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1. Introduction

Throughout this article, we suppose that H is a real Hilbert space with an inner product (-, -) and
the induced norm || - ||. We are interested in studying the following unconstrained convex minimization
problem:

minimize fi(x) + f£(x), (1.1)
subjectto x € H

where fi, o : H — R U {oo} are two proper, lower semi-continuous and convex functions such that
/1 is differentiable on an open set containing the domain of f,. Problem (1.1) has been widely studied
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due to its applications which can be used in various real-world applications such as in signal and image
processing, in regression problems, and in classification problems, etc., see [3,5,8,10, 11, 13] and the
references therein. One of the important topics of studying Problem (1.1) is to invent some efficient
procedures for approximating minimizers of f; + f,. Various optimization methods were introduced
and developed by many researchers, see [3,5-8, 12, 14-16,25-27,32], for instance.

If a minimizer x* of f; + f; exists, it is known that x* is characterized by the fixed point equation of
the forward-backward operator

X" = FBy(x") := prox,, (x* —aVfi(x"), (1.2)

backward step ~ forward step

where @ > 0, prox,, is the proximity operator of f, and V f; stands for the gradient of f;. The above
equation leads to the following iterative method:

Method 1. Let x; € dom f>. For k > 1, let

X1 = ProX,, r (X — iV f1(xx)),
where 0 < @ < % and L is a Lipschitz constant of V f;.

This method is well known as the forward-backward splitting algorithm [8, 15], which includes the
proximal point algorithm [17,24], the gradient method [4,9] and the CQ algorithm [1] as special cases.
It is observed from Method 1 that we need to assume the Lipschitz continuity condition on the gradient
of fi and the stepsize a; depends on the Lipschitz constant L, which is not an easy task to find in
general practice (see [3, 5,8, 12] for other relevant methods).

In the sequel, we set the standing hypotheses on Problem (1.1) as follows:

(H1) fi, f» : H — RU{oo} are two proper, lower semi-continuous and convex functions with dom f, C
dom f;, and dom f; is nonempty, closed and convex;

(H2) £ is differentiable on an open set containing dom f,. The gradient V f; is uniformly continuous
on any bounded subset of dom f, and maps any bounded subset of dom f, to a bounded set in H.

We note that the second part of (H2) is a weaker assumption than the Lipschitz continuity assumption
on Vfl

Cruz and Nghia [7] proposed a technique for selecting the stepsize @; which is independent of the
Lipschitz constant L by using the following linesearch process.

Linesearch 1. Given x € dom f5, 0 > 0,60 € (0, 1) and 6 > 0.
Input a = 0.
While «||Vfi(FB,(x)) — Vfi(x)|| > 6||FB,(x) — x|, do
a = Oa.
End
Output a.
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Linesearch 1 is a particular case of the linesearch proposed in [29] for inclusion problems and it was
shown that this linesearch is well defined, that is, it stops after finitely many steps, see [7, Lemma 3.1]
and [29, Theorem 3.4(a)]. Cruz and Nghia [7] employed the forward-backward iteration where the
stepsize ay is generated by Linesearch 1.

Method 2. Let x; € dom f;, 0 > 0,60 € (0,1) and 6 € (0, %). For k > 1, let

Xl = ProxX,, (X — @iV fi(xx)),

where «; := Linesearch 1(x;, 0, 0, 9).

In optimization theory, to speed up the convergence of iterative methods, many mathematicians often
use the inertial-type extrapolation [20, 22] by adding the technical term Si(x; — xx—1). The control
parameter Sy is called an inertial parameter, which controls the momentum x; — x;_;. Using Linesearch
1, Cruz and Nghia [7] also introduced an accelerated algorithm with the inertial technical term as
follows.

Method 3. Let xo = x; € dom f>, @9 =0 > 0,6 € (0,1), 6 € (0, %), andt; = 1. Fork > 1, let

1+ J1+4z7 f— 1

iy = ————=———, B = ,
2 Tkl

Vi = Paom , (5 + Br(xk — Xi-1))
X1 = ProxX, » (Ve — @iV fi(vi))s

where a; := Linesearch 1(yy, a_1, 6, 9).

The technique of choosing B; in Method 3 was first mentioned in the fast iterative
shrinkage-thresholding algorithm (FISTA) by Beck and Teboulle [S]. Weak convergence results of
Methods 2 and 3 were obtained for solving Problem (1.1) with (H1) and (H2).

