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Abstract: In this manuscript, two recent numerical schemes (the trigonometric quintic and
exponential cubic B-spline schemes) are employed for evaluating the approximate solutions of the
nonlinear Klein-Gordon-Zakharov model. This model describes the interaction between the Langmuir
wave and the ion-acoustic wave in a high-frequency plasma. The initial and boundary conditions are
constructed via a novel general computational scheme. [1] has used five different numerical schemes,
such as the Adomian decomposition method, Elkalla-expansion method, three-member of the well-
known cubic B-spline schemes. Consequently, the comparison between our solutions and that have
been given in [1], shows the accuracy of seven recent numerical schemes along with the considered
model. The obtained numerical solutions are sketched in two dimensional and column distribution to
explain the matching between the computational and numerical simulation. The novelty, originality,
and accuracy of this research paper are explained by comparing the obtained numerical solutions with
the previously obtained solutions.
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1. Introduction

Plasma physics is one of the most attractive branches of science where many scientists have been
focusing their attention on discovering more properties of this field [2]. Plasma or cytoplasm is a
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distinct state of matter that can be described as an ionized gas in which the electrons are free and are
not bound to an atom or a molecule [3]. If the substance is present in nature in three states: solid,
liquid, and gas, then plasma can be classified as the fourth state in which the substance can exist [4].
Recently, investigating the heavy Langmuir turbulence’s characterization becomes a very important
tool for providing a good opportunity to overcome the Langmuir condensation problem [5, 6].
Moreover, this investigation aims to raise the amount of long-wave disturbances through the
condensation paradox in Langmuir [7]. At that condensation, the radiation can not dampen the
vibration where at severe periods, the coulomb relation is unable to dampen the variations in the
pulses because of their frequency [8]. Recently, these radiations with its distinct variations and
interactions have been mathematically formulated by some nonlinear evolution equations such as
KGZ model [9–12].

The ability of nonlinear partial differential equations with integer or fractional order for
formulating different complicated phenomena in various fields including genetics, engineering,
quantum mechanics, electro chemistry, chemistry, mechanical engineering, biology, mechanics, etc,
makes it the ideal and direct way for discovering the indiscoverable properties of these
phenomena [13–19]. Thus, many mathematicians and physics pay complete attention to derive
computational, semi-analytical, numerical techniques for solving these equations such as the
Adomian decomposition method, Elkalla expansion method, B-spline schemes, extended simplest
equation method, modified Khater method, generalized Khater method, exponential expansion
method, auxiliary equation method, direct algebraic expansion method, and so no [20–28]. These
methods have been employed on several models but until now, there is no unified method can be
applied to all the nonlinear evolution equation [29–32].

In this context, this paper investigate the numerical solutions of the nonlinear KGZ model. This
model is formulates as follows [33–35]:


Gt t − Gx x + G + υ0QG = 0,

Qt t − Qx x − υ1

(
|G|2

)
x x
, = 0,

(1.1)

where υ0, υ1 are nonzero real parameters describing the consistency of the initial data of the KGZ
system while Q = Q(x, t), G = G(x, t) are receptively real and complex functions which represent the
fast time scale component of the electric field raised by electrons and the derivation of ion density
from its equilibrium. Eq (1.1) describes the interaction and contact between the Langmuir wave and
the acoustic wave of the ions in a high frequency plasma. [1] have employed the generalized Khater
method to Eq (1.1) and converted it into the following ordinary differential equation with the following
initial and boundary conditions


P′′ +L1P +L2P

3 = 0, ,

P(0) = F (Z), PZ(0) = E(Z).
(1.2)

The generalized Khater method have been constructed the values of F , E under the following value of
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the above-mentioned parameters L0 = 1
2 , L1 = −225

32 as follows [1]:


F (Z) = 1

15 (−4) tanh
(
Z

2

)
,

E(Z) = − 2
15 . .

