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1. Introduction

Throughout this article, we suppose that H is a real Hilbert space with an inner product 〈·, ·〉 and
the induced norm ‖ · ‖. We are interested in studying the following unconstrained convex minimization
problem:

minimize f1(x) + f2(x), (1.1)
subject to x ∈ H

where f1, f2 : H → R ∪ {∞} are two proper, lower semi-continuous and convex functions such that
f1 is differentiable on an open set containing the domain of f2. Problem (1.1) has been widely studied
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due to its applications which can be used in various real-world applications such as in signal and image
processing, in regression problems, and in classification problems, etc., see [3, 5, 8, 10, 11, 13] and the
references therein. One of the important topics of studying Problem (1.1) is to invent some efficient
procedures for approximating minimizers of f1 + f2. Various optimization methods were introduced
and developed by many researchers, see [3, 5–8, 12, 14–16, 25–27, 32], for instance.

If a minimizer x∗ of f1 + f2 exists, it is known that x∗ is characterized by the fixed point equation of
the forward-backward operator

x∗ = FBα(x∗) := proxα f2︸  ︷︷  ︸
backward step

(x∗ − α∇ f1(x∗))︸             ︷︷             ︸
forward step

, (1.2)

where α > 0, prox f2 is the proximity operator of f2 and ∇ f1 stands for the gradient of f1. The above
equation leads to the following iterative method:

Method 1. Let x1 ∈ dom f2. For k ≥ 1, let

xk+1 = proxαk f2(xk − αk∇ f1(xk)),

where 0 < αk <
2
L and L is a Lipschitz constant of ∇ f1.

This method is well known as the forward-backward splitting algorithm [8, 15], which includes the
proximal point algorithm [17,24], the gradient method [4,9] and the CQ algorithm [1] as special cases.
It is observed from Method 1 that we need to assume the Lipschitz continuity condition on the gradient
of f1 and the stepsize αk depends on the Lipschitz constant L, which is not an easy task to find in
general practice (see [3, 5, 8, 12] for other relevant methods).

In the sequel, we set the standing hypotheses on Problem (1.1) as follows:

(H1) f1, f2 : H → R∪{∞} are two proper, lower semi-continuous and convex functions with dom f2 ⊆

dom f1, and dom f2 is nonempty, closed and convex;

(H2) f1 is differentiable on an open set containing dom f2. The gradient ∇ f1 is uniformly continuous
on any bounded subset of dom f2 and maps any bounded subset of dom f2 to a bounded set inH .

We note that the second part of (H2) is a weaker assumption than the Lipschitz continuity assumption
on ∇ f1.

Cruz and Nghia [7] proposed a technique for selecting the stepsize αk which is independent of the
Lipschitz constant L by using the following linesearch process.

Linesearch 1. Given x ∈ dom f2, σ > 0, θ ∈ (0, 1) and δ > 0.
Input α = σ.

While α‖∇ f1(FBα(x)) − ∇ f1(x)‖ > δ‖FBα(x) − x‖, do
α = θα.

End
Output α.
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Linesearch 1 is a particular case of the linesearch proposed in [29] for inclusion problems and it was
shown that this linesearch is well defined, that is, it stops after finitely many steps, see [7, Lemma 3.1]
and [29, Theorem 3.4(a)]. Cruz and Nghia [7] employed the forward-backward iteration where the
stepsize αk is generated by Linesearch 1.

Method 2. Let x1 ∈ dom f2, σ > 0, θ ∈ (0, 1) and δ ∈ (0, 1
2 ). For k ≥ 1, let

xk+1 = proxαk f2(xk − αk∇ f1(xk)),

where αk := Linesearch 1(xk, σ, θ, δ).

In optimization theory, to speed up the convergence of iterative methods, many mathematicians often
use the inertial-type extrapolation [20, 22] by adding the technical term βk(xk − xk−1). The control
parameter βk is called an inertial parameter, which controls the momentum xk− xk−1. Using Linesearch
1, Cruz and Nghia [7] also introduced an accelerated algorithm with the inertial technical term as
follows.

Method 3. Let x0 = x1 ∈ dom f2, α0 = σ > 0, θ ∈ (0, 1), δ ∈ (0, 1
2 ), and t1 = 1. For k ≥ 1, let

tk+1 =
1 +

√
1 + 4t2

k

2
, βk =

tk − 1
tk+1

,

yk = Pdom f2 (xk + βk(xk − xk−1)) ,
xk+1 = proxαk f2(yk − αk∇ f1(yk)),

where αk := Linesearch 1(yk, αk−1, θ, δ).

The technique of choosing βk in Method 3 was first mentioned in the fast iterative
shrinkage-thresholding algorithm (FISTA) by Beck and Teboulle [5]. Weak convergence results of
Methods 2 and 3 were obtained for solving Problem (1.1) with (H1) and (H2).

Recently, Kankam et al. [14] proposed a modification of Linesearch 1 as follows.

Linesearch 2. Given x ∈ dom f2, σ > 0, θ ∈ (0, 1) and δ > 0.
Input α = σ.

While αmax
{∥∥∥∇ f1(FB2

α(x)) − ∇ f1(FBα(x))
∥∥∥ , ‖∇ f1(FBα(x)) − ∇ f1(x)‖

}
> δ

(∥∥∥FB2
α(x) − FBα(x)

∥∥∥ + ‖FBα(x) − x‖
)
, do

α = θα.

End
Output α,

where FB2
α(x) := FBα(FBα(x)).