Recently, Kankam et al. [14] proposed a modification of Linesearch 1 as follows.

Linesearch 2. Given x € dom f5, 0 > 0,60 € (0,1) and 6 > 0.
Input a = 0.

While o max {||V£i(FB2(x)) = V Ai(FB.())||. IVA(F Ba(x)) = VA
> 5 (||FB2(x) = FBy(0)|| + 1F Ba(x) - xll), do

a = Ba.
End
Output a,

where FB2(x) := FB,(F B,(x)).

They showed the well-definedness of Linesearch 2 and introduced the following double
forward-backward algorithm whose stepsize is generated by Linesearch 2.
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Method 4. Let x; € dom f, 0> 0,60 € (0,1) and 6 € (0, §). For k > 1, let

Yk = ProX,, (e — @iV fi(xx)),
Xes1 = ProX,, , (Ve — iV i),

where «; := Linesearch 2(x;, 0, 0, ).

A weak convergence theorem of Method 4 was proved and an application in signal recovery was
illustrated, see [14].

In this paper, inspired and motivated by the results of Cruz and Nghia [7] and Kankam et al. [14],
and other related researches, we aim to improve Linesearches 1 and 2 and introduce a new accelerated
algorithm using our proposed linesearch for the convex minimization problem of the sum of two convex
functions. The paper is organized as follows. Basic definitions, notations and some useful tools for
proving our convergence results are given in Section 2. Our main result is in Section 3. In this section,
we introduce a new modification of Linesearches 1 and 2 and present a double forward-backward
algorithm by using an inertial technique for solving Problem (1.1) with Hypotheses (H1) and (H2).
After that, a weak convergence theorem of the proposed method is proved. The complexity of our
reduced algorithm is also discussed. In Section 4, we apply the convex minimization problem to
an image restoration problem and a regression problem. We analyze and illustrate the convergence
behavior of our method, and also compare its efficiency with the well-known methods in the literature.

2. Notations and tools

The mathematical symbols used throughout this paper are as follows. R, R, and N are the set of real
numbers, the set of nonnegative real numbers, and the set of positive integers, respectively. I, stands
for the identity operator on H. Denote weak and strong convergence of a sequence {x;} C H to x € H
by x; — x and x; — x, respectively. The set of all weak-cluster points of {x;} is denoted by w,,(x;). If
C is a nonempty closed convex subset of H, then P stands for the metric projection from H onto C,
i.e., for each x € H, Pcx is the unique element in C such that ||x — Pcx]|| = dist(x, C) := infyec |lx — yl.

Let us recall the concept of the proximity operator which extends the notion of the metric projection.
Let f : H — R U {co} be a proper, lower semi-continuous and convex function. The proximity (or
proximal) operator [2, 18] of f, denoted by prox, is defined for each x € H, prox, x is the unique
solution of the minimization problem:

. 1 2
=[x =yl 2.1
minimize fO) + 2||x I (2.1)
If f := ic is an indicator function on C (defined by ic(x) = 0 if x € C; otherwise ic(x) = o), then
prox, = Pc.
The proximity operator can be formulated in the equivalent form
prox; = (I;+df)"' : H — dom f, (2.2)
where df is the subdifferential of f defined by
of(x) :={ueH: f(x)+{u,y—x)< f(y), Vye H}, VYxeH.
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Moreover, we have the following useful fact:

X — Prox, (x)
——————— € 9f(prox,;(x)), YxeH,a>0. 2.3)

The following is a property of the subdifferential operator.

Lemma 2.1 ([23]). If f : H — R U {oo} is a proper, lower semi-continuous and convex function, then
the graph of 0f defined by Gph(3f) := {(x,y) € HXH :y € df(x)} is demiclosed, i.e., if the sequence
{(xr, yo)} € Gph(Of) satisfies that x; — x and y;, — y, then (x,y) € Gph(df).

We end this section by providing useful tools for proving our main results.

Fact. Let x,y € H. The following inequalities hold on H:
llxc £ yIP = [1xl” % 2¢x, ) + [y (2.4)
Lemma 2.2 ([12]). Let {a;} and {t;} be two sequences of nonnegative real numbers such that
a1 < (1 + t)ag + tax-y, Yk € N,

Then the following holds

k
a1 < K- l_[(l +2tj), where K = max{a;, a}.
j=1

Moreover, if Y02 ty < oo, then {ai} is bounded.

