Mathematics
http://www.aimspress.com/journal/Math

Research article
 The k-subconnectedness of planar graphs

Zongrong Qin, Dingjun Lou*
Department of Computer Science, Sun Yat-sen University, Guangzhou 510275, China

* Correspondence: Email: issldj@mail.sysu.edu.cn; Tel: 862084035422.

Abstract

A graph G with at least $2 k$ vertices is called k -subconnected if, for any $2 k$ vertices $x_{1}, x_{2}, \cdots, x_{2 k}$ in G, there are k independent paths joining the $2 k$ vertices in pairs in G. In this paper, we prove that a k -connected planar graph with at least $2 k$ vertices is k -subconnected for $k=1,2$; a 4-connected planar graph is k -subconnected for each k such that $1 \leq k \leq v / 2$, where v is the number of vertices of G; and a 3 -connected planar graph G with at least $2 k$ vertices is k-subconnected for $k=4,5,6$. The bounds of k -subconnectedness are sharp.

Keywords: k-connected graph; independent paths; planar graph; k-subconnected graph; component Mathematics Subject Classification: 05C40, 05C85

1. Introduction and terminology

Connectivity is an important property of graphs. It has been extensively studied (see [1]). A graph $G=(V, E)$ is called k-connected $(k \geq 1)(k$-edge-connected) if, for any subset $S \subseteq V(G)(S \subseteq E(G))$ with $|S|<k, G-S$ is connected. The connectivity $\kappa(G)$ (edge connectivity $\lambda(G)$) is the order (size) of minimum cutset (edge cutset) $S \subseteq V(G)(S \subseteq E(G))$. When G is a complete graph K_{n}, we define that $\kappa(G)=n-1$.

In recent years, conditional connectivities attract researchers' attention. For example, Peroche [2] studied several sorts of connectivities, including cyclic edge (vertex) connectivity, and their relations. A cyclic edge (vertex) cutset S of G is an edge (vertex) cutset whose deletion disconnects G such that at least two of the components of $G-S$ contain a cycle respectively. The cyclic edge (vertex) connectivity, denoted by $c \lambda(G)(c \kappa(G))$, is the cardinality of a minimum cyclic edge (vertex) cutset of G. Dvoŕǎk, Kára, Král and Pangrác [3] obtained the first efficient algorithm to determine the cyclic edge connectivity of cubic graphs. Lou and Wang [4] obtained the first efficient algorithm to determine the cyclic edge connectivity for k-regular graphs. Then Lou and Liang [5] improved the algorithm to have time complexity $O\left(k^{9} V^{6}\right)$. Lou [6] also obtained a square time algorithm to determine the cyclic edge connectivity of planar graphs. In [7], Liang, Lou and Zhang obtained the first efficient algorithm
to determine the cyclic vertex connectivity of cubic graphs. Liang and Lou [8] also showed that there is an efficient algorithm to determine the cyclic vertex connectivity for k-regular graphs with any fixed k.

Another related concept is linkage. Let G be a graph with at least $2 k$ vertices. If, for any $2 k$ vertices $u_{1}, u_{2}, \cdots, u_{k}, v_{1}, v_{2}, \cdots, v_{k}$, there are k disjoint paths P_{i} from u_{i} to $v_{i}(i=1,2, \cdots, k)$ in G, then G is called k-linked. Thomassen [9] mentioned that a necessary condition for G to be k-linked is that G is $(2 k-1)$-connected. But this condition is not sufficient unless $k=1$. He also gave a complete characterization of 2-linked graphs. Bollobás and Thomason [10] proved that if $\kappa(G) \geq 22 k$, then G is k -linked. Kawarabayashi, Kostochka and Yu [11] proved that every 2 k -connected graph with average degree at least $12 k$ is k -linked.

In [12], Qin, Lou, Zhu and Liang introduced the new concept of k-subconnected graphs. Let G be a graph with at least $2 k$ vertices. If, for any $2 k$ vertices $v_{1}, v_{2}, \cdots, v_{2 k}$ in G, there are k vertexdisjoint paths joining $v_{1}, v_{2}, \cdots, v_{2 k}$ in pairs, then G is called k-subconnected. If G is k -subconnected and $v(G) \geq 3 k-1$, then G is called a properly k-subconnected graph. In [12], Qin et al. showed that a properly k-subconnected graph is also a properly $(k-1)$-subconnected graph. But only when $v(G) \geq 3 k-1$, that G is k-subconnected implies that G is $(k-1)$-subconnected. Qin et al. [12] also gave a sufficient condition for a graph to be k -subconnected and a necessary and sufficient condition for a graph to be a properly k-subconnected graph (see Lemmas 1 and 2 and Corollary 3 in this paper).

If G has at least $2 k$ vertices, that G is k-linked implies that G is k-connected, while that G is kconnected implies that G is k-subconnected (see Lemma 6 in this paper). Also in a k-connected graph G, deleting arbitrarily some edges from G, the resulting graph H is still k-subconnected. So a graph H to be k -subconnected is a spanning substructure of a k-connected graph G. To study k-subconnected graphs may help to know more properties in the structure of k-connected graphs. Notice that a kconnected graph may have a spanning substructure to be m-subconnected for $m>k$.

K-subconnected graphs have some background in matching theory. The proof of the necessary and sufficient condition [12] for properly k-subconnected graphs uses similar technique to matching theory.

Let S be a subset of $V(G)$ of a graph G. We denote by $G[S]$ the induced subgraph of G on S. We also denote by $\omega(G)$ the number of components of G. We also use $v(G)$ and $\varepsilon(G)$ to denote $|V(G)|$ and $|E(G)|$. If G is a planar graph, we denote by $\phi(G)$ the number of faces in the planar embedding of G. Let H be a graph. A subdivision of H is a graph H^{\prime} obtained by replacing some edges by paths respectively in H. For other terminology and notation not defined in this paper, the reader is referred to [13].

2. Preliminary results

In this section, we shall present some known results and some straightforward corollaries of the known results which will be used in the proof of our main theorems.
Lemma 1 (Theorem 1 of [12]). Let G be a connected graph with at least $2 k$ vertices. Then G is k-subconnected if, for any cutset $S \subseteq V(G)$ with $|S| \leq k-1, \omega(G-S) \leq|S|+1$.
Lemma 2 (Theorem 2 of [12]). Let G be a connected graph with at least $3 k-1$ vertices. If G is a properly k-subconnected graph,then, for any cutset $S \subseteq V(G)$ with $|S| \leq k-1, \omega(G-S) \leq|S|+1$.