(1.3)

This model can be used to calculate from Euler’s equations for electrons and ions, with Maxwell’s
electromagnetic field law for ions, by disregarding the influence of magnetic fields [36, 37]. The
nonlinear KGZ model has numerically studied through some recent approximate schemes such as a
finite difference method [38] where Chunmei Su and Wenfan Yi have investigated the numerical
solutions and established the error estimates of a conservative finite difference method for the
considered model with a dimensionless parameter 0 < ε � 1, which is inversely proportional to the
speed of sound. While [39] has compared the obtained numerical solutions that have been obtained
through applying Finite difference time domain (FDTD) methods, Exponential wave integrator (EWI)
and Time-splitting (TS) method,Uniformly and optimally accurate (UOA) methods and Uniformly
accurate (UA) methods that have been applied in [40, 41] of the same model that give a precision,
computational sophistication, and other properties are also addressed. [15] has employed the
well-known Chebyshev Cardinal Functions for investigating the numerical solutions of the nonlinear
KGZ model where operational matrices of derivatives have been used to convert partial differential
equations into nonlinear algebraic equations. [16] has used a new conservative finite difference
scheme with a parameter θ has been employed for obtaining the numerical solutions of the considered
model. Moreover, Convergence of the numerical solutions has been investigated. For further
information of the numerical solutions of the nonlinear KGZ model, you can see [17, 18].

The rest sections in this manuscript is organized as follows; Section 2 applies the above-mentioned
numerical schemes to the nonlinear KGZ equation for estimating the numerical solutions. Section 3
discusses the obtained numerical solutions. Section 4 gives the conclusion of the whole paper.

2. Numerical investigation

Here, we give the headline of the used methods they we give the obtained results along with
these approximate schemes “

2.1. Methodology

2.1.1. Trigonometric Quintic B-spline scheme

Using the trigonometric Quintic B-spline scheme supposes the solutions of Eq (1.2) is formulated
as following

P(Z) =

r+2∑
j=−2

C jG j(Z), j = (0, 1, · · · , r), (2.1)
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where C j are be determined form the collocation points Z j and G j(Z) satisfies the following values

G j(Z) =



ψ5(Z j−3), Z ∈ [Z j−3,Z j−2]

ψ4(Z j−3) Ψ(Z j−1) + · · · + Ψ(Z j+3)ψ4(Z j−2) Z ∈ [Z j−2,Z j−1]

ψ3(Z j−3) Ψ2(Z j) + · · · + Ψ2(Z j+3)ψ3(Z j−1) Z ∈ [Z j−1,Z j]

ψ2(Z j−3) Ψ3(Z j+1) + · · · + Ψ3(Z j+3)ψ2(Z j) Z ∈ [Z j,Z j+1]

ψ(Z j−1) Ψ2( j + 2) + · · · + Ψ4(Z j+3)ψ(Z j+1), Z ∈ [Z j+1,Z j+2]

Ψ5(Z j+3) Z ∈ [Z j+2,Z j+3]

0, otherwise

(2.2)

where ψ(Z j) = sin
(
Z−Z j

2

)
, Ψ(Z j) = sin

(
Z j−Z

2

)
. Consequently, we can find the values ofG j(Z) as shown

in the next Table 1 where the values of PL, L = 1, · · · , 13.

Table 1. Value of G j(Z) and its principle two derivatives at the knot points.

Z Z j−3 Z j−2 Z j−1 Z j Z j+1 Z j+2 Z j+3

G j(Z) 0 P1 P2 P3 P2 P1 0
G′j(Z) 0 −P4 −P5 0 P5 P4 0
G′′j (Z) 0 P6 P7 P8 P7 P6 0
G′′′j (Z) 0 P9 P10 0 P10 P9 0
G′′′′j (Z) 0 P11 P12 P13 P12 P11 0

P1 =
sin5

(
h
2

)
sin

(
5h
2

)
sin(2h) sin

(
3h
2

)
sin(h) sin

(
h
2

) , (2.3)

P2 =
2 sin5

(
h
2

)
cos

(
h
2

) (
16 cos2

(
h
2

)
− 3

)
sin

(
5h
2

)
sin(2h) sin

(
3h
2

)
sin(h) sin

(
h
2

) , (2.4)

P3 =
2 sin5

(
h
2

) (
48 cos4

(
h
2

)
− 16 cos2

(
h
2

)
+ 1

)
sin

(
5h
2

)
sin(2h) sin

(
3h
2

)
sin(h) sin

(
h
2

) , (2.5)