Lemma 2.3 ( [31]). Let {a;} and {b,} be two sequences of nonnegative real numbers such that a,,; <
ax + by forall k e N. If 377, by < oo, then limy_,o, ay exists.

Lemma 2.4 (Opial [19]). Let {x;} be a sequence in H such that there exists a nonempty set Q C H
satisfying:

(i) Forevery p € Q, lim;_,., ||x; — pl| exists;
(ii) w,(x;) C Q.

Then, {x;} converges weakly to a point in .
3. Methods and convergence analysis

In this section, using the idea of Linesearches 1 and 2, we introduce a new linesearch and present
an inertial double forward-backward algorithm with the proposed linesearch for solving the convex
minimization problem of the sum of two convex functions without any Lipschitz continuity assumption
on the gradient. A weak convergence result of our proposed method is analyzed and established.

We now focus on Problem (1.1) and assume that f; and f, satisfy Hypotheses (H1) and (H2). The
solution set of (1.1) is denoted by Q. Also, suppose that Q # (. For simplicity, we let ¥ := f; + f,
and denote by FB, the forward-backward operator of f; and f, with respect to «a, that is, FB, :=
prox, ,(ls — @V f). Here, our linesearch is designed as follows.
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Linesearch 3. Given x € dom f>, 0 > 0,6 € (0,1), u € (0,1) and 6 > 0.
Input o = 0.
While @ {(1 - u)||[VA(FBLx) = VAFBu ()| + IV fi(FBo()) = V i)l
> 6 (||FB2(x) = FB,(x)|| + IF Bo(x) — xll). do
a = ba.

End
Output a.

Remark 3.1. The loop termination condition of Linesearch 3 is weaker than that of Linesearch 2.
Indeed, since

a{(1 = ||V fi(FBA(x) = V fi(FB,()|| + 1 IV /1(FBo(x)) = Vi ()]
< amax {|VAFBL(x)) = VAFBo(x)| . IV fi(FBL(x)) = VAi)I}.

it follows from the well-definedness of Linesearch 2 that our linesearch also stops after finitely many
steps, see [14, Lemma 3.2] for more details.

Using Linesearch 3, we propose the following iterative method with the inertial technical term.

Method 5.
Initialization: Take x; = yy € dom f>, o > 0,6 € (0, 1), u € (0, %] and ¢ € (0,%). Let {8} C R,.

Iterative steps: For k > 1, calculate x;,; as follows:

Step 1. Compute
zk = FBy, (x¢) = prox,, , (xe — iV fi(xp)), (3.1

Yk = F By (zk) = prox,, »(zx — iV f1(z0)), (3.2)
where ¢ := Linesearch 3(x, 0, 0, u, 9).

Step 2. Compute
Xis1 = Paom 5,k + Bi(Vk — Yi-1))- (3.3)

Set k := k + 1 and return to Step 1.

To verify the convergence of Method 5, the following result is needed.

Lemma 3.2. Let {x;} be the sequence generated by Method 5. For each k > 1 and p € dom f,, we have

46
e = pIP = llye = pIP 2 20 [F () + F (@) = 2F (p)] + (1 : ;) (I = 2l + llze = yilP)

Proof. Letk > 1 and p € dom f,. By (2.3), (3.1) and (3.2), we get

T Vfi(xi) € 0f>(zx) and S
(07" (073

= Vfi(z) € 0/2(yi).
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Then, by the definition of the subdifferential of f,, we have

Xk — 2k

Hp) - folz) 2 <
(01

- Vﬁ (xk)’ p - Zk>
1
= —<_X'k —Zks P — Zk) + <Vﬁ (Xk), I — p>
(07
and

2k — Yk

Hp) = L) = <
@

- Vi), p —yk>
1

= —<Zk — Vi, P — yk> + (Vfl(Zk)a)’k - p>
(095

By the assumptions on f; and f,, we have the following fact:

fix) = A1) = (VAi(y),x—y), VYxedomf], Yy e dom f.