They showed the well-definedness of Linesearch 2 and introduced the following double
forward-backward algorithm whose stepsize is generated by Linesearch 2.
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Method 4. Let x1 ∈ dom f2, σ > 0, θ ∈ (0, 1) and δ ∈ (0, 1
8 ). For k ≥ 1, let

yk = proxαk f2(xk − αk∇ f1(xk)),

xk+1 = proxαk f2(yk − αk∇ f1(yk)),

where αk := Linesearch 2(xk, σ, θ, δ).

A weak convergence theorem of Method 4 was proved and an application in signal recovery was
illustrated, see [14].

In this paper, inspired and motivated by the results of Cruz and Nghia [7] and Kankam et al. [14],
and other related researches, we aim to improve Linesearches 1 and 2 and introduce a new accelerated
algorithm using our proposed linesearch for the convex minimization problem of the sum of two convex
functions. The paper is organized as follows. Basic definitions, notations and some useful tools for
proving our convergence results are given in Section 2. Our main result is in Section 3. In this section,
we introduce a new modification of Linesearches 1 and 2 and present a double forward-backward
algorithm by using an inertial technique for solving Problem (1.1) with Hypotheses (H1) and (H2).
After that, a weak convergence theorem of the proposed method is proved. The complexity of our
reduced algorithm is also discussed. In Section 4, we apply the convex minimization problem to
an image restoration problem and a regression problem. We analyze and illustrate the convergence
behavior of our method, and also compare its efficiency with the well-known methods in the literature.

2. Notations and tools

The mathematical symbols used throughout this paper are as follows. R, R+ andN are the set of real
numbers, the set of nonnegative real numbers, and the set of positive integers, respectively. Id stands
for the identity operator onH . Denote weak and strong convergence of a sequence {xk} ⊂ H to x ∈ H
by xk ⇀ x and xk → x, respectively. The set of all weak-cluster points of {xk} is denoted by ωw(xk). If
C is a nonempty closed convex subset of H , then PC stands for the metric projection from H onto C,
i.e., for each x ∈ H , PC x is the unique element in C such that ‖x − PC x‖ = dist(x,C) := infy∈C ‖x − y‖.

Let us recall the concept of the proximity operator which extends the notion of the metric projection.
Let f : H → R ∪ {∞} be a proper, lower semi-continuous and convex function. The proximity (or
proximal) operator [2, 18] of f , denoted by prox f is defined for each x ∈ H , prox f x is the unique
solution of the minimization problem:

minimize
y∈H

f (y) +
1
2
‖x − y‖2. (2.1)

If f := iC is an indicator function on C (defined by iC(x) = 0 if x ∈ C; otherwise iC(x) = ∞), then
prox f = PC.

The proximity operator can be formulated in the equivalent form

prox f = (Id + ∂ f )−1 : H → dom f , (2.2)

where ∂ f is the subdifferential of f defined by

∂ f (x) := {u ∈ H : f (x) + 〈u, y − x〉 ≤ f (y), ∀y ∈ H}, ∀x ∈ H .
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Moreover, we have the following useful fact:

x − proxα f (x)

α
∈ ∂ f (proxα f (x)), ∀x ∈ H , α > 0. (2.3)

The following is a property of the subdifferential operator.

Lemma 2.1 ( [23]). If f : H → R ∪ {∞} is a proper, lower semi-continuous and convex function, then
the graph of ∂ f defined by Gph(∂ f ) := {(x, y) ∈ H ×H : y ∈ ∂ f (x)} is demiclosed, i.e., if the sequence
{(xk, yk)} ⊂ Gph(∂ f ) satisfies that xk ⇀ x and yk → y, then (x, y) ∈ Gph(∂ f ).

We end this section by providing useful tools for proving our main results.

Fact. Let x, y ∈ H . The following inequalities hold onH :

‖x ± y‖2 = ‖x‖2 ± 2〈x, y〉 + ‖y‖2. (2.4)

Lemma 2.2 ( [12]). Let {ak} and {tk} be two sequences of nonnegative real numbers such that

ak+1 ≤ (1 + tk)ak + tkak−1, ∀k ∈ N.

Then the following holds

ak+1 ≤ K ·
k∏

j=1

(1 + 2t j), where K = max{a1, a2}.

Moreover, if
∑∞

k=1 tk < ∞, then {ak} is bounded.

Lemma 2.3 ( [31]). Let {ak} and {bk} be two sequences of nonnegative real numbers such that ak+1 ≤

ak + bk for all k ∈ N. If
∑∞

k=1 bk < ∞, then limk→∞ ak exists.

Lemma 2.4 (Opial [19]). Let {xk} be a sequence in H such that there exists a nonempty set Ω ⊂ H

satisfying:

(i) For every p ∈ Ω, limk→∞ ‖xk − p‖ exists;
(ii) ωw(xk) ⊂ Ω.

Then, {xk} converges weakly to a point in Ω.

3. Methods and convergence analysis

In this section, using the idea of Linesearches 1 and 2, we introduce a new linesearch and present
an inertial double forward-backward algorithm with the proposed linesearch for solving the convex
minimization problem of the sum of two convex functions without any Lipschitz continuity assumption
on the gradient. A weak convergence result of our proposed method is analyzed and established.

We now focus on Problem (1.1) and assume that f1 and f2 satisfy Hypotheses (H1) and (H2). The
solution set of (1.1) is denoted by Ω. Also, suppose that Ω , ∅. For simplicity, we let F := f1 + f2

and denote by FBα the forward-backward operator of f1 and f2 with respect to α, that is, FBα :=
proxα f2(Id − α∇ f1). Here, our linesearch is designed as follows.
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Linesearch 3. Given x ∈ dom f2, σ > 0, θ ∈ (0, 1), µ ∈ (0, 1) and δ > 0.
Input α = σ.