Only when $v \geq 3 k-1$, that G is k -subconnected implies that G is $(\mathrm{k}-1)$-subconnected. Here is an counterexample. Let $S=K_{k-2}$ be a complete graph of $k-2$ vertices, let H be k copies of K_{2}, and
let G be a graph with $V(G)=V(S) \cup V(H)$ and $E(G)=E(S) \cup E(H) \cup\{u v \mid u \in V(S), v \in V(H)\}$. Then $v(G)=3 k-2$, and G is not $(\mathrm{k}-1)$-subconnected since we can choose $2(k-1)$ vertices by taking one vertex from each copy of K_{2} in H and taking all vertices of S, then these $2(k-1)$ vertices cannot be joined by $k-1$ independent paths in pairs. But G is k-subconnected since when we take any $2 k$ vertices from G, some pairs of vertices will be taken from several same K_{2} 's in H, and then the $2 k$ vertices can be joined by k independent paths in pairs.
Corollary 3 (Theorem 3 of [12]). Let G be a connected graph with at least $3 k-1$ vertices. Then G is a properly k-subconnected graph if and only if, for any cutset $S \subseteq V(G)$ with $|S| \leq k-1$, $\omega(G-S) \leq|S|+1$.
Lemma 4 ([14]). Every 4-connected planar graph is Hamiltonian.
Lemma 5. If a graph G has a Hamilton path, then G is k-subconnected for each k such that $1 \leq k \leq$ $v(G) / 2$.
Proof. Let P be a Hamilton path in G. Let $v_{i}, i=1,2, \cdots, 2 k$, be any $2 k$ vertices in $V(G)$. Without loss of generality, assume that $v_{1}, v_{2}, \cdots, v_{2 k}$ appear on P in turn. Then there are k paths P_{i} on P from $v_{2 i-1}$ to $v_{2 i}, i=1,2, \cdots, k$, respectively. So G is k -subconnected.
Lemma 6. A k-connected graph G with at least $2 k$ vertices is k-subconnected.
Proof. Let G be a k-connected graph with at least $2 k$ vertices. Then G does not have a cutset $S \subseteq V(G)$ with $|S| \leq k-1$, so the statement that, for any cutset $S \subseteq V(G)$ with $|S| \leq k-1, \omega(G-S) \leq|S|+1$ is true. By Lemma 1, G is k-subconnected.

3. The k-subconnectedness of planar graphs

In this section, we shall show the k -subconnectedness of planar graphs with different connectivities, and show the bounds of k-subconnectedness are sharp.
Corollary 7. A 1 -connected planar graph G with at least 2 vertices is 1 -subconnected.
Proof. By Lemma 6, the result follows.
Corollary 8. A 2-connected planar graph G with at least 4 vertices is 2 -subconnected.
Proof. By Lemma 6, the result follows.
Theorem 9. A 4-connected planar graph G is k-subconnected for each k such that $1 \leq k \leq v(G) / 2$.
Proof. By Lemma 4, G has a Hamilton cycle C, and then has a Hamilton path P. By Lemma 5, the result follows.
Theorem 10. A 3-connected planar graph G with at least $2 k$ vertices is k -subconnected for $k=4,5,6$. Proof. Suppose that G is a 3 -connected planar graph with at least $2 k$ vertices which is not k-subconnected. By Lemma 1, there is a cutset $S \subseteq V(G)$ with $|S| \leq k-1 \leq$ such that $\omega(G-S) \geq|S|+2$. Since G is 3 -connected, there is no cutset with less than 3 vertices and so $|S| \geq 3$. On the other hand, $k=4,5,6$, so $|S| \leq 5$. Thus let us consider three cases.

In the first case, $|S|=3$. By our assumption, $\omega(G-S) \geq|S|+2$, let $C_{1}, C_{2}, \cdots, C_{5}$ be different components of $G-S$, and $S=\left\{x_{1}, x_{2}, x_{3}\right\}$. Since G is 3-connected, every C_{i} is adjacent to each x_{j} $(1 \leq i \leq 5,1 \leq j \leq 3)$. Contract every C_{i} to a vertex $C_{i}^{\prime}(i=1,2, \cdots, 5)$ to obtain a planar graph G^{\prime} as G is planar. Then $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}\right\}\right]$ contains a $K_{3,3}$, which contradicts the fact that G^{\prime} is a planar graph.

In the second case, $|S|=4$. By our assumption, $\omega(G-S) \geq|S|+2$, let $C_{1}, C_{2}, \cdots, C_{6}$ be different components of $G-S$ and $S=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Contract every C_{i} to a vertex $C_{i}^{\prime}(i=1,2, \cdots, 6)$ to obtain
a planar graph G^{\prime} as G is planar. Since G is 3-connected, each C_{i}^{\prime} is adjacent to at least 3 vertices in $S(1 \leq i \leq 6)$. (In the whole proof, we shall consider that C_{i}^{\prime} is adjacent to only 3 vertices in S, and we shall neglect other vertices in S which are possibly adjacent to C_{i}^{\prime}). Since the number of 3-vertexcombinations in S is $C(4,3)=4$, but $C_{1}^{\prime}, C_{2}^{\prime}, \cdots, C_{6}^{\prime}$ have 6 vertices, by the Pigeonhole Principle, there are two vertices in $\left\{C_{1}^{\prime}, C_{2}^{\prime}, \cdots, C_{6}^{\prime}\right\}$ which are adjacent to the same three vertices in S. Without loss of generality, assume that C_{1}^{\prime} and C_{2}^{\prime} are both adjacent to x_{1}, x_{2}, x_{3}. If there is another $C_{i}^{\prime}(3 \leq i \leq 6)$ adjacent to x_{1}, x_{2}, x_{3}, say C_{3}^{\prime}, then $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}\right\}\right]$ contains a $K_{3,3}$, which contradicts the fact that G^{\prime} is planar (which also contradicts the assumption that G is a planar graph because G has a subgraph which can be contracted to a $K_{3,3}$). So C_{i}^{\prime} cannot be adjacent to x_{1}, x_{2}, x_{3} at the same time ($i=3,4,5,6$).

Suppose C_{3}^{\prime} is adjacent to x_{2}, x_{3}, x_{4}. If one of $C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}$ is adjacent to both x_{1} and x_{4}, say C_{4}^{\prime}, then C_{3}^{\prime} is connected to x_{1} by path $C_{3}^{\prime} x_{4} C_{4}^{\prime} x_{1}$, so $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, contradicting the fact that G^{\prime} is planar. Since $C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}$ are all not adjacent to x_{1}, x_{2}, x_{3} at the same time, they are all adjacent to x_{4}. But each of them cannot be adjacent to both x_{1} and x_{4}. So they are all not adjacent to x_{1}. Hence $C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}$ are all adjacent to x_{2}, x_{3}, x_{4} at the same time. Then $G^{\prime}\left[\left\{x_{2}, x_{3}, x_{4}\right\} \cup\left\{C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a $K_{3,3}$, contradicting the fact that G^{\prime} is a planar graph.

The cases that C_{3}^{\prime} is adjacent to x_{1}, x_{3}, x_{4} or x_{1}, x_{2}, x_{4} are similar.
In the third case, $|S|=5$. By our assumption, $\omega(G-S) \geq|S|+2$, let $C_{1}, C_{2}, \cdots, C_{7}$ be different components of $G-S$ and $S=\left\{x_{1}, x_{2}, \cdots, x_{5}\right\}$. Since G is planar, contracting C_{i} to a vertex $C_{i}^{\prime}(i=$ $1,2, \cdots, 7$), we obtain a planar graph G^{\prime}. Also since G is 3-connected, every C_{i}^{\prime} is adjacent to at least 3 vertices in $S(1 \leq i \leq 7)$.
Case 1. There are two of $C_{i}^{\prime}(i=1,2, \cdots, 7)$ adjacent to the same three vertices in S. Without loss of generality, assume that C_{1}^{\prime} and C_{2}^{\prime} are both adjacent to x_{1}, x_{2}, x_{3} at the same time.