From (3.6), we get
Silp) = filx) 2 AV filxo), p — i),

and

Sip) = filz) =2 (Vfi(z), p — 2
Summing (3.4), (3.5), (3.7) and (3.8) yields

2F(p) = F (z) — L) — filxe)
> (Vfi(x), ze — p) + Vi), yk = p) +{V fi(x), p — xi) +(V fi1(z), p — 21)

1
+ o [k — 2k P — 20) + {2k = Yo P — Y]
k

= (VA i = x) + (VA2 ye — 2 + aik [ =z P = 2 + (2 = Yoo P = Y]
= (VAilx) = Vi), z — x) + (Vfi(z), ze — x) + Vi), Ye — i)

+{(Vfize) = VA, e — 2x) + aik [ = 2o P = 20 + (2 = Yoo P = V0]
> (Vfi(zi)s 2 = xi) + VL0 Y — 2 = IV fi(xi) = V fi@ollllze — xll

1
= IV fitzo) = VAGNyx — zill + o (X% — 2P —20) + (k=Y P — Vi) -

Using (3.6) again, the above inequality becomes

27 (p) = F (z) — L) — fi(xe)
> fily) = filx) = IV fi(x) = V fiz)llllze = xell = IV fi(ze) = VAQOye — zll

1
+ CY_k [(xXk = 2o P — 21) + (% = Yoo P — Vi)
> fi) — i) — IV f1Ca) = VAT Aye — zell + llze — xll)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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1
= IV fize) = VAGON Ulyk = zell + llze = xll) + o [(xk — 2 P — 20) + {2 = Yo P — Y0

1
= i) — filxo) + CY_k [{Xk = 2o P = 20) + (% = Yo P — Vi)

= (IVAG) = VAGOI+ IV Aiz) = VAGIID Ulye = zell + llze = xill) - (3.9)

Since «; := Linesearch 3(x;, o, 6, u, §), we have

a {(1 = IV A = VAN + IV filz) = VAN < 6 (e = zill + llze = xelD) - (3.10)

It follows from (3.9) and (3.10) that
1
a
> F )+ F () —2F (p)
= (IVAiGx) = VAol + IV fize) = VAGOID Ulye = 2l + llze = xil)
> F )+ F () —2F (p)

{A = IIVAG = VAEI+ IV fizo) = VA Ak — zell + [z — xelD)

[k = zio 2k — P) + (2 = Yio Yk — D))

_1
M
0
> F 00+ F (@) = 27 (p) = = Uy = 2]+l = xd)®
20
2 F 00+ (@) =27 (p) - = (e = 2l + llzi = xl?) (3.11)
From (2.4), we get

(X — 22— p) = (lek = pIP = b = zill® = llzi = pllz), (3.12)

| =

and |
@ = i ye = P = 5 (= pIF =l = yilf? = Iy = pIF). (3.13)
Therefore, we conclude from (3.11)—(3.13) that

46
Il = pIP = llye = pIP > 205 [F () + F (20) = 2F (p)] + (1 - ;) (Il = zell® + Nz = 9alP) . g
Now we are ready to prove a convergence result of Method 5, which is the main theorem of this
paper.

Theorem 3.3. Let {x;} be the sequence generated by Method 5. If a, > a > 0, By > 0 for all k € N and
Yie1 Br < 00, then {x;} converges weakly to a point in €.

Proof. Let p* € Q, a > @ > 0,6, > 0forall k € Nand )7, B < co. By applying Lemma 3.2, we
have

46
b = p'IP = Iy = p7IP 2 206 [F () = F(p7) + F (@) = F(p)] + (1 - ;) (e = 2l + Iz = i)
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46
> (1 - ;) llxe — zl* > 0, (3.14)

which implies
Iy = Pl < Ml = p7ll. (3.15)
Let xo = x;. By (3.3) and (3.15), we have

IxXkr1 =PIl = 1Paom , Ok + Bk — yi-1)) = Pl
< lve + Bk = yu-1) — Pl
< llyx = Pl + Bellyx — yi-1ll
< (L +Bllye =PIl + Billyr-1 = Pl
< (L+ Bl = poll + Bellxe—s — p*ll, Yk e N. (3.16)

By Lemma 2.2, we have ||x,.; — p*]| < K - Hlj‘.zl(l + 2f;), where K := max{||x; — p*||,[|x> — p*|l}, and
{x¢} is bounded. Thus, Y2, Br(llxx — p*Il + |xx—1 — p*ll) < co. In view of (3.16), it follows from Lemma
2.3 that limy_,, ||x; — p*|| exists. Also, we have lim;_,, ||x; — p*|| = limy_ |[lyx — p*|l- Then, by (3.14),
we get

Iim i =zl = 0. (3.17)

Next, we show that w,,(x;) C Q. Pick p € w,(x;), then there is a subsequence {x;,} of {x;} such that
X, — p. Thus, z;, — p. By (H2), we have

khl?o IVAi(x) =V fizoll = 0. (3.18)
From (2.3), we get
S Vfi) ~ Vi) € 0f(@) + Vi) = 0F @) (3.19)

ki

Here, by z;, — p and (3.17)—(3.19), it follows from Lemma 2.1 that 0 € 97 (p), that is, p € Q. So,
wy(xr) € Q. Using Lemma 2.4, we obtain that x, — p for some p € Q. This completes the proof. O

The following method is obtained by reducing the inertial step in Method 5.