While α
{
(1 − µ)

∥∥∥∇ f1(FB2
α(x)) − ∇ f1(FBα(x))

∥∥∥ + µ ‖∇ f1(FBα(x)) − ∇ f1(x)‖
}

> δ
(∥∥∥FB2

α(x) − FBα(x)
∥∥∥ + ‖FBα(x) − x‖

)
, do

α = θα.

End
Output α.

Remark 3.1. The loop termination condition of Linesearch 3 is weaker than that of Linesearch 2.
Indeed, since

α
{
(1 − µ)

∥∥∥∇ f1(FB2
α(x)) − ∇ f1(FBα(x))

∥∥∥ + µ ‖∇ f1(FBα(x)) − ∇ f1(x)‖
}

≤ αmax
{∥∥∥∇ f1(FB2

α(x)) − ∇ f1(FBα(x))
∥∥∥ , ‖∇ f1(FBα(x)) − ∇ f1(x)‖

}
,

it follows from the well-definedness of Linesearch 2 that our linesearch also stops after finitely many
steps, see [14, Lemma 3.2] for more details.

Using Linesearch 3, we propose the following iterative method with the inertial technical term.

Method 5.
Initialization: Take x1 = y0 ∈ dom f2, σ > 0, θ ∈ (0, 1), µ ∈ (0, 1

2 ] and δ ∈ (0, µ4 ). Let {βk} ⊂ R+.
Iterative steps: For k ≥ 1, calculate xk+1 as follows:
Step 1. Compute

zk = FBαk(xk) = proxαk f2(xk − αk∇ f1(xk)), (3.1)

yk = FBαk(zk) = proxαk f2(zk − αk∇ f1(zk)), (3.2)

where αk := Linesearch 3(xk, σ, θ, µ, δ).
Step 2. Compute

xk+1 = Pdom f2(yk + βk(yk − yk−1)). (3.3)

Set k := k + 1 and return to Step 1.

To verify the convergence of Method 5, the following result is needed.

Lemma 3.2. Let {xk} be the sequence generated by Method 5. For each k ≥ 1 and p ∈ dom f2, we have

‖xk − p‖2 − ‖yk − p‖2 ≥ 2αk
[
F (yk) + F (zk) − 2F (p)

]
+

(
1 −

4δ
µ

) (
‖xk − zk‖

2 + ‖zk − yk‖
2
)
.

Proof. Let k ≥ 1 and p ∈ dom f2. By (2.3), (3.1) and (3.2), we get

xk − zk

αk
− ∇ f1(xk) ∈ ∂ f2(zk) and

zk − yk

αk
− ∇ f1(zk) ∈ ∂ f2(yk).
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Then, by the definition of the subdifferential of f2, we have

f2(p) − f2(zk) ≥
〈

xk − zk

αk
− ∇ f1(xk), p − zk

〉
=

1
αk
〈xk − zk, p − zk〉 + 〈∇ f1(xk), zk − p〉 (3.4)

and

f2(p) − f2(yk) ≥
〈

zk − yk

αk
− ∇ f1(zk), p − yk

〉
=

1
αk
〈zk − yk, p − yk〉 + 〈∇ f1(zk), yk − p〉. (3.5)

By the assumptions on f1 and f2, we have the following fact:

f1(x) − f1(y) ≥ 〈∇ f1(y), x − y〉, ∀x ∈ dom f1, ∀y ∈ dom f2. (3.6)

From (3.6), we get
f1(p) − f1(xk) ≥ 〈∇ f1(xk), p − xk〉, (3.7)

and

f1(p) − f1(zk) ≥ 〈∇ f1(zk), p − zk〉. (3.8)

Summing (3.4), (3.5), (3.7) and (3.8) yields

2F (p) − F (zk) − f2(yk) − f1(xk)
≥ 〈∇ f1(xk), zk − p〉 + 〈∇ f1(zk), yk − p〉 + 〈∇ f1(xk), p − xk〉 + 〈∇ f1(zk), p − zk〉

+
1
αk

[
〈xk − zk, p − zk〉 + 〈zk − yk, p − yk〉

]
= 〈∇ f1(xk), zk − xk〉 + 〈∇ f1(zk), yk − zk〉 +

1
αk

[
〈xk − zk, p − zk〉 + 〈zk − yk, p − yk〉

]
= 〈∇ f1(xk) − ∇ f1(zk), zk − xk〉 + 〈∇ f1(zk), zk − xk〉 + 〈∇ f1(yk), yk − zk〉

+ 〈∇ f1(zk) − ∇ f1(yk), yk − zk〉 +
1
αk

[
〈xk − zk, p − zk〉 + 〈zk − yk, p − yk〉

]
≥ 〈∇ f1(zk), zk − xk〉 + 〈∇ f1(yk), yk − zk〉 − ‖∇ f1(xk) − ∇ f1(zk)‖‖zk − xk‖

− ‖∇ f1(zk) − ∇ f1(yk)‖‖yk − zk‖ +
1
αk

[
〈xk − zk, p − zk〉 + 〈zk − yk, p − yk〉

]
.