If there is another vertex $C_{i}^{\prime}(3 \leq i \leq 7)$ adjacent to x_{1}, x_{2}, x_{3} at the same time, say C_{3}^{\prime}. Then $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}\right\}\right]$ contains a $K_{3,3}$, contradicting the fact that G^{\prime} is planar. So C_{3}^{\prime} cannot be adjacent to x_{1}, x_{2}, x_{3} at the same time. Without loss of generality, we have two subcases.

Suppose C_{3}^{\prime} is only adjacent to two vertices in $\left\{x_{1}, x_{2}, x_{3}\right\}$, say x_{2} and x_{3}. Then C_{3}^{\prime} must be adjacent to one of x_{4} and x_{5} as G is 3-connected. Without loss of generality, assume that C_{3}^{\prime} is also adjacent to x_{4}. If one of $C_{i}^{\prime}(i=4,5,6,7)$ is adjacent to both x_{1} and x_{4}, say C_{4}^{\prime}. Then C_{3}^{\prime} is connected to x_{1} by path $C_{3}^{\prime} x_{4} C_{4}^{\prime} x_{1}$, hence $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, contradicting the fact that G^{\prime} is planar. So none of $C_{i}^{\prime}(i=4,5,6,7)$ is adjacent to both x_{1} and x_{4}.
Case (1.1). Suppose that C_{4}^{\prime} is adjacent to three vertices in $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.
If C_{4}^{\prime} is adjacent to x_{1}, x_{2}, x_{3} at the same time, then the case is similar to that C_{3}^{\prime} is adjacent to x_{1}, x_{2}, x_{3} at the same time, and we have a contradiction. So C_{4}^{\prime} is not adjacent to x_{1}, x_{2}, x_{3} at the same time. If C_{4}^{\prime} is adjacent to x_{1}, since C_{4}^{\prime} is adjacent to three vertices in $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ but not x_{1}, x_{2}, x_{3}, so C_{4}^{\prime} is adjacent to x_{1} and x_{4}, by the argument above, we have a contradiction. Hence C_{4}^{\prime} can be adjacent only to x_{2}, x_{3}, x_{4}.

Now x_{1} and x_{4} are symmetric, while x_{2} and x_{3} are symmetric in $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}\right\}\right]$. Then $C_{i}^{\prime}(i=5,6,7)$ must be adjacent to x_{5}, we have two cases as follows.

Notice that now there are not i and $j, 5 \leq i \neq j \leq 7$, such that C_{i}^{\prime} is adjacent to x_{1} and C_{j}^{\prime} is adjacent to x_{4}, otherwise C_{3}^{\prime} is connected to x_{1} by path $C_{3}^{\prime} x_{4} C_{j}^{\prime} x_{5} C_{i}^{\prime} x_{1}$, then $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{i}^{\prime}, C_{j}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, contrary to the fact that G^{\prime}
is planar.
Suppose C_{5}^{\prime} is adjacent to x_{3}, x_{4}, x_{5}. If C_{6}^{\prime} is also adjacent to x_{3}, x_{4}, x_{5}, then C_{7}^{\prime} cannot be adjacent to x_{3}, x_{4}, x_{5}, otherwise $G^{\prime}\left[\left\{x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{5}^{\prime}, C_{6}^{\prime}, C_{7}^{\prime}\right\}\right]$ contains a $K_{3,3}$, a contradiction. So suppose C_{7}^{\prime} is adjacent to x_{2}, x_{4}, x_{5}, then C_{7}^{\prime} is connected to x_{3} by path $C_{7}^{\prime} x_{2} C_{2}^{\prime} x_{3}$, and then $G^{\prime}\left[\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{2}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}, C_{7}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. So suppose C_{7}^{\prime} is adjacent to x_{2}, x_{3}, x_{5}. But C_{7}^{\prime} is connected to x_{4} by path $C_{7}^{\prime} x_{2} C_{3}^{\prime} x_{4}$, then $G^{\prime}\left[\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{3}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}, C_{7}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction again. If C_{6}^{\prime} is adjacent to x_{2}, x_{3}, x_{5}, suppose C_{7}^{\prime} is adjacent to x_{3}, x_{4}, x_{5}, then this case is similar to that C_{6}^{\prime} is adjacent to x_{3}, x_{4}, x_{5} and C_{7}^{\prime} is adjacent to x_{2}, x_{3}, x_{5}. Then suppose C_{7}^{\prime} is adjacent to x_{2}, x_{3}, x_{5}. Now C_{3}^{\prime} is connected to x_{5} by path $C_{3}^{\prime} x_{4} C_{5}^{\prime} x_{5}$, so $G^{\prime}\left[\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{3}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}, C_{7}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. Now suppose C_{7}^{\prime} is adjacent to x_{2}, x_{4}, x_{5}. Then C_{6}^{\prime} is connected to x_{4} by path $C_{6}^{\prime} x_{5} C_{7}^{\prime} x_{4}$, hence $G^{\prime}\left[\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{3}^{\prime}, C_{4}^{\prime}, C_{6}^{\prime}, C_{7}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. The remaining case is that C_{6}^{\prime} is adjacent to x_{2}, x_{4}, x_{5}. Now the cases that C_{7}^{\prime} is adjacent to x_{2}, x_{4}, x_{5} and that C_{7}^{\prime} is adjacent to x_{3}, x_{4}, x_{5} are symmetric, we only discuss the former. Then C_{5}^{\prime} is connected to x_{2} by path $C_{5}^{\prime} x_{3} C_{4}^{\prime} x_{2}$, so $G^{\prime}\left[\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}, C_{7}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. The remaining case is that C_{7}^{\prime} is adjacent to x_{2}, x_{3}, x_{5}. Now C_{7}^{\prime} is connected to x_{4} by path $C_{7}^{\prime} x_{5} C_{6}^{\prime} x_{4}$. Hence $G^{\prime}\left[\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{3}^{\prime}, C_{4}^{\prime}, C_{6}^{\prime}, C_{7}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction.