Method 6.
Initialization: Take x, € dom f, o > 0,6 € (0,1), u € (0, 3] and 6 € (0, ).
Iterative steps: For k > 1, compute

zk = FBy, (x¢) = prox,, , (xe — iV fi(xp)), (3.20)
X1 = F By, (21) = prox,, »(zx — V f1(z1)), (3.21)

where a; := Linesearch 3(xy, o, 0, u, 9).

We also analyze the convergence and the complexity of Method 6.

AIMS Mathematics Volume 6, Issue 6, 6180-6200.



6189

Theorem 3.4. Let {x;} be the sequence generated by Method 6. If a;y > a > 0 for all k € N, then the
following statements hold:

(i) {xi} converges weakly to a point in €;
(ii) If 6 € (0, %), then {F (x;)} is decreasing and

[dist(x;, Q)]

F(xx) — rxrég{l/”(x) < ok ,

Vk € N. (3.22)

Proof. Setting B, := 0 in Method 5, (i) is obtained directly from Theorem 3.3. To prove (ii), let
6 € (0,%). We first show that {F (x;)} is decreasing. By Lemma 3.2, we get

e = pIP = st = pI* = 20l F (xis1) + F () = 2F (p)]

46
+ (1 - F) (||Xk =zl + Iz - Xk+1||2), Vp € dom f;. (3.23)

Taking p := z; in (3.23), we have

46
1 = 2l = IPeer = 2l = 200 F (1) = F (2] + (1 - ;) (lek — 2l + Iz - xk+1||2)- (3.24)

Also, taking p := x; in (3.23), we have
2 46 2 2
et = xel? = 20 F (ir) + F (i) — 2F ()] + |1 - " (I = zell® + llew = xtl) . (3.25)

Combining (3.24) and (3.25), we get

46
Il — Zk||2 — [|Xg41 — Zk||2 = || X1 — Xk||2 > 4ap[F (Xpr1) — F (x)] + 2 (1 - ;) (ka - Zk||2 + [lzx — xk+1||2) »
which implies

1 86 86
Fxn) — Fxp) < —4—{ (1 - —) b — 2l + (3 _ —) V2t — xel + s — xknz}.
@ p 7

k

This together with 6 € (0, £) yields F (xi11) < F (xi), that is, {F (x;)} is decreasing. Next, we will show
that (3.22) is true. Pick any p* € Q. From (3.23), we have

e = DI = e =PI 2 200[F (o) = F (") + F ) = F(p)]
+ (1 - %) (b = 2ulP + e = xea )
> 20l F (501) ~ F (P
Hence

1 .
F i) = F () < o= (Il = /I = iy = pIF), - Vi,
a
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It follows that
k

k
D F i) — kF (p") < i D (k= prIP = kit = pIP)
i=1

i=1

= 5= (I = PIF =l = p1IF)
)

M —plP
2a

By the decreasing property of {F (x;)}, we get

)
o =pF -y c o, (3.26)
2a

k
KIF () = F(p] < D F i) —kF (p) <
i=1

It follows from (3.26) that

. e = prIP o [dist(xg, Q)T
— < = .
F (i) —min¥(x) < inf =" Dak

O

We note that the stepsize condition on {@;} in Theorems 3.3 and 3.4 needs the boundedness from
below by a positive real number. Next, we show that this condition can be guaranteed by the Lipschitz
continuity assumption on the gradient.

Let C c ‘H be a nonempty closed convex set. Recall that an operator 7 : C — H is said to be
Lipschitz continuous if there exists L > 0 such that ||Tx — Ty|| < L||x — y|| for all x,y € C.

Proposition 3.5. Let {a,} be the sequence generated by Linesearch 3 of Method 5 (or Method 6). If
V f1 is Lipschitz continuous on dom f, with a coefficient L > 0, then a; > min {O‘, 5—L9}f0r all k € N.