Using (3.6) again, the above inequality becomes

2F (p) − F (zk) − f2(yk) − f1(xk)
≥ f1(yk) − f1(xk) − ‖∇ f1(xk) − ∇ f1(zk)‖‖zk − xk‖ − ‖∇ f1(zk) − ∇ f1(yk)‖‖yk − zk‖

+
1
αk

[
〈xk − zk, p − zk〉 + 〈zk − yk, p − yk〉

]
≥ f1(yk) − f1(xk) − ‖∇ f1(xk) − ∇ f1(zk)‖ (‖yk − zk‖ + ‖zk − xk‖)
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− ‖∇ f1(zk) − ∇ f1(yk)‖ (‖yk − zk‖ + ‖zk − xk‖) +
1
αk

[
〈xk − zk, p − zk〉 + 〈zk − yk, p − yk〉

]
= f1(yk) − f1(xk) +

1
αk

[
〈xk − zk, p − zk〉 + 〈zk − yk, p − yk〉

]
− (‖∇ f1(xk) − ∇ f1(zk)‖ + ‖∇ f1(zk) − ∇ f1(yk)‖) (‖yk − zk‖ + ‖zk − xk‖) . (3.9)

Since αk := Linesearch 3(xk, σ, θ, µ, δ), we have

αk {(1 − µ) ‖∇ f1(yk) − ∇ f1(zk)‖ + µ ‖∇ f1(zk) − ∇ f1(xk)‖} ≤ δ (‖yk − zk‖ + ‖zk − xk‖) . (3.10)

It follows from (3.9) and (3.10) that

1
αk

[
〈xk − zk, zk − p〉 + 〈zk − yk, yk − p〉

]
≥ F (yk) + F (zk) − 2F (p)
− (‖∇ f1(xk) − ∇ f1(zk)‖ + ‖∇ f1(zk) − ∇ f1(yk)‖) (‖yk − zk‖ + ‖zk − xk‖)

≥ F (yk) + F (zk) − 2F (p)

−
1
µ
{(1 − µ) ‖∇ f1(yk) − ∇ f1(zk)‖ + µ ‖∇ f1(zk) − ∇ f1(xk)‖} (‖yk − zk‖ + ‖zk − xk‖)

≥ F (yk) + F (zk) − 2F (p) −
δ

αkµ
(‖yk − zk‖ + ‖zk − xk‖)2

≥ F (yk) + F (zk) − 2F (p) −
2δ
αkµ

(
‖yk − zk‖

2 + ‖zk − xk‖
2
)
. (3.11)

From (2.4), we get

〈xk − zk, zk − p〉 =
1
2

(
‖xk − p‖2 − ‖xk − zk‖

2 − ‖zk − p‖2
)
, (3.12)

and
〈zk − yk, yk − p〉 =

1
2

(
‖zk − p‖2 − ‖zk − yk‖

2 − ‖yk − p‖2
)
. (3.13)

Therefore, we conclude from (3.11)–(3.13) that

‖xk − p‖2 − ‖yk − p‖2 ≥ 2αk
[
F (yk) + F (zk) − 2F (p)

]
+

(
1 −

4δ
µ

) (
‖xk − zk‖

2 + ‖zk − yk‖
2
)
. �

Now we are ready to prove a convergence result of Method 5, which is the main theorem of this
paper.

Theorem 3.3. Let {xk} be the sequence generated by Method 5. If αk ≥ α > 0, βk ≥ 0 for all k ∈ N and∑∞
k=1 βk < ∞, then {xk} converges weakly to a point in Ω.

Proof. Let p∗ ∈ Ω, αk ≥ α > 0, βk ≥ 0 for all k ∈ N and
∑∞

k=1 βk < ∞. By applying Lemma 3.2, we
have

‖xk − p∗‖2 − ‖yk − p∗‖2 ≥ 2αk
[
F (yk) − F (p∗) + F (zk) − F (p∗)

]
+

(
1 −

4δ
µ

) (
‖xk − zk‖

2 + ‖zk − yk‖
2
)
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≥

(
1 −

4δ
µ

)
‖xk − zk‖

2 ≥ 0, (3.14)

which implies
‖yk − p∗‖ ≤ ‖xk − p∗‖. (3.15)

Let x0 = x1. By (3.3) and (3.15), we have

‖xk+1 − p∗‖ = ‖Pdom f2(yk + βk(yk − yk−1)) − p∗‖

≤ ‖yk + βk(yk − yk−1) − p∗‖

≤ ‖yk − p∗‖ + βk‖yk − yk−1‖

≤ (1 + βk)‖yk − p∗‖ + βk‖yk−1 − p∗‖

≤ (1 + βk)‖xk − p∗‖ + βk‖xk−1 − p∗‖, ∀k ∈ N. (3.16)

By Lemma 2.2, we have ‖xk+1 − p∗‖ ≤ K ·
∏k

j=1(1 + 2β j), where K := max{‖x1 − p∗‖, ‖x2 − p∗‖}, and
{xk} is bounded. Thus,

∑∞
k=1 βk(‖xk − p∗‖ + ‖xk−1 − p∗‖) < ∞. In view of (3.16), it follows from Lemma

2.3 that limk→∞ ‖xk − p∗‖ exists. Also, we have limk→∞ ‖xk − p∗‖ = limk→∞ ‖yk − p∗‖. Then, by (3.14),
we get

lim
k→∞
‖xk − zk‖ = 0. (3.17)

Next, we show that ωw(xk) ⊂ Ω. Pick p̄ ∈ ωw(xk), then there is a subsequence {xki} of {xk} such that
xki ⇀ p̄. Thus, zki ⇀ p̄. By (H2), we have

lim
k→∞
‖∇ f1(xk) − ∇ f1(zk)‖ = 0. (3.18)

From (2.3), we get

xki − zki

αki

+ ∇ f1(zki) − ∇ f1(xki) ∈ ∂ f2(zki) + ∇ f1(zki) = ∂F (zki). (3.19)

Here, by zki ⇀ p̄ and (3.17)–(3.19), it follows from Lemma 2.1 that 0 ∈ ∂F (p̄), that is, p̄ ∈ Ω. So,
ωw(xk) ⊂ Ω. Using Lemma 2.4, we obtain that xk ⇀ p for some p ∈ Ω. This completes the proof. �

The following method is obtained by reducing the inertial step in Method 5.