Suppose C_{5}^{\prime} is adjacent to x_{2}, x_{3}, x_{5}. If C_{6}^{\prime} and C_{7}^{\prime} are both adjacent to x_{2}, x_{3}, x_{5}, then $G^{\prime}\left[\left\{x_{2}, x_{3}, x_{5}\right\} \cup\left\{C_{5}^{\prime}, C_{6}^{\prime}, C_{7}^{\prime}\right\}\right]$ contains a $K_{3,3}$, contradicting the fact that G^{\prime} is planar. So one of C_{5}^{\prime}, $C_{6}^{\prime}, C_{7}^{\prime}$ is adjacent to x_{2}, x_{3}, x_{5}, the other two are adjacent to x_{3}, x_{4}, x_{5}; or one of $C_{5}^{\prime}, C_{6}^{\prime}, C_{7}^{\prime}$ is adjacent to x_{3}, x_{4}, x_{5}, the other two are adjacent to x_{2}, x_{3}, x_{5}; or C_{5}^{\prime} is adjacent to $x_{2}, x_{3}, x_{5}, C_{6}^{\prime}$ is adjacent to x_{3}, x_{4}, x_{5} and C_{7}^{\prime} is adjacent to x_{2}, x_{4}, x_{5}. These three cases are symmetric to cases discussed above. (Notice that the roles of $C_{5}^{\prime}, C_{6}^{\prime}$ and C_{7}^{\prime} are symmetric.)
Case (1.2). Now suppose $\left\{x_{2}, x_{3}, x_{4}\right\}-N\left(C_{4}^{\prime}\right) \neq \varnothing$.
Notice that $\left\{x_{2}, x_{3}, x_{4}\right\}-N\left(C_{i}^{\prime}\right) \neq \varnothing$ for $5 \leq i \leq 7$, otherwise the $C_{i}^{\prime}(5 \leq i \leq 7)$ is similar to C_{4}^{\prime} as discussed above, and the other three in $\left\{C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}, C_{7}^{\prime}\right\}$ are similar to $C_{5}^{\prime}, C_{6}^{\prime}, C_{7}^{\prime}$, by the same argument as above, we obtain a contradiction. Also since $C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}, C_{7}^{\prime}$ each cannot be adjacent to both x_{1} and x_{4}, all of $C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}, C_{7}^{\prime}$ must be adjacent to x_{5}. Now x_{1} and x_{4} are not symmetric but x_{2} and x_{3} are symmetric in $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}\right\}\right]$.

First, suppose C_{4}^{\prime} is adjacent to x_{4} and x_{3} besides x_{5}. Then suppose C_{5}^{\prime} is adjacent to x_{4} and x_{3}. If C_{6}^{\prime} is also adjacent to x_{4} and x_{3}, then $G^{\prime}\left[\left\{x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains $K_{3,3}$, a contradiction. Then suppose C_{6}^{\prime} is adjacent to x_{4}, x_{2}, now C_{6}^{\prime} is connected to x_{3} by path $C_{6}^{\prime} x_{2} C_{2}^{\prime} x_{3}$, and $G^{\prime}\left[\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{2}^{\prime}, C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. Now suppose C_{6}^{\prime} is adjacent to x_{4}, x_{1}, then C_{6}^{\prime} is connected to x_{3} by path $C_{6}^{\prime} x_{1} C_{2}^{\prime} x_{3}$, and $G^{\prime}\left[\left\{x_{1}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{2}^{\prime}, C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$ a contradiction. Then suppose C_{6}^{\prime} is adjacent to x_{3}, x_{2}. Now C_{6}^{\prime} is connected to x_{4} by path $C_{6}^{\prime} x_{2} C_{3}^{\prime} x_{4}$, so $G^{\prime}\left[\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{3}^{\prime}, C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. Next we suppose C_{6}^{\prime} is adjacent to x_{3}, x_{1}, then C_{6}^{\prime} is connected to x_{2} by path $C_{6}^{\prime} x_{5} C_{4}^{\prime} x_{4} C_{3}^{\prime} x_{2}$, and $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. Then suppose C_{6}^{\prime} is adjacent to x_{2}, x_{1}, now C_{6}^{\prime} is connected to x_{3} by path $C_{6}^{\prime} x_{5} C_{4}^{\prime} x_{3}$, and $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{4}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. Now we suppose C_{5}^{\prime} is adjacent to x_{4}, x_{2}. By the symmetry of the roles of $C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}, C_{7}^{\prime}$, we only consider the cases of C_{6}^{\prime} as follows. Suppose C_{6}^{\prime} is adjacent to x_{4}, x_{2}. Then C_{4}^{\prime} is connected
to x_{2} by path $C_{4}^{\prime} x_{3} C_{3}^{\prime} x_{2}$, and $G^{\prime}\left[\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{3}^{\prime}, C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. Then suppose C_{6}^{\prime} is adjacent to x_{4}, x_{1}. Now C_{3}^{\prime} is connected to x_{1} by path $C_{3}^{\prime} x_{4} C_{6}^{\prime} x_{1}$, and $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. Now suppose C_{6}^{\prime} is adjacent to x_{3}, x_{2}. Then we consider C_{7}^{\prime}. By the symmetry of the roles of C_{7}^{\prime} and C_{6}^{\prime}, we only consider the cases that C_{7}^{\prime} is adjacent to $\left\{x_{3}, x_{2}\right\},\left\{x_{3}, x_{1}\right\},\left\{x_{2}, x_{1}\right\}$ respectively. If C_{7}^{\prime} is adjacent to x_{3}, x_{2}, then C_{5}^{\prime} is connected to x_{3} by path $C_{5}^{\prime} x_{4} C_{4}^{\prime} x_{3}$, and $G^{\prime}\left[\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}, C_{7}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. If C_{7}^{\prime} is adjacent to x_{3}, x_{1}, then C_{3}^{\prime} is connected to x_{1} by path $C_{3}^{\prime} x_{4} C_{5}^{\prime} x_{5} C_{7}^{\prime} x_{1}$, and $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{5}^{\prime}, C_{7}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. If C_{7}^{\prime} is adjacent to x_{2}, x_{1}, then C_{7}^{\prime} is connected to x_{3} by path $C_{7}^{\prime} x_{5} C_{4}^{\prime} x_{3}$, and $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{4}^{\prime}, C_{7}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. Now suppose C_{6}^{\prime} is adjacent to x_{3}, x_{1}. Then C_{3}^{\prime} is connected to x_{1} by path $C_{3}^{\prime} x_{4} C_{4}^{\prime} x_{5} C_{6}^{\prime} x_{1}$, and $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. Now we suppose C_{6}^{\prime} is adjacent to x_{2}, x_{1}. Then C_{3}^{\prime} is connected to x_{1} by path $C_{3}^{\prime} x_{4} C_{4}^{\prime} x_{5} C_{6}^{\prime} x_{1}$, and $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. Now suppose C_{5}^{\prime} is adjacent to x_{4}, x_{1}. Then C_{3}^{\prime} is connected to x_{1} by path $C_{3}^{\prime} x_{4} C_{4}^{\prime} x_{5} C_{5}^{\prime} x_{1}$, and $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}, C_{5}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. Then we suppose C_{5}^{\prime} is adjacent to x_{3}, x_{2}. By symmetry of C_{5}^{\prime} and C_{6}^{\prime}, we only need to consider the following cases. Suppose C_{6}^{\prime} is adjacent to x_{3}, x_{2}. Then C_{3}^{\prime} is connected to x_{5} by path $C_{3}^{\prime} x_{4} C_{4}^{\prime} x_{5}$, and $G^{\prime}\left[\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{3}^{\prime}, C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. Now suppose C_{6}^{\prime} is adjacent to x_{3}, x_{1}, then C_{3}^{\prime} is connected to x_{1} by path $C_{3}^{\prime} x_{4} C_{4}^{\prime} x_{5} C_{6}^{\prime} x_{1}$, and $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. Then suppose C_{6}^{\prime} is adjacent to x_{2}, x_{1}, by the same argument as last case, we also obtain a contradiction. Now we suppose C_{5}^{\prime} is adjacent to x_{3}, x_{1}. Then C_{5}^{\prime} is connected to x_{2} by path $C_{5}^{\prime} x_{5} C_{4}^{\prime} x_{4} C_{3}^{\prime} x_{2}$, and $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}, C_{5}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. So suppose C_{5}^{\prime} is adjacent to x_{2}, x_{1}. Then C_{5}^{\prime} is connected to x_{3} by path $C_{5}^{\prime} x_{5} C_{4}^{\prime} x_{3}$, and $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{4}^{\prime}, C_{5}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. Since the case that C_{4}^{\prime} is adjacent to x_{4}, x_{2} is symmetric to the case that C_{4}^{\prime} is adjacent to x_{4}, x_{3}, we do not discuss this case. The case that C_{4}^{\prime} is adjacent to x_{4}, x_{1} is excluded by the discussion before Case (1.1). So we suppose C_{4}^{\prime} is adjacent to x_{3}, x_{2} now. By symmetry, we only need to consider the following cases. Suppose C_{5}^{\prime} is adjacent to x_{3}, x_{2}, then suppose C_{6}^{\prime} is adjacent to x_{3}, x_{2}. Then $G^{\prime}\left[\left\{x_{2}, x_{3}, x_{5}\right\} \cup\left\{C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a $K_{3,3}$, a contradiction. Then suppose C_{6}^{\prime} is adjacent to x_{3}, x_{1}. Now C_{6}^{\prime} is connected to x_{2} by path $C_{6}^{\prime} x_{1} C_{1}^{\prime} x_{2}$, and $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. So suppose that C_{6}^{\prime} is adjacent to x_{2}, x_{1}, then C_{6}^{\prime} is connected to x_{3} by path $C_{6}^{\prime} x_{1} C_{1}^{\prime} x_{3}$, and $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. Now suppose C_{5}^{\prime} is adjacent to x_{3}, x_{1}, then suppose C_{6}^{\prime} is adjacent to x_{3}, x_{1}. Then C_{4}^{\prime} is connected to x_{1} by path $C_{4}^{\prime} x_{2} C_{1}^{\prime} x_{1}$, and $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. So suppose C_{6}^{\prime} is adjacent to x_{2}, x_{1}. Now C_{6}^{\prime} is connected to x_{3} by path $C_{6}^{\prime} x_{5} C_{4}^{\prime} x_{3}$, and $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{4}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. Then suppose C_{5}^{\prime} is adjacent to x_{2}, x_{1}, and C_{6}^{\prime} can be adjacent only to x_{2}, x_{1}, by the same argument as last case, we can obtain a contradiction. Now suppose C_{4}^{\prime} is adjacent to x_{3}, x_{1}, then suppose C_{5}^{\prime} and C_{6}^{\prime} are both adjacent to x_{3}, x_{1}. But $G^{\prime}\left[\left\{x_{1}, x_{3}, x_{5}\right\} \cup\left\{C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains $K_{3,3}$, a contradiction. So we suppose C_{6}^{\prime} is adjacent to x_{2}, x_{1} subject to the above assumption of C_{4}^{\prime} and C_{5}^{\prime}. Now C_{6}^{\prime} is connected to x_{3} by path $C_{6}^{\prime} x_{5} C_{4}^{\prime} x_{3}$, and $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{4}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a
contradiction. Then suppose C_{5}^{\prime} is adjacent to x_{2}, x_{1}. Substituting C_{5}^{\prime} for C_{6}^{\prime} in the discussion of last case, we can obtain a contradiction. The remaining case is that $C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}$ are all adjacent to x_{2}, x_{1}. Then $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{5}\right\} \cup\left\{C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains $K_{3,3}$, a contradiction.