P4 =
5 sin4

(
h
2

)
cos

(
h
2

)
2
(
sin

(
5h
2

)
sin(2h) sin

(
3h
2

)
sin(h) sin

(
h
2

)) , (2.6)
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P5 =
5 sin4

(
h
2

)
cos2

(
h
2

) (
8 cos2

(
h
2

)
− 3

)
sin

(
5h
2

)
sin(2h) sin

(
3h
2

)
sin(h) sin

(
h
2

) , (2.7)

P6 =
5 sin3

(
h
2

) (
5 cos2

(
h
2

)
− 1

)
4
(
sin

(
5h
2

)
sin(2h) sin

(
3h
2

)
sin(h) sin

(
h
2

)) , (2.8)

P7 =
5 sin3

(
h
2

)
cos

(
h
2

) (
16 cos4

(
h
2

)
− 15 cos2

(
h
2

)
+ 3

)
2
(
sin

(
5h
2

)
sin(2h) sin

(
3h
2

)
sin(h) sin

(
h
2

)) , (2.9)

P8 = −
5 sin3

(
h
2

) (
16 cos6

(
h
2

)
− 5 cos2

(
h
2

)
+ 1

)
2
(
sin

(
5h
2

)
sin(2h) sin

(
3h
2

)
sin(h) sin

(
h
2

)) , (2.10)

P9 =
5 sin2

(
h
2

)
cos

(
h
2

)
(25 cos(h) − 1)

16
(
sin

(
5h
2

)
sin(2h) sin

(
3h
2

)
sin(h) sin

(
h
2

)) , (2.11)

P10 = −
5 sin2(h)(−27 cos(h) + 2 cos(2h) + 1)

32
(
sin

(
5h
2

)
sin(2h) sin

(
3h
2

)
sin(h) sin

(
h
2

)) , (2.12)

P11 =
5 sin

(
h
2

)
(44 cos(h) + 125 cos(2h) + 23)

128
(
sin

(
5h
2

)
sin(2h) sin

(
3h
2

)
sin(h) sin

(
h
2

)) , (2.13)

P12 = −
5 sin(h)(88 cos(h) + 127 cos(2h) + 44 cos(3h) + 125)

128
(
sin

(
5h
2

)
sin(2h) sin

(
3h
2

)
sin(h) sin

(
h
2

)) , (2.14)

P13 =
5 sin

(
h
2

)
(2 cos(h) + 1)(125 cos(h) + 21 cos(2h) + 23 cos(3h) + 23)

64
(
sin

(
5h
2

)
sin(2h) sin

(
3h
2

)
sin(h) sin

(
h
2

)) , (2.15)

where h =
q−p

r , q > p such that [p, q] is the problem’s domain.

2.1.2. Exponential cubic B-spline schemes

Employing the exponential cubic spline technique to considered model with the above conditions,
yields elicit its numerical solutions as following

P(Z) =

M+1∑
T=−1

CT ET, (2.16)
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where CT, ET follow the next conditions, respectively:

LB(Z) = F (ZT,B(ZT)) where (T = 0, 1, ..., n)

and

ET(Z) =
1

6H3



(Z − ZT−2)3, Z ∈ [ZT−2,ZT−1],
−3 (Z − ZT−1)3 + 3H (Z − ZT−1)2 + 3H2 (Z − ZT−1) + H3, Z ∈ [ZT−1,Zi],
−3 (ZT+1 − Z)3 + 3H (ZT+1 − Z)2 + 3H2 (ZT+1 − Z) + H3, Z ∈ [ZT,ZT+1],

(ZT+2 − Z)3, Z ∈ [ZT+1,ZT+2],
0, otherwise.

(2.17)

For T ∈ [−2,M + 2], we obtain

BT(Z) = CT−1 + 4CT + CT+1. (2.18)

”

2.2. Method’s results

Here, we apply the TQBS and ECBS schemes to Eq (1.1) with the evaluated initial and boundary
conditions (1.3) as following.

2.2.1. Numerical solution via TQBS scheme

Applying the TQBS scheme to Eq (1.2) with above-conditions (1.3), gets the following numerical
values in Tables 2, 3, and Figure 1.
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Figure 1. analytical, numerical, and absolute error for the nonlinear KGZ equations through
the TQBS scheme.
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Table 2. Analytical, numerical, and absolute error of Eq (1.2) through the TQBS scheme
under the shown values of boundary and initial conditions (1.3).