Method 6.
Initialization: Take x1 ∈ dom f2, σ > 0, θ ∈ (0, 1), µ ∈ (0, 1

2 ] and δ ∈ (0, µ4 ).
Iterative steps: For k ≥ 1, compute

zk = FBαk(xk) = proxαk f2(xk − αk∇ f1(xk)), (3.20)

xk+1 = FBαk(zk) = proxαk f2(zk − αk∇ f1(zk)), (3.21)

where αk := Linesearch 3(xk, σ, θ, µ, δ).

We also analyze the convergence and the complexity of Method 6.

AIMS Mathematics Volume 6, Issue 6, 6180–6200.



6189

Theorem 3.4. Let {xk} be the sequence generated by Method 6. If αk ≥ α > 0 for all k ∈ N, then the
following statements hold:

(i) {xk} converges weakly to a point in Ω;
(ii) If δ ∈ (0, µ8 ), then {F (xk)} is decreasing and

F (xk) −min
x∈H
F (x) ≤

[dist(x1,Ω)]2

2αk
, ∀k ∈ N. (3.22)

Proof. Setting βk := 0 in Method 5, (i) is obtained directly from Theorem 3.3. To prove (ii), let
δ ∈ (0, µ8 ). We first show that {F (xk)} is decreasing. By Lemma 3.2, we get

‖xk − p‖2 − ‖xk+1 − p‖2 ≥ 2αk[F (xk+1) + F (zk) − 2F (p)]

+

(
1 −

4δ
µ

) (
‖xk − zk‖

2 + ‖zk − xk+1‖
2
)
, ∀p ∈ dom f2. (3.23)

Taking p := zk in (3.23), we have

‖xk − zk‖
2 − ‖xk+1 − zk‖

2 ≥ 2αk[F (xk+1) − F (zk)] +

(
1 −

4δ
µ

) (
‖xk − zk‖

2 + ‖zk − xk+1‖
2
)
. (3.24)

Also, taking p := xk in (3.23), we have

−‖xk+1 − xk‖
2 ≥ 2αk[F (xk+1) + F (zk) − 2F (xk)] +

(
1 −

4δ
µ

) (
‖xk − zk‖

2 + ‖zk − xk+1‖
2
)
. (3.25)

Combining (3.24) and (3.25), we get

‖xk − zk‖
2 − ‖xk+1 − zk‖

2 − ‖xk+1 − xk‖
2 ≥ 4αk[F (xk+1) − F (xk)] + 2

(
1 −

4δ
µ

) (
‖xk − zk‖

2 + ‖zk − xk+1‖
2
)
,

which implies

F (xk+1) − F (xk) ≤ −
1

4αk

{ (
1 −

8δ
µ

)
‖xk − zk‖

2 +

(
3 −

8δ
µ

)
‖zk − xk+1‖

2 + ‖xk+1 − xk‖
2
}
.

This together with δ ∈ (0, µ8 ) yields F (xk+1) ≤ F (xk), that is, {F (xk)} is decreasing. Next, we will show
that (3.22) is true. Pick any p∗ ∈ Ω. From (3.23), we have

‖xk − p∗‖2 − ‖xk+1 − p∗‖2 ≥ 2αk[F (xk+1) − F (p∗) + F (zk) − F (p∗)]

+

(
1 −

4δ
µ

) (
‖xk − zk‖

2 + ‖zk − xk+1‖
2
)

≥ 2α[F (xk+1) − F (p∗)].

Hence

F (xi+1) − F (p∗) ≤
1

2α

(
‖xi − p∗‖2 − ‖xi+1 − p∗‖2

)
, ∀i ∈ N.
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It follows that
k∑

i=1

F (xi+1) − kF (p∗) ≤
1

2α

k∑
i=1

(
‖xi − p∗‖2 − ‖xi+1 − p∗‖2

)
=

1
2α

(
‖x1 − p∗‖2 − ‖xk+1 − p∗‖2

)
≤
‖x1 − p∗‖2

2α
.

By the decreasing property of {F (xk)}, we get

k[F (xk) − F (p∗)] ≤
k∑

i=1

F (xi+1) − kF (p∗) ≤
‖x1 − p∗‖2

2α
, ∀p∗ ∈ Ω. (3.26)

It follows from (3.26) that

F (xk) −min
x∈H
F (x) ≤ inf

p∗∈Ω

‖x1 − p∗‖2

2αk
=

[dist(x1,Ω)]2

2αk
.

�

We note that the stepsize condition on {αk} in Theorems 3.3 and 3.4 needs the boundedness from
below by a positive real number. Next, we show that this condition can be guaranteed by the Lipschitz
continuity assumption on the gradient.

Let C ⊂ H be a nonempty closed convex set. Recall that an operator T : C → H is said to be
Lipschitz continuous if there exists L > 0 such that ‖T x − Ty‖ ≤ L‖x − y‖ for all x, y ∈ C.