Now we come back to the discussion of the first paragraph in Case 1. We have the second subcase as follows.

Suppose C_{3}^{\prime} is adjacent to only one vertex in $\left\{x_{1}, x_{2}, x_{3}\right\}$. By the symmetry of the roles of $C_{3}^{\prime}, C_{4}^{\prime}, \cdots, C_{7}^{\prime}$, we can assume that each of $C_{3}^{\prime}, C_{4}^{\prime}, \cdots, C_{7}^{\prime}$ is adjacent to only one vertex in $\left\{x_{1}, x_{2}, x_{3}\right\}$. So all of $C_{3}^{\prime}, C_{4}^{\prime}, \cdots, C_{7}^{\prime}$ are adjacent to both x_{4} and x_{5}, and one of x_{1}, x_{2}, x_{3}. But x_{1}, x_{2}, x_{3} have only 3 vertices and $C_{3}^{\prime}, C_{4}^{\prime}, \cdots, C_{7}^{\prime}$ have 5 vertices, by the Pigeonhole Principle, there are C_{i}^{\prime} and C_{j}^{\prime} ($3 \leq i \neq j \leq 7$) adjacent to x_{4}, x_{5} and the same x_{r} in $\left\{x_{1}, x_{2}, x_{3}\right\}$, and there is a $C_{k}^{\prime}(k \neq i, j$ and $3 \leq k \leq 7$) such that C_{k}^{\prime} is adjacent to x_{4}, x_{5}. We use C_{i}^{\prime} and C_{j}^{\prime} to replace C_{1}^{\prime} and C_{2}^{\prime}, and C_{k}^{\prime} to replace C_{3}^{\prime}, then Case 1 still happens. The proof is the same as before.