Value of Z Analytica Numerical Absolute Error Value of Z Analytical Numerical Absolute Error
0 0 -2.71051E-20 2.71051E-20 0.2578125 -0.034185856 -0.034185856 4.37705E-14

0.0078125 -0.001041661 -0.001041661 1.00159E-15 0.265625 -0.035209885 -0.035209885 4.49224E-14
0.015625 -0.002083291 -0.002083291 2.52879E-15 0.2734375 -0.036232859 -0.036232859 4.60743E-14
0.0234375 -0.003124857 -0.003124857 3.91484E-15 0.28125 -0.037254747 -0.037254747 4.72261E-14

0.03125 -0.004166328 -0.004166328 5.33774E-15 0.2890625 -0.038275521 -0.038275521 4.83363E-14
0.0390625 -0.005207671 -0.005207671 6.74634E-15 0.296875 -0.039295151 -0.039295151 4.94466E-14
0.046875 -0.006248856 -0.006248856 8.1584E-15 0.3046875 -0.040313607 -0.040313607 5.05221E-14
0.0546875 -0.00728985 -0.00728985 9.56613E-15 0.3125 -0.041330861 -0.041330861 5.15907E-14

0.0625 -0.008330622 -0.008330622 1.09721E-14 0.3203125 -0.042346885 -0.042346885 5.26246E-14
0.0703125 -0.00937114 -0.00937114 1.23738E-14 0.328125 -0.043361648 -0.043361648 5.36515E-14
0.078125 -0.010411372 -0.010411372 1.37685E-14 0.3359375 -0.044375124 -0.044375124 5.46438E-14
0.0859375 -0.011451287 -0.011451287 1.51632E-14 0.34375 -0.045387282 -0.045387282 5.56291E-14

0.09375 -0.012490853 -0.012490853 1.65527E-14 0.3515625 -0.046398096 -0.046398096 5.65936E-14
0.1015625 -0.013530039 -0.013530039 1.7937E-14 0.359375 -0.047407536 -0.047407536 5.75304E-14
0.109375 -0.014568812 -0.014568812 1.93196E-14 0.3671875 -0.048415576 -0.048415576 5.84324E-14
0.1171875 -0.015607143 -0.015607143 2.06935E-14 0.375 -0.049422187 -0.049422187 5.93275E-14

0.125 -0.016644999 -0.016644999 2.20587E-14 0.3828125 -0.050427341 -0.050427341 6.02018E-14
0.1328125 -0.017682349 -0.017682349 2.34222E-14 0.390625 -0.051431011 -0.051431011 6.10553E-14
0.140625 -0.018719162 -0.018719162 2.47719E-14 0.3984375 -0.052433171 -0.052433171 6.1888E-14
0.1484375 -0.019755406 -0.019755406 2.6118E-14 0.40625 -0.053433792 -0.053433792 6.2686E-14

0.15625 -0.020791051 -0.020791051 2.74503E-14 0.4140625 -0.054432847 -0.054432847 6.34492E-14
0.1640625 -0.021826065 -0.021826065 2.87825E-14 0.421875 -0.055430311 -0.055430311 6.41917E-14
0.171875 -0.022860418 -0.022860418 3.01044E-14 0.4296875 -0.056426157 -0.056426157 6.48925E-14
0.1796875 -0.023894078 -0.023894078 3.14124E-14 0.4375 -0.057420357 -0.057420357 6.56003E-14

0.1875 -0.024927014 -0.024927014 3.26926E-14 0.4453125 -0.058412887 -0.058412887 6.62456E-14
0.1953125 -0.025959197 -0.025959197 3.39763E-14 0.453125 -0.059403719 -0.059403719 6.68632E-14
0.203125 -0.026990595 -0.026990595 3.52322E-14 0.4609375 -0.060392829 -0.060392829 6.74669E-14
0.2109375 -0.028021178 -0.028021178 3.64916E-14 0.46875 -0.06138019 -0.06138019 6.80359E-14

0.21875 -0.029050915 -0.029050915 3.77406E-14 0.4765625 -0.062365777 -0.062365777 6.8591E-14
0.2265625 -0.030079776 -0.030079776 3.89688E-14 0.484375 -0.063349565 -0.063349565 6.91253E-14
0.234375 -0.03110773 -0.03110773 4.01866E-14 0.4921875 -0.064331528 -0.064331528 6.95971E-14
0.2421875 -0.032134749 -0.032134749 4.13905E-14 0.5 -0.065311643 -0.065311643 7.00412E-14

0.25 -0.0331608 -0.0331608 4.25909E-14 0.5078125 -0.066289885 -0.066289885 7.04575E-14
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Table 3. Analytical, numerical, and absolute error of Eq (1.2) through the TQBS scheme
under the shown values of boundary and initial conditions (1.3).

Value of Z Analytical Numerical Absolute error Value of Z Analytical Numerical Absolute error
0.515625 -0.067266228 -0.067266228 7.08461E-14 0.7578125 -0.096468595 -0.096468595 6.22696E-14
0.5234375 -0.068240649 -0.068240649 7.11931E-14 0.765625 -0.097372658 -0.097372658 6.1201E-14
e 0.53125 -0.069213124 -0.069213124 7.14984E-14 0.7734375 -0.098274146 -0.098274146 6.00908E-14
0.5390625 -0.070183629 -0.070183629 7.18037E-14 0.78125 -0.099173043 -0.099173043 5.88973E-14
0.546875 -0.071152141 -0.071152141 7.20674E-14 0.7890625 -0.100069331 -0.100069331 5.76483E-14
0.5546875 -0.072118635 -0.072118635 7.22755E-14 0.796875 -0.100962996 -0.100962996 5.63855E-14

0.5625 -0.07308309 -0.07308309 7.24559E-14 0.8046875 -0.101854021 -0.101854021 5.50393E-14
0.5703125 -0.074045483 -0.074045483 7.25808E-14 0.8125 -0.102742391 -0.102742391 5.36515E-14
0.578125 -0.075005789 -0.075005789 7.2678E-14 0.8203125 -0.103628091 -0.103628091 5.21666E-14
0.5859375 -0.075963988 -0.075963988 7.27196E-14 0.828125 -0.104511107 -0.104511107 5.06262E-14

0.59375 -0.076920057 -0.076920057 7.27474E-14 0.8359375 -0.105391423 -0.105391423 4.89747E-14
0.6015625 -0.077873973 -0.077873973 7.27057E-14 0.84375 -0.106269025 -0.106269025 4.72677E-14
0.609375 -0.078825716 -0.078825716 7.26502E-14 0.8515625 -0.107143899 -0.107143899 4.55053E-14
0.6171875 -0.079775264 -0.079775264 7.25253E-14 0.859375 -0.108016031 -0.108016031 4.36595E-14

0.625 -0.080722594 -0.080722594 7.23588E-14 0.8671875 -0.108885407 -0.108885407 4.17999E-14
0.6328125 -0.081667688 -0.081667688 7.21367E-14 0.875 -0.109752015 -0.109752015 3.98431E-14
0.640625 -0.082610522 -0.082610522 7.18869E-14 0.8828125 -0.110615841 -0.110615841 3.78308E-14
0.6484375 -0.083551078 -0.083551078 7.15816E-14 0.890625 -0.111476871 -0.111476871 3.57908E-14

0.65625 -0.084489334 -0.084489334 7.12486E-14 0.8984375 -0.112335095 -0.112335095 3.36675E-14
0.6640625 -0.08542527 -0.08542527 7.086E-14 0.90625 -0.113190498 -0.113190498 3.14748E-14
0.671875 -0.086358867 -0.086358867 7.04575E-14 0.9140625 -0.11404307 -0.11404307 2.92405E-14
0.6796875 -0.087290105 -0.087290105 6.99718E-14 0.921875 -0.114892798 -0.114892798 2.68674E-14

0.6875 -0.088218965 -0.088218965 6.94583E-14 0.9296875 -0.11573967 -0.11573967 2.44249E-14
0.6953125 -0.089145427 -0.089145427 6.88755E-14 0.9375 -0.116583676 -0.116583676 2.18991E-14
0.703125 -0.090069472 -0.090069472 6.82371E-14 0.9453125 -0.117424804 -0.117424804 1.92901E-14
0.7109375 -0.090991083 -0.090991083 6.75571E-14 0.953125 -0.118263043 -0.118263043 1.66117E-14