Proposition 3.5. Let {αk} be the sequence generated by Linesearch 3 of Method 5 (or Method 6). If
∇ f1 is Lipschitz continuous on dom f2 with a coefficient L > 0, then αk ≥ min

{
σ, δθL

}
for all k ∈ N.

Proof. Let ∇ f1 be L-Lipschitz continuous on dom f2. From Linesearch 3, we know that αk ≤ σ for all
k ∈ N. If αk < σ, then αk = σθmk where mk is the smallest positive integer such that

αk

{
(1 − µ)

∥∥∥∇ f1(FB2
αk

(xk)) − ∇ f1(FBαk(xk))
∥∥∥ + µ

∥∥∥∇ f1(FBαk(xk)) − ∇ f1(xk)
∥∥∥}

≤ δ
(∥∥∥FB2

αk
(xk) − FBαk(xk)

∥∥∥ +
∥∥∥FBαk(xk) − xk

∥∥∥) .
Let ᾱk := αk

θ
> 0. By the Lipschitz continuity of ∇ f1 and the above expression, we have

ᾱkL
(∥∥∥FB2

ᾱk
(xk) − FBᾱk(xk)

∥∥∥ +
∥∥∥FBᾱk(xk) − xk

∥∥∥)
≥ ᾱk

(∥∥∥∇ f1(FB2
ᾱk

(xk)) − ∇ f1(FBᾱk(xk))
∥∥∥ +

∥∥∥∇ f1(FBᾱk(xk)) − ∇ f1(xk)
∥∥∥)

≥ ᾱk

{
(1 − µ)

∥∥∥∇ f1(FB2
ᾱk

(xk)) − ∇ f1(FBᾱk(xk))
∥∥∥ + µ

∥∥∥∇ f1(FBᾱk(xk)) − ∇ f1(xk)
∥∥∥}

> δ
(∥∥∥FB2

ᾱk
(xk) − FBᾱk(xk)

∥∥∥ +
∥∥∥FBᾱk(xk) − xk

∥∥∥) ,
which implies that αk >

δθ
L . Consequently, αk ≥ min

{
σ, δθL

}
for all k ∈ N. �

Remark 3.6. It is worth mentioning again that the Lipschitz continuity assumption on the gradient of
f1 is sufficient for Hypothesis (H2). However, if we assume this assumption further, the calculation of
the stepsize αk generated by Linesearch 3 is still independent of the Lipschitz constant.
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4. Applications

In this section, we apply the convex minimization problem, Problem (1.1), to an image restoration
problem and a regression problem. To slove these problems, we analyze and illustrate the convergence
behavior of our method (Method 5) and compare its efficiency with Methods 1–4 and 6. We also
consider the following method with another linesearch strategy [21]:

Linesearch 4. Given x ∈ dom f2, σ̄ > 0, and θ̄ ∈ (0, 1).
Input α = σ̄.

While F (FBα(x)) > f1(x) + 〈FBα(x) − x,∇ f1(x)〉 + 1
2α‖FBα(x) − x‖2 + f2(FBα(x)), do

α = θ̄α.

End
Output α.

Method 7. Let x1 = y0 ∈ dom f2, σ̄ > 0, θ̄ ∈ (0, 1), ρk > 0, and t1 = 1. For k ≥ 1, let

yk = proxαk f2(xk − αk∇ f1(xk)),

tk+1 =
1 +

√
1 + 4ρkt2

k

2
, βk =

tk − 1
tk+1

,

xk+1 = yk + βk(yk − yk−1),

where αk := Linesearch 4(xk, σ̄, θ̄).

Note that Method 7 is well known as the FISTA with backtracking, see [5, 25].

All experiments and visualizations are done with MATLAB and are performed on a laptop computer
(Intel Core-i5/4.00 GB RAM/Windows 8/64-bit).

4.1. Image restoration problems

Many problems rising in image and signal processing, especially the image restoration problem,
can be formulated as the following equation:

y = Ax + ε, (4.1)

where x ∈ RN is an original image, y ∈ RM is the observed image, ε is an additive noise and A ∈ RM×N

is the blurring operation. To approximate the original image, we need to minimize the value of ε by
using the LASSO model [28]:

min
x∈RN

{
1
2
‖y − Ax‖22 + λ‖x‖1

}
, (4.2)

where λ > 0 is a regularization parameter, ‖ · ‖1 is the l1-norm, and ‖ · ‖2 is the Euclidean norm. In this
situation, we apply Problem (1.1) to the LASSO model (4.2) by setting

f1(x) =
1
2
‖y − Ax‖22 and f2(x) = λ‖x‖1,
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where A = RW, R is the matrix representing the blur operator and W is the inverse of a three stage
Haar wavelet transform. We use the peak signal-to-noise ratio (PSNR) in decibel (dB) [30] and the
structural similarity index metric (SSIM) [33] as the image quality measures, which are formulated as
follows:

PS NR(xk) = 10 log10

(
2552

MS E(k)

)
,

where MS E(k) = 1
M ‖xk − x‖22, M is the number of image samples, and x is the original image and

S S IM(xk, x) =
(2νxkνx + C1)(2ξxk x + C2)

(ν2
xk

+ ν2
x + C1)(ξ2

xk
+ ξ2

x + C2)
,

where {νxk , ξxk} and {νx, ξx} denote the mean intensity and standard deviation set of the deblerring
image xk and the original image x, respectively, ξxn x denotes its cross correlation, and C1, C2 are small
constants value to avoid instability problem when the denominator is too close to zero.