Now suppose that Case 1 does not happen. Then, for any two vertices C_{i}^{\prime} and $C_{j}^{\prime}(1 \leq i<j \leq 7)$, $\left|N\left(C_{i}^{\prime}\right) \cap N\left(C_{j}^{\prime}\right)\right| \leq 2$.
Case 2. Suppose there are two vertices C_{i}^{\prime} and $C_{j}^{\prime}(1 \leq i<j \leq 7)$ such that $\left|N\left(C_{i}^{\prime}\right) \cap N\left(C_{j}^{\prime}\right)\right|=2$.
Without loss of generality, assume that $N\left(C_{1}^{\prime}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}, N\left(C_{2}^{\prime}\right)=\left\{x_{2}, x_{3}, x_{4}\right\}$ such that $\mid N\left(C_{1}^{\prime}\right) \cap$ $N\left(C_{2}^{\prime}\right)=2$.
Case (2.1). $C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}$ are adjacent to only vertices in $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.
Since G is 3 -connected and Case 1 does not happen, then $N\left(C_{3}^{\prime}\right)=\left\{x_{1}, x_{2}, x_{4}\right\}$ and $N\left(C_{4}^{\prime}\right)=\left\{x_{1}, x_{3}, x_{4}\right\}$. In $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}\right\}\right]$, any two of $x_{1}, x_{2}, x_{3}, x_{4}$ are symmetric, and any two of $C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}$ are symmetric. Since Case 1 does not happen, $N\left(C_{j}^{\prime}\right)$ is not contained in $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}(j=5,6,7)$. So C_{j}^{\prime} must be adjacent to $x_{5}(j=5,6,7)$. By the symmetry of any two of $x_{1}, x_{2}, x_{3}, x_{4}$, we can assume that C_{5}^{\prime} is adjacent to x_{3}, x_{4}. Also by the assumption of Case $2, C_{6}^{\prime}$ is adjacent to x_{1} and x_{2}, or adjacent to x_{2} and x_{3}. In the first case, $\left\{x_{1}, x_{2}\right\}$ and $\left\{x_{3}, x_{4}\right\}$ are symmetric, then C_{1}^{\prime} is adjacent to $x_{1}, x_{2}, x_{3}, C_{2}^{\prime}$ is adjacent to x_{2}, x_{3}, and C_{2}^{\prime} is connected to x_{1} by path $C_{2}^{\prime} x_{4} C_{3}^{\prime} x_{1}$, C_{6}^{\prime} is adjacent to x_{1}, x_{2}, and C_{6}^{\prime} is connected to x_{3} by path $C_{6}^{\prime} x_{5} C_{5}^{\prime} x_{3}$. So $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction. In the second case, C_{2}^{\prime} is adjacent to $x_{2}, x_{3}, x_{4}, C_{4}^{\prime}$ is adjacent to x_{3}, x_{4}, and is connected to x_{2} by path $C_{4}^{\prime} x_{1} C_{1}^{\prime} x_{2}, C_{5}^{\prime}$ is adjacent to x_{3}, x_{4}, and is connected to x_{2} by path $C_{5}^{\prime} x_{5} C_{6}^{\prime} x_{2}$. So $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{4}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction.
Case (2.2). $N\left(C_{i}^{\prime}\right) \subseteq\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ for $i=1,2,3$ but $N\left(C_{j}^{\prime}\right) \nsubseteq\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ for $4 \leq j \leq 7$.
Then $N\left(C_{3}^{\prime}\right)=\left\{x_{1}, x_{2}, x_{4}\right\}$. (The case that $N\left(C_{3}^{\prime}\right)=\left\{x_{1}, x_{3}, x_{4}\right\}$ is symmetric, and the proof is similar). As the neighbourhood of $C_{i}^{\prime}(i=4,5,6,7)$ is not contained in $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, C_{i}^{\prime}$ is adjacent to x_{5} for $i=4,5,6,7$. In $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}\right\}\right]$, any two of x_{1}, x_{3}, x_{4} are symmetric, and any two of $C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}$ are symmetric. By the assumption of Case 2 , we have the following four cases.
Case (2.2.1). Suppose $N\left(C_{4}^{\prime}\right)=\left\{x_{3}, x_{4}, x_{5}\right\}, N\left(C_{5}^{\prime}\right)=\left\{x_{1}, x_{4}, x_{5}\right\}$, and $N\left(C_{6}^{\prime}\right)=\left\{x_{1}, x_{3}, x_{5}\right\}$.
Notice that any two of x_{1}, x_{3}, x_{4} are symmetric, since Case (2.1) does not happen, $N\left(C_{7}^{\prime}\right)$ is not contained in $\left\{x_{1}, x_{3}, x_{4}, x_{5}\right\}$, without loss of generality, assume that $N\left(C_{7}^{\prime}\right)=\left\{x_{2}, x_{3}, x_{5}\right\}$. Now C_{2}^{\prime} is adjacent to $x_{2}, x_{3}, x_{4}, C_{1}^{\prime}$ is adjacent to x_{2}, x_{3}, and is connected to x_{4} by path $C_{1}^{\prime} x_{1} C_{3}^{\prime} x_{4}, C_{7}^{\prime}$ is adjacent to x_{2}, x_{3}, and is connected to x_{4} by path $C_{7}^{\prime} x_{5} C_{4}^{\prime} x_{4}$. So $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}, C_{7}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction.
Case (2.2.2). Suppose $N\left(C_{4}^{\prime}\right)=\left\{x_{3}, x_{4}, x_{5}\right\}, N\left(C_{5}^{\prime}\right)=\left\{x_{1}, x_{3}, x_{5}\right\}$.

Now x_{1} and x_{4} are symmetric. By the assumption of Case 2, as Case (2.2.1) does not hold, we have two cases: $N\left(C_{6}^{\prime}\right)=\left\{x_{2}, x_{4}, x_{5}\right\}$; or $N\left(C_{6}^{\prime}\right)=\left\{x_{2}, x_{3}, x_{5}\right\}$. Suppose $N\left(C_{6}^{\prime}\right)=\left\{x_{2}, x_{4}, x_{5}\right\}$. Then C_{2}^{\prime} is adjacent to $x_{2}, x_{3}, x_{4}, C_{1}^{\prime}$ is adjacent to x_{2}, x_{3}, and is connected to x_{4} by path $C_{1}^{\prime} x_{1} C_{3}^{\prime} x_{4}, C_{6}^{\prime}$ is adjacent to x_{2}, x_{4}, and is connected to x_{3} by path $C_{6}^{\prime} x_{5} C_{5}^{\prime} x_{3}$. So $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, contradicting to the fact that G^{\prime} is planar. Suppose $N\left(C_{6}^{\prime}\right)=\left\{x_{2}, x_{3}, x_{5}\right\}$. Then C_{2}^{\prime} is adjacent to $x_{2}, x_{3}, x_{4}, C_{1}^{\prime}$ is adjacent to x_{2}, x_{3}, and is connected to x_{4} by path $C_{1}^{\prime} x_{1} C_{3}^{\prime} x_{4}, C_{6}^{\prime}$ is adjacent to x_{2}, x_{3}, and is connected to x_{4} by path $C_{6}^{\prime} x_{5} C_{4}^{\prime} x_{4}$. So $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction.
Case (2.2.3). Suppose $N\left(C_{4}^{\prime}\right)=\left\{x_{3}, x_{4}, x_{5}\right\}$.
Now x_{3} and x_{4} are symmetric. We have two cases: (1) $N\left(C_{5}^{\prime}\right)=\left\{x_{2}, x_{3}, x_{5}\right\}, N\left(C_{6}^{\prime}\right)=\left\{x_{2}, x_{4}, x_{5}\right\}$; (2) $N\left(C_{5}^{\prime}\right)=\left\{x_{2}, x_{3}, x_{5}\right\}, N\left(C_{6}^{\prime}\right)=\left\{x_{1}, x_{2}, x_{5}\right\}$.

In the first case, C_{2}^{\prime} is adjacent to $x_{2}, x_{3}, x_{4}, C_{1}^{\prime}$ is adjacent to x_{2}, x_{3}, and is connected to x_{4} by path $C_{1}^{\prime} x_{1} C_{3}^{\prime} x_{4}, C_{6}^{\prime}$ is adjacent to x_{2}, x_{4}, and is connected to x_{3} by path $C_{6}^{\prime} x_{5} C_{5}^{\prime} x_{3}$. So $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\right.$ $\left.\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{5}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction.

In the second case, C_{1}^{\prime} is adjacent to $x_{1}, x_{2}, x_{3}, C_{2}^{\prime}$ is adjacent to x_{2}, x_{3}, and is connected to x_{1} by path $C_{2}^{\prime} x_{4} C_{3}^{\prime} x_{1}, C_{6}^{\prime}$ is adjacent to x_{1}, x_{2}, and is connected to x_{3} by path $C_{6}^{\prime} x_{5} C_{4}^{\prime} x_{3}$. So $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\right.$ $\left.\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction.

There remains the last case in Case (2.2) as follows.
Case (2.2.4). Suppose $N\left(C_{4}^{\prime}\right)=\left\{x_{2}, x_{3}, x_{5}\right\}, N\left(C_{5}^{\prime}\right)=\left\{x_{2}, x_{4}, x_{5}\right\}, N\left(C_{6}^{\prime}\right)=\left\{x_{1}, x_{2}, x_{5}\right\}$.
Now C_{1}^{\prime} is adjacent to $x_{1}, x_{2}, x_{3}, C_{2}^{\prime}$ is adjacent to x_{2}, x_{3}, and is connected to x_{1} by path $C_{2}^{\prime} x_{4} C_{3}^{\prime} x_{1}$, C_{6}^{\prime} is adjacent to x_{1}, x_{2}, and is connected to x_{3} by path $C_{6}^{\prime} x_{5} C_{4}^{\prime} x_{3}$. So $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}, C_{6}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction.
Case (2.3). Suppose only $C_{1}^{\prime}, C_{2}^{\prime}$ are adjacent only to vertices in $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.
Since $N\left(C_{i}^{\prime}\right)$ is not contained in $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, C_{i}^{\prime}$ is adjacent to x_{5} for $i=3,4, \cdots, 7$. Now x_{1} and x_{4} are symmetric, x_{2} and x_{3} are symmetric in $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}\right\}\right]$. By the assumption of Case 2, each C_{i}^{\prime} is adjacent to exactly two vertices in $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ besides $x_{5}(i=3,4, \cdots, 7)$, and C_{i}^{\prime} and $C_{j}^{\prime}(3 \leq i<j \leq 7)$ are not adjacent to the same two vertices in $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Since the number of combinations of two vertices in $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is totally $C(4,2)=\frac{4 \times 3}{2!}=6$, there is exactly one combination of two vertices which are not adjacent to the same $C_{i}^{\prime}(3 \leq i \leq 7)$, and for each of the other combinations of two vertices in $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, the two vertices are both adjacent to one C_{i}^{\prime} ($3 \leq i \leq 7$). Considering the symmetry of the roles of $C_{i}^{\prime}(i=3,4, \cdots, 7)$, there are six cases to take five combinations from the totally six combinations of two vertices in $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ such that the two vertices of each of the five combinations are both adjacent to a $C_{i}^{\prime}(3 \leq i \leq 7)$. Also considering the symmetry of x_{1} and x_{4}, and x_{2} and x_{3}, there remains 3 cases as follows.
Case (2.3.1). No $C_{i}^{\prime}(3 \leq i \leq 7)$ is adjacent to both x_{1} and x_{4}.
Since the roles of $C_{3}^{\prime}, C_{4}^{\prime}, \cdots, C_{7}^{\prime}$ are symmetric, without loss of generality, assume that $N\left(C_{3}^{\prime}\right)=$ $\left\{x_{1}, x_{2}, x_{5}\right\}, N\left(C_{4}^{\prime}\right)=\left\{x_{3}, x_{4}, x_{5}\right\}, N\left(C_{5}^{\prime}\right)=\left\{x_{2}, x_{4}, x_{5}\right\}, N\left(C_{6}^{\prime}\right)=\left\{x_{1}, x_{3}, x_{5}\right\}, N\left(C_{7}^{\prime}\right)=\left\{x_{2}, x_{3}, x_{5}\right\}$.

Now C_{7}^{\prime} is adjacent to $x_{2}, x_{3}, x_{5}, C_{4}^{\prime}$ is adjacent to x_{3}, x_{5}, and is connected to x_{2} by path $C_{4}^{\prime} x_{4} C_{2}^{\prime} x_{2}$, C_{3}^{\prime} is adjacent to x_{2}, x_{5}, and is connected to x_{3} by path $C_{3}^{\prime} x_{1} C_{6}^{\prime} x_{3}$. So $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}, C_{6}^{\prime}, C_{7}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction.
Case (2.3.2). No $C_{i}^{\prime}(3 \leq i \leq 7)$ is adjacent to both x_{1} and x_{2}. (For $x_{1}, x_{3} ; x_{2}, x_{4} ; x_{3}, x_{4}$, the discussion is similar.)

Since the roles of $C_{3}^{\prime}, C_{4}^{\prime}, \cdots, C_{7}^{\prime}$ are symmetric, without loss of generality, assume that $N\left(C_{3}^{\prime}\right)=$
$\left\{x_{1}, x_{4}, x_{5}\right\}, N\left(C_{4}^{\prime}\right)=\left\{x_{1}, x_{3}, x_{5}\right\}, N\left(C_{5}^{\prime}\right)=\left\{x_{2}, x_{4}, x_{5}\right\}, N\left(C_{6}^{\prime}\right)=\left\{x_{3}, x_{4}, x_{5}\right\}, N\left(C_{7}^{\prime}\right)=\left\{x_{2}, x_{3}, x_{5}\right\}$.
Now C_{2}^{\prime} is adjacent to $x_{2}, x_{3}, x_{4}, C_{1}^{\prime}$ is adjacent to x_{2}, x_{3}, and is connected to x_{4} by path $C_{1}^{\prime} x_{1} C_{3}^{\prime} x_{4}$, C_{5}^{\prime} is adjacent to x_{2}, x_{4}, and is connected to x_{3} by path $C_{5}^{\prime} x_{5} C_{7}^{\prime} x_{3}$. So $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{5}^{\prime}, C_{7}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction.
Case (2.3.3). No $C_{i}^{\prime}(3 \leq i \leq 7)$ is adjacent to both x_{2} and x_{3}.
Since the roles of $C_{3}^{\prime}, C_{4}^{\prime}, \cdots, C_{7}^{\prime}$ are symmetric, without loss of generality, assume that $N\left(C_{3}^{\prime}\right)=$ $\left\{x_{1}, x_{4}, x_{5}\right\}, N\left(C_{4}^{\prime}\right)=\left\{x_{1}, x_{2}, x_{5}\right\}, N\left(C_{5}^{\prime}\right)=\left\{x_{1}, x_{3}, x_{5}\right\}, N\left(C_{6}^{\prime}\right)=\left\{x_{2}, x_{4}, x_{5}\right\}, N\left(C_{7}^{\prime}\right)=\left\{x_{3}, x_{4}, x_{5}\right\}$.

Now C_{1}^{\prime} is adjacent to $x_{1}, x_{2}, x_{3}, C_{2}^{\prime}$ is adjacent to x_{2}, x_{3}, and is connected to x_{1} by path $C_{2}^{\prime} x_{4} C_{3}^{\prime} x_{1}$, C_{4}^{\prime} is adjacent to x_{1}, x_{2}, and is connected to x_{3} by path $C_{4}^{\prime} x_{5} C_{5}^{\prime} x_{3}$. So $G^{\prime}\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\} \cup\left\{C_{1}^{\prime}, C_{2}^{\prime}, C_{3}^{\prime}, C_{4}^{\prime}, C_{5}^{\prime}\right\}\right]$ contains a subdivision of $K_{3,3}$, a contradiction.
Case 3. Suppose that, for any two vertices C_{i}^{\prime} and $C_{j}^{\prime}(1 \leq i<j \leq 7),\left|N\left(C_{i}^{\prime}\right) \cap N\left(C_{j}^{\prime}\right)\right| \leq 1$ and Cases 1 and 2 do not hold.

Since $\left|N\left(C_{i}^{\prime}\right)\right|=\left|N\left(C_{j}^{\prime}\right)\right|=3$ and $|S|=5,\left|N\left(C_{i}^{\prime}\right) \cap N\left(C_{j}^{\prime}\right)\right|=1(1 \leq i<j \leq 7)$. Without loss of generality, assume that $N\left(C_{1}^{\prime}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$, and $N\left(C_{2}^{\prime}\right)=\left\{x_{3}, x_{4}, x_{5}\right\}$. Then $N\left(C_{1}^{\prime}\right) \cap N\left(C_{2}^{\prime}\right)=\left\{x_{3}\right\}$. By the assumption of Case $3,\left|N\left(C_{3}^{\prime}\right) \cap N\left(C_{1}^{\prime}\right)\right|=1$, then there are two vertices of $N\left(C_{3}^{\prime}\right)$ which are not in $\left\{x_{1}, x_{2}, x_{3}\right\}$, hence $\left|N\left(C_{3}^{\prime}\right) \cap N\left(C_{2}^{\prime}\right)\right| \geq 2$, which contradicts the assumption of Case 3 .

In all cases discussed above, we can always obtain contradiction. So $\omega(G-S) \geq|S|+2$ does not hold. By Lemma 1, when $v(G) \geq 2 k, G$ is k-subconnected for $k=4,5,6$.
Remark 1. Now we give some counterexamples to show the sharpness of Corollaries 7 and 8, and Theorem 10. Let H be a connected planar graph, let G_{1}, G_{2}, G_{3} be three copies of H, and let v be a vertex not in $G_{i}(i=1,2,3)$. Let G be the graph such that v is joined to $G_{i}(i=1,2,3)$ by an edge respectively. Then G is a 1 -connected planar graph, but G is not 2 -subconnected since we take a vertex v_{i} in $G_{i}(i=1,2,3)$ and let $v_{4}=v$, then there are not two independent paths joining $v_{1}, v_{2}, v_{3}, v_{4}$ in two pairs in G. So Corollary 7 is sharp.

Let H be a planar embedding of a 2-connected planar graph, let $G_{1}, G_{2}, G_{3}, G_{4}$ be four copies of H, let v_{5} and v_{6} be two vertices not in $G_{i}(i=1,2,3,4)$. Let G be the graph such that v_{5} and v_{6} are joined to two different vertices on the outer face of $G_{i}(i=1,2,3,4)$ by edges respectively. Then G is a 2-connected planar graph, but is not 3 -subconnected since we take a vertex v_{i} in $G_{i}(i=1,2,3,4)$, then there are not three independent paths joining $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ in three pairs. So Corollary 8 is sharp.

Let G_{0} be a triangle with vertex set $\left\{v_{4}, v_{5}, v_{6}\right\}$, then insert a vertex v_{i} into a triangle inner face of G_{i-1} and join v_{i} to every vertex on the face by an edge respectively to obtain G_{i} for $i=1,2,3$. Let $G=G_{3}$. Notice that $v(G)=6, \varepsilon\left(G_{0}\right)=3$, and each time when we insert a vertex, the number of edges increases by 3 . So $\varepsilon(G)=3+3+3+3=12$. By the Euler's Formula, $\phi=\varepsilon-v+2=12-6+2=8$. Let H be a planar embedding of a 3 -connected planar graph. Then put a copy of H into every face of G and join each vertex on the triangle face of G to a distinct vertex on the outer face of H to obtain a planar graph G^{\prime}. Then G^{\prime} is a 3-connected planar graph with $v\left(G^{\prime}\right) \geq 2 k$ for $k=7$, but G^{\prime} is not 7 -subconnected since we have a cutset $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$, but $G^{\prime}-S$ has 8 copies of H (8 components) and $\omega\left(G^{\prime}-S\right)=8 \geq|S|+2$. By Lemma 1, the conclusion holds. So Theorem 10 is sharp.
Remark 2. For a 3-connected planar graph G with at least $2 k$ vertices, by Lemma 6, G is obviously k -subconnected for $k=1,2,3$.

4. Conclusions

In the last section, we prove the k -subconnectivity of k^{\prime}-connected planar graphs for $k^{\prime}=1,2, \cdots, 5$.
Since a k-subconnected graph is a spanning substructure of a k-connected graph, in the future, we can work on the number of edges deleted from a k-connected graph such that the resulting graph is still k -subconnected.

We may also extend the k-subconnectivity of planar graphs to find the subconnectivity of general graphs with a higher genus.

References

1. O. R. Oellermann, Connectivity and edge-connectivity in graphs: A survey, Congressus Numerantium, 116 (1996), 231-252.
2. B. Peroche, On several sorts of connectivity, Discrete Math., 46 (1983), 267-277.
3. Z. Dvořák, J. Kára, D. Král, O. Pangrác, An algorithm for cyclic edge connectivity of cubic graphs, In: Algorithm Theory-SWAT 2004, Springer, Berlin, Heidelberg, 2004, 236-247.
4. D. Lou, W. Wang, An efficient algorithm for cyclic edge connectivity of regular graphs, Ars Combinatoria, 77 (2005), 311-318.
5. D. Lou, K. Liang, An improved algorithm for cyclic edge connectivity of regular graphs, Ars Combinatoria, 115 (2014), 315-333.
6. D. Lou, A square time algorithm for cyclic edge connectivity of planar graphs, Ars Combinatoria, 133 (2017), 69-92.
7. J. Liang, D. Lou, Z. Zhang, A polynomial time algorithm for cyclic vertex connectivity of cubic graphs, Int. J. Comput. Math., 94 (2017), 1501-1514.
8. J. Liang, D. Lou, A polynomial algorithm determining cyclic vertex connectivity of k-regular graphs with fixed k, J. Comb. Optim., 37 (2019), 1000-1010.
9. C. Thomassen, 2-linked graphs, Eur. J. Combin., 1 (1980), 371-378.
10. B. Bollobás, A. Thomason, Highly linked graphs, Combinatorica, 16 (1996), 313-320.
11. K. Kawarabayashi, A. Kostochka, G. Yu, On sufficient degree conditions for a graph to be k-linked, Comb. Probab. Comput., 15 (2006), 685-694.
12. Z. Qin, D. Lou, H. Zhu, