 0.17 3.06E-05 0.28 2.43E-06 0.87
640 1.33E-04 0.15 2.58E-05 0.25 1.42E-06 0.78
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Table 5. The L2 norm errors in space for Example 5.2 with τ = T/4000.

α 1/h
m = 0 m = 1 m = 5

L2 error Rate L2 error Rate L2 error Rate
4 7.27E-04 - 7.71E-04 - 7.71E-04 -

0.1 8 3.32E-06 7.77 4.72E-05 4.03 4.72E-05 4.03
16 4.10E-05 -3.63 2.85E-06 4.05 2.85E-06 4.05
4 6.27E-04 - 7.79E-04 - 7.80E-04 -

0.5 8 1.06E-04 2.57 4.64E-05 4.07 4.74E-05 4.04
16 1.51E-04 -0.51 1.44E-06 5.01 2.43E-06 4.29
4 6.94E-04 - 7.81E-04 - 7.98E-04 -

0.9 8 5.44E-05 3.67 3.17E-05 4.62 4.85E-05 4.04
16 1.00E-04 -0.88 1.43E-05 1.15 2.54E-06 4.26

6. Conclusions

In this paper, we develop the fast Crank-Nicolson compact difference scheme for the
time-fractional mobile/immobile equation (1.1). By using the DST technology and the method of
adding correction terms, we improve the computational performance of the proposed scheme for
solving the non-smooth solution problem in (1.1). The corresponding stability and error estimates are
given rigorously. Numerical examples fully confirm the effectiveness of the proposed scheme.

Although our discussions only focus on two-dimensional problem, the theoretical analysis can be
easily extended to other high-dimensional one. When the fractional order α goes to one or zero, we
observe that the proposed scheme is compatible with the integer-order one. In the subsequent study, we
shall further improve the computational effectiveness by combining fast algorithms in time, such as the
fast convolution method [19], the sum-of-exponentials method [20] and so on. In addition, constructing
efficient algorithms for high-dimensional fractional models with other boundary conditions is also in
our scope of consideration.
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