Example 4.1. Consider two grayscale images, Cameraman (see Figure 1 (a)) and Boy (see Figure 2
(a)), with size of 256 × 256, which are contaminated by Gaussian blur of filter size 9× 9 with standard
deviation σ̂ = 4, noise 10−5 (see Figure 1 (b) and Figure 2 (b)).

Firstly, we test the efficiency of Method 5 for recovering the Caneraman image at the 300th iteration
by choosing various linesearch parameters and different starting points as shown in Table 1.

Table 1. The test for recovering the Caneraman image of Method 5.

Initial points x1

Linesearch parameters
PSNR SSIM

σ θ µ δ

Blurred image 5 0.1 0.1 0.02 31.554 0.6193
1 0.5 0.1 0.02 31.096 0.6081
0.1 0.9 0.5 0.12 28.721 0.5717
10 0.9 0.5 0.12 33.051 0.6708

Random selection 5 0.1 0.1 0.02 30.554 0.6043
1 0.5 0.1 0.02 29.660 0.5934
0.1 0.9 0.5 0.12 28.694 0.5640
10 0.9 0.5 0.12 32.798 0.6554

It is observed from Table 1 that the linesearch parameter σ influences the image recovery performance
of Method 5, while choosing the starting point x1 has no significant impact on the convergence behavior
of our method.

Next, we test and analyze the image recovery performance of Methods 1–7 for recovering the
images (Cameraman and Boy) by setting the parameters as in Table 2 and by choosing the blurred
images as the starting points. The maximum iteration number for all methods is fixed at 500. The
comparative experiments for recovering the Cameraman and Boy images are as follows. Original
images, blurry image contaminated by Gaussian blur and restored images by Methods 1–7 are shown
in Figures 1 and 2. The PSNR and SSIM results are shown in Figures 3 and 4. It can be seen that
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Method 5 gives the higher values of PSNR and SSIM than the others, meanwhile Method 6 gives the
better results than the other methods without the inertial step. Therefore, our method has the highest
image recovery efficiency comparing with the studied methods.

Table 2. The parameters for the deblurring methods.

Methods

Parameters 1 2 3 4 5 6 7

λ = 10−5 √ √ √ √ √ √ √

αk = k
(k+1)L , L = λmax(A>A)

√
– – – – – –

σ = 10, θ = 0.9, δ = 0.1 –
√ √ √ √

– –
µ = 0.5 – – – –

√ √
–

βk =

{ k
k+1 if 1 ≤ k ≤ 500
1
2k otherwise

– – – –
√

– –

σ̄ = 10, θ̄ = 0.9, ρk = 1 – – – – – –
√

follows. Original images, blurry image contaminated by Gaussian blur and restored
images by Methods 1–5 are shown in Figures 1 and 2. The PSNR and SSIM results
are shown in Figures 3 and 4. It can be seen that Method 5 gives the higher values
of PSNR and SSIM than the other tested methods. Therefore, our method has the
highest image recovery efficiency comparing with other methods.

(a) Original Image (b) Blurred Image

(c) Method 1 (d) Method 2 (e) Method 3

(f) Method 4 (g) Method 5 (h) Method 6 (i) Method 7

Figure 1.: Restoration for Cameraman image. (c)–(g): Restored images by the deblurring methods.

14

Figure 1. Restoration for Cameraman image. (c)–(i): Restored images by the deblurring
methods.
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(a) Original Image (b) Blurred Image

(c) Method 1 (d) Method 2 (e) Method 3

(f) Method 4 (g) Method 5 (h) Method 6 (i) Method 7

Figure 2.: Restoration for Boy image. (c)–(g): Restored images by the deblurring methods.

4.2. Regression Problems

We first introduce a brief concept of extreme learning machine (ELM) for regression
problems. Let S = {(xk, tk) : xk ∈ Rn, tk ∈ Rm, k = 1, 2, ..., N} be a training set of
N distinct samples where xk is an input data and tk is a target. For any single hidden
layer of ELM, the output of the i-th hidden node is

hi(x) = G(ai, bi, x),

where G is an activation function, ai and bi are parameters of the i-th hidden node.
The output function of ELM for a single-hidden layer feedforward neural networks
(SLFNs) with M hidden nodes is

Ok =

M∑
i=1

ξihi(xk),

15

Figure 2. Restoration for Boy image. (c)–(i): Restored images by the deblurring methods.
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(c) Boy
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(d) Boy
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Figure 4.: Plot of PSNR and SSIM results by the deblurring methods.

where T = [t>1 , ..., t
>
N ]>. From (35), we can estimate the weight ξ by ξ = H†T where

H† = (H>H)−1H> is the pseudo-inverse matrix of H.

Example 4.2. This example aims to predict the sine function by using the ELM
method defined as follows:

• Create randomly 10 distinct points y1, y2, ..., y10 ∈ [−4, 4];
• Create a training matrix R = [y1 y2 ... y10]> and a training target matrix S =

[sin(y1) sin(y2) ... sin(y10)]>;
• Create a testing matrix V = [−4 − 3.99 − 3.98 ... 4] and a target matrix
T = [sin(−4) sin(−3.99) ... sin(y10)]>;
• Using sigmoid as an activation function generates the hidden layer output matrix
H1 of the training matrix R with the hidden node M = 100;
• Choose a regularization parameter λ = 10−5. Formulate a convex minimization

problem via the LASSO model that

f1(ξ) =
1

2
‖H1ξ − S‖22 and f2(ξ) = λ‖ξ‖1,

and find the optimal weight ξk of this problem by employing Methods 1–5 with
certain number of iterations;
• Using sigmoid as an activation function generates the hidden layer output matrix
H2 of the testing matrix V with the hidden node M = 100;

17

Figure 3. Plot of PSNR and SSIM results by the deblurring methods.
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Figure 3.: The comparison of PSNR and SSIM values for blurred images and restored
images by the deblurring methods.

where ξi is the output weight of the i-th hidden node. The hidden layer output matrix
H is defined by

H =


G(a1, b1, x1) · · · G(aM , bM , x1)

...
. . .