Proof. Let V f be L-Lipschitz continuous on dom f,. From Linesearch 3, we know that o, < o for all
k € N. If @, < o, then a; = 08™ where my is the smallest positive integer such that

a{(1 = ||V £i(F B, (xi)) = V fi(FBo, (x))|| + |V AF B (60) = Vi)
< 6(||FB2, (xi) = FBa, (x)|| + | FBay (x2) = i) -
Let @ := 4 > 0. By the Lipschitz continuity of V f; and the above expression, we have
&L (||F B, (x) = FBa (x| + || F B (x0) = xi))
> @ (||VAF B (x0) = VAFBe,(x0)|| + ||V fi(FBs, (xi)) = V fi(x0))
> @ {(1 = ) |VAF B3 (x0) = VAF Ba, (6))|| + 1 ||V Ai(F B, () = V Ak
> 6 (||F B, (x0) = FBa (|| + ||F Ba () = )

which implies that a; > 2%. Consequently, @ > min {0', ‘s—f} for all k € N. O

Remark 3.6. It is worth mentioning again that the Lipschitz continuity assumption on the gradient of
fi is sufficient for Hypothesis (H2). However, if we assume this assumption further, the calculation of
the stepsize . generated by Linesearch 3 is still independent of the Lipschitz constant.
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4. Applications

In this section, we apply the convex minimization problem, Problem (1.1), to an image restoration
problem and a regression problem. To slove these problems, we analyze and illustrate the convergence
behavior of our method (Method 5) and compare its efficiency with Methods 1-4 and 6. We also
consider the following method with another linesearch strategy [21]:

Linesearch 4. Given x € dom f,, & > 0, and 6 € (0, 1).
Input o = 7.
While F(FB,(x)) > fi(x) + (FBo(x) — x, V£1(x)) + 5=IIFBo(x) — x|I* + f2(F B,(x)), do
a = fa.
End
Output .

Method 7. Let x; = yo € dom f>, 5 > 0,0 € (0,1), 0, > 0,and t; = 1. For k > 1, let

Yk = Prox,, p (xx — ,V f1(xp)),

1+ 1,1+4pkt1% -1

liv1 = ) k= )
2 Tev1

X1 = Yk + Bk — Yi-1)s
where «; := Linesearch 4(x;, 7, 6).
Note that Method 7 is well known as the FISTA with backtracking, see [5,25].

All experiments and visualizations are done with MATLAB and are performed on a laptop computer
(Intel Core-i5/4.00 GB RAM/Windows 8/64-bit).

4.1. Image restoration problems

Many problems rising in image and signal processing, especially the image restoration problem,
can be formulated as the following equation:

y=Ax+g, 4.1)

where x € R" is an original image, y € R is the observed image, ¢ is an additive noise and A € RM*¥
is the blurring operation. To approximate the original image, we need to minimize the value of & by
using the LASSO model [28]:

.1 )
)?Qﬂé%{i lly — Axll3 +AIIXII1}, 4.2)
where A > 0 is a regularization parameter, || - ||; is the /;-norm, and || - ||, is the Euclidean norm. In this

situation, we apply Problem (1.1) to the LASSO model (4.2) by setting
1
filxo) = 3 lly = Axll; and fa(x) = Allxl};,
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where A = RW, R is the matrix representing the blur operator and W is the inverse of a three stage
Haar wavelet transform. We use the peak signal-to-noise ratio (PSNR) in decibel (dB) [30] and the
structural similarity index metric (SSIM) [33] as the image quality measures, which are formulated as
follows:

2552
PSNR(x;) = lOloglo( ),

MS E(k)

where MS E(k) = ]:7||Xk — x|, M is the number of image samples, and x is the original image and

(2kavx + Cl)(zkax + CZ)

SSIM(x;, x) = ,
(%, %) (2 +V2+CEL +E2+ ()

where {v,,,&,} and {v,,&,} denote the mean intensity and standard deviation set of the deblerring
image x; and the original image x, respectively, &, , denotes its cross correlation, and Cy, C, are small
constants value to avoid instability problem when the denominator is too close to zero.

Example 4.1. Consider two grayscale images, Cameraman (see Figure 1 (a)) and Boy (see Figure 2
(a)), with size of 256 x 256, which are contaminated by Gaussian blur of filter size 9 X 9 with standard
deviation & = 4, noise 1073 (see Figure 1 (b) and Figure 2 (b)).

Firstly, we test the efficiency of Method 5 for recovering the Caneraman image at the 300th iteration
by choosing various linesearch parameters and different starting points as shown in Table 1.