0.71875 -0.09191024 -0.09191024 6.68215E-14 0.9609375 -0.119098383 -0.119098383 1.38639E-14
0.7265625 -0.092826925 -0.092826925 6.60166E-14 0.96875 -0.119930814 -0.119930814 1.10745E-14
0.734375 -0.093741121 -0.093741121 6.51562E-14 0.9765625 -0.120760325 -0.120760325 8.18789E-15
0.7421875 -0.094652809 -0.094652809 6.42403E-14 0.984375 -0.121586906 -0.121586906 5.31519E-15

0.75 -0.095561973 -0.095561973 6.32688E-14 0.9921875 -0.122410548 -0.122410548 2.13718E-15

2.2.2. Numerical solution via ECBS scheme

Applying the ECBS scheme to Eq (1.2) with above-conditions (1.3), gets the following numerical
values in Table 4, and Figure 2.
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Figure 2. Exact, approximate, and absolute error of the nonlinear KGZ equations through
the ECBS scheme.
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Table 4. Analytical, numerical, and absolute error of Eq (1.2) through the ECBS scheme
under the shown values of boundary and initial conditions (1.3).

Value of Z Analytical Numerical Absolute error
0 0 0 0

0.001 -0.000133333 -0.000133333 2.75062E-16
0.002 -0.000266667 -0.000266667 5.33482E-16
0.003 -0.0004 -0.0004 7.58508E-16
0.004 -0.000533333 -0.000533333 9.33498E-16
0.005 -0.000666665 -0.000666665 1.04181E-15
0.006 -0.000799998 -0.000799998 1.06685E-15
0.007 -0.00093333 -0.00093333 9.9172E-16
0.008 -0.001066661 -0.001066661 7.99924E-16
0.009 -0.001199992 -0.001199992 4.75097E-16
0.01 -0.001333322 -0.001333322 0

3. Results and discussion

Here, we explain the accuracy and novelty of the obtained numerical result in this research paper
by comparing them with the previously calculated in [42] through four-different schemes (Adomian
decomposition (AD), El-kalla (EK), cubic B-spline (CB), and extended cubic B-spline (ECB)
schemes)) and one common scheme (exponential cubic B-spline (ExCB) scheme). Although,
comparing our obtained result with each other, shows the accuracy of the ECBS scheme over the
TQBS scheme where the absolute error is smaller than that have been obtained by the TQBS scheme
which have been shown in Figures 1, 2 and Tables 2–4. Now, comparing the accuracy between our
solutions and that have been evaluated in [42], shows our solution is more accurate than their
solutions that have been explained in Table 5, and Figure 3.
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Figure 3. Absolute value of error for AD, EK, CBS, ECBS, ExCBS, ECBS, and TQBS
schemes.
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Table 5. Numerical methods’ absolute error.

Value of Z AD EK CBS EtCBS ECBS ECBS TQBS
0 0 0 0 0 5.45828E-18 0 2.71E-20

0.001 2.71051E-20 2.71051E-20 1.83257E-16 3.29993E-09 1.10002E-09 2.75E-16
0.002 5.42101E-20 5.42101E-20 3.55401E-16 6.39986E-09 2.13337E-09 5.33E-16
0.003 0 0 5.05455E-16 9.0998E-09 3.03339E-09 7.59E-16
0.004 0 0 6.22007E-16 1.11997E-08 3.7334E-09 9.33E-16
0.005 0 0 6.94215E-16 1.24997E-08 4.16674E-09 1.04E-15
0.006 1.0842E-19 1.0842E-19 7.10695E-16 1.27997E-08 4.26674E-09 1.07E-15
0.007 1.0842E-19 1.0842E-19 6.60821E-16 1.18997E-08 3.96674E-09 9.92E-16
0.008 0 0 5.32994E-16 9.59976E-09 3.20006E-09 8E-16
0.009 2.1684E-19 0 3.1637E-16 5.69985E-09 1.90003E-09 4.75E-16
0.01 0 2.1684E-19 0 0 2.1684E-19 0 2.53E-15

4. Conclusions

This manuscript has employed the TQBS and ECBS numerical schemes for evaluating the
numerical solutions of the nonlinear KGZ model. The matching between analytical and numerical
solutions has been explained through the shown tables and figures. The accuracy of the modified
Khater method has been proved through six numerical schemes. The novelty and originality of our
obtained solutions have been explained. the powerful and effectiveness of the used techniques are also
explained and verified.
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