...

G(a1, b1, xN ) · · · G(aM , bM , xN )


N×M

.

The main goal of ELM is to find ξ = [ξ>1 , ..., ξ
>
M ]> such that

Hξ = T, (35)
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Figure 4. The comparison of PSNR and SSIM values for blurred images and restored images
by the deblurring methods.

4.2. Regression problems

We first introduce a brief concept of extreme learning machine (ELM) for regression problems. Let
S = {(xk, tk) : xk ∈ R

n, tk ∈ R
m, k = 1, 2, ...,N} be a training set of N distinct samples where xk is an

input data and tk is a target. For any single hidden layer of ELM, the output of the i-th hidden node is

hi(x) = G(ai, bi, x),

where G is an activation function, ai and bi are parameters of the i-th hidden node. The output function
of ELM for a single-hidden layer feedforward neural networks (SLFNs) with M hidden nodes is

Ok =

M∑
i=1

ξihi(xk),

where ξi is the output weight of the i-th hidden node. The hidden layer output matrix H is defined by

H =


G(a1, b1, x1) · · · G(aM, bM, x1)

...
. . .

...

G(a1, b1, xN) · · · G(aM, bM, xN)


N×M

.

The main goal of ELM is to find ξ = [ξ>1 , ..., ξ
>
M]> such that

Hξ = T, (4.3)

where T = [t>1 , ..., t
>
N]>. From (4.3), we can estimate the weight ξ by ξ = H†T where H† = (H>H)−1H>

is the pseudo-inverse matrix of H.
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Example 4.2. This example aims to predict the sine function by using the ELM method defined as
follows:

• Create randomly 10 distinct points y1, y2, ..., y10 ∈ [−4, 4];
• Create a training matrix R = [y1 y2 ... y10]> and a training target matrix

S = [sin(y1) sin(y2) ... sin(y10)]>;
• Create a testing matrix V = [−4 − 3.99 − 3.98 ... 4] and a target matrix

T = [sin(−4) sin(−3.99) ... sin(y10)]>;
• Using sigmoid as an activation function generates the hidden layer output matrix H1 of the training

matrix R with the hidden node M = 100;
• Choose a regularization parameter λ = 10−5. Formulate a convex minimization problem via the

LASSO model that

f1(ξ) =
1
2
‖H1ξ − S ‖22 and f2(ξ) = λ‖ξ‖1,

and find the optimal weight ξk of this problem by employing Methods 1–5 with certain number
of iterations;
• Using sigmoid as an activation function generates the hidden layer output matrix H2 of the testing

matrix V with the hidden node M = 100;
• Calculate the output Ok = H2ξk and calculate the mean squared error (MSE) at k-th iteration by

MS E(k) =
1
N
‖Ok − T‖22,

where N is the number of distinct samples.

The parameters for each prediction method are set as in Table 3.

Table 3. The parameters for the prediction methods.
Methods

Parameters 1 2 3 4 5 6 7

αk = k
(k+1)L , L = λmax(H>H)

√
– – – – – –

σ = 0.1, θ = 0.49, δ = 0.1 –
√ √ √ √ √

–
µ = 0.5 – – – –

√ √
–

βk =

{ k
k+1 if 1 ≤ k ≤ 10000
1
2k otherwise

– – – –
√

– –

σ̄ = 10−5, θ̄ = 0.49, ρk = 1 – – – – – –
√

Now a graph of predicting the sine function by Methods 1–7 at the 500th iteration is shown in
Figure 5. We show a comparative result of iteration numbers, mean squared error values and times
in Table 4 when the stopping criterion is set as: MS E ≤ 10−3 or at the 10000th iteration. Also, a
graph of the mean squared error is shown in Figure 6. It can be observed that Method 5 gives a better
performance for predicting the sine function than the other tested methods.
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Figure 5. The regression for the sine function by the prediction methods at the 500th
iteration.

Table 4. The comparative result by the prediction methods.

Methods Iteration No. Time (s) MSE

1 10000 0.7986 0.0408
2 10000 12.1314 0.0032
3 3999 1.3463 9.9995 × 10−4

4 10000 17.7834 0.0014
5 338 0.6531 9.9239 × 10−4

6 10000 18.3197 0.0014
7 10000 3.0340 0.0067
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Figure 6. Plot of the MSE value by the prediction methods.
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5. Conclusions

In this paper, we discuss the convex minimization problem of the sum of two convex functions in
a Hilbert space. The challenge of removing the Lipschitz continuity assumption on the gradient of
the function attracts us to study the concept of the linesearch process. We introduce a new linesearch
and propose an inertial forward-backward algorithm whose stepsize does not depend on any Lipschitz
constant for solving the considered problem without any Lipschitz continuity condition on the gradient.
It is shown that the sequence generated by our proposed method converges weakly to a minimizer of
the sum of those two convex functions under some mild control conditions. As applications, we employ
our method to recover blurry images in an image restoration problem and predict the sine function in a
regression problem. The results of the experiments show that our method has a higher efficiency than
the well-known methods in [5, 7, 14, 15, 25].
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