Table 1. The test for recovering the Caneraman image of Method 5.

Linesearch parameters

Initial points x; PSNR SSIM
o 6 U 0

Blurred image 5 0.1 0.1 002 31554 0.6193
1 0.5 0.1 0.02 31.096 0.6081
0.1 09 05 0.12 28.721 0.5717
10 09 05 0.12 33.051 0.6708

Random selection 5 0.1 0.1 0.02 30.554 0.6043
1 0.5 0.1 0.02 29.660 0.5934
0.1 09 05 0.12 28.694 0.5640
10 09 0.5 0.12 32.798 0.6554

It is observed from Table 1 that the linesearch parameter o influences the image recovery performance
of Method 5, while choosing the starting point x; has no significant impact on the convergence behavior
of our method.

Next, we test and analyze the image recovery performance of Methods 1-7 for recovering the
images (Cameraman and Boy) by setting the parameters as in Table 2 and by choosing the blurred
images as the starting points. The maximum iteration number for all methods is fixed at 500. The
comparative experiments for recovering the Cameraman and Boy images are as follows. Original
images, blurry image contaminated by Gaussian blur and restored images by Methods 1-7 are shown
in Figures 1 and 2. The PSNR and SSIM results are shown in Figures 3 and 4. It can be seen that
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Method 5 gives the higher values of PSNR and SSIM than the others, meanwhile Method 6 gives the
better results than the other methods without the inertial step. Therefore, our method has the highest
image recovery efficiency comparing with the studied methods.

Table 2. The parameters for the deblurring methods.

Methods
Parameters 1 2 3 4 5 6 7
=107 v v VANV
= g L= Aman(ATA) Vv - - - - - -
0c=10,60=09,6=0.1 VA VAR R
u=05 - - - - A -
£ 4f 1 <k<500
— k+1 =N = _ _ _ _ _ _
P { 5 otherwise v
0=10,0=09,p, =1 Y
(a) Original Image (b) Blurred Image

(¢) Method 1 (d) Method 2 (e) Method 3

(g) Method 5 i) Method 7

—
i
3

Figure 1. Restoration for Cameraman image. (c)—(i): Restored images by the deblurring
methods.
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(a) Original Image

(b) Blurred Image

(e) Method 3

Figure 2. Restoration for Boy image. (c)—(i): Restored images by the deblurring methods.

PSNR

PSNR

(a) Cameraman

Method 1
Method 2
Method 3
Method 4
Method 5
Method 6
Method 7

100

150 200 250 300 350
Number of iterations

(c) Boy

400 450 500

I
Method 1
Method 2
Method 3
Method 4
Method 5
Method 6
Method 7

450 500

100 150 200 250 300 350
Number of iterations

400

SSIM

SSIM

0.8

03

02

05

0.4

(b) Cameraman

Method 1
Method 2
Method 3
Method 4
Method 5
Method 6
Method 7

50 100 150 200 250 300 350

Number of iterations

(d) Boy

400 450

Method 1
Method 2
Method 3
Method 4
Method 5
Method 6
Method 7

50 100 150 200 250 300 350 400 450
Number of iterations

500

Figure 3. Plot of PSNR and SSIM results by the deblurring methods.
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Peak signal-to-noise ratio (PSNR)
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W Blurred image

w
@

32.3637
33.507
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31.4027

29.261
9948
28.2766

W Method 2

26.4376
27.219
28.0441
26.1066
9221
26.9684

Method 3

5.3157

N NN
(=S
21.3673
20.6504
251

PSNR
N
N

m Method 4
Method 5
® Method 6

m Method 7

Cameraman

@
=]
<

Structural similarity index metric (SSIM)
<

0.8477
0.922:
0.8105
0.906

0.1863
0.5458
0.5759
0.6214
0.6007
0.7065
6022
0.6881
0.324
0.7417

8088

0.9 ® Blurred image

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.7778

m Method 1
W Method 2
Method 3

SSIm

® Method 4

Method 5
= Method 6
u Method 7

Cameraman Boy

Figure 4. The comparison of PSNR and SSIM values for blurred images and restored images
by the deblurring methods.

4.2. Regression problems

We first introduce a brief concept of extreme learning machine (ELM) for regression problems. Let
S ={(x,t) : xx e R, € R k=1,2,..,N} be a training set of N distinct samples where x; is an
input data and t; is a target. For any single hidden layer of ELM, the output of the i-th hidden node is

hi(-x) = G(aia bia X),

where G is an activation function, a; and b; are parameters of the i-th hidden node. The output function
of ELM for a single-hidden layer feedforward neural networks (SLFNs) with M hidden nodes is

M
O = Z Eihi(xp),
P

where &; is the output weight of the i-th hidden node. The hidden layer output matrix H is defined by
G(ay, b1, x1) -+ Glay,by,x1)
H =
G(ay, by, xy) -+ Glam,bu, xn)ly,,,
The main goal of ELM is to find & = [£], ..., £},]" such that
HEé=T, (4.3)
where T = [t],...,1;,]". From (4.3), we can estimate the weight £ by & = H'T where H' = (H"H)'H™

is the pseudo-inverse matrix of H.
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Example 4.2. This example aims to predict the sine function by using the ELM method defined as
follows:

e Create randomly 10 distinct points yy, 5, ..., V1o € [—4,4];

e Create a training matrix R = [y; y» .. yiol' and a training target matrix
S = [sin(y1) sin(y2) ... sin(y10)]";
e Create a testing matrix V = [-4 - 399 — 398 .. 4] and a target matrix

T = [sin(—4) sin(—3.99) ... sin(y10)]";

e Using sigmoid as an activation function generates the hidden layer output matrix H; of the training
matrix R with the hidden node M = 100;

e Choose a regularization parameter A = 107>, Formulate a convex minimization problem via the
LASSO model that

1
Si©) = S IH& - S| and f2(€) = Alilly,

and find the optimal weight & of this problem by employing Methods 1-5 with certain number
of iterations;

e Using sigmoid as an activation function generates the hidden layer output matrix H, of the testing
matrix V with the hidden node M = 100;

e Calculate the output Oy = H,&; and calculate the mean squared error (MSE) at k-th iteration by

1
MS E(k) = 3Ok~ T3,

where N is the number of distinct samples.
The parameters for each prediction method are set as in Table 3.

Table 3. The parameters for the prediction methods.

Methods
Parameters 1 2 3 4 5 6 7
% = g L = Ama(HTH) v - - - - - -
0=01,0=049,6=0.1 - vV VYV -
u=0.5 - - - - A AN -
*5f 1 <k < 10000
— k+1 - = _ _ _ _ _ _
P { 2—1k otherwise v
=107,0=049,p, =1 Y

Now a graph of predicting the sine function by Methods 1-7 at the 500th iteration is shown in
Figure 5. We show a comparative result of iteration numbers, mean squared error values and times
in Table 4 when the stopping criterion is set as: MSE < 107> or at the 10000th iteration. Also, a
graph of the mean squared error is shown in Figure 6. It can be observed that Method 5 gives a better
performance for predicting the sine function than the other tested methods.
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Predicted
o

I
N}

target
® training data
Method 1

Method 2

Method 3

Method 4

Method 5

Method 6

Method 7
|

-4 -3 -2 -1 0 1 2 3 4
Value of testing

Figure 5. The regression for the sine function by the prediction methods at the 500th
iteration.

Table 4. The comparative result by the prediction methods.

Methods Iteration No. Time (s) MSE

1 10000 0.7986  0.0408
2 10000 12.1314  0.0032
3 3999 1.3463  9.9995 x 10~*
4 10000 17.7834 0.0014
5 338 0.6531  9.9239 x 10~
6 10000 18.3197 0.0014
7 10000 3.0340  0.0067
0.5 T
Method 1
0.45 § Method 2 |
Method 3
0.4 Method 4 |4
Method 5
0.35 Method 6 |
Method 7
0.3
L
g 0.25
0.2
0.15
0.1
0.05

o -
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of iterations

Figure 6. Plot of the MSE value by the prediction methods.
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5. Conclusions

In this paper, we discuss the convex minimization problem of the sum of two convex functions in
a Hilbert space. The challenge of removing the Lipschitz continuity assumption on the gradient of
the function attracts us to study the concept of the linesearch process. We introduce a new linesearch
and propose an inertial forward-backward algorithm whose stepsize does not depend on any Lipschitz
constant for solving the considered problem without any Lipschitz continuity condition on the gradient.
It is shown that the sequence generated by our proposed method converges weakly to a minimizer of
the sum of those two convex functions under some mild control conditions. As applications, we employ
our method to recover blurry images in an image restoration problem and predict the sine function in a
regression problem. The results of the experiments show that our method has a higher efficiency than
the well-known methods in [5,7, 14, 15,25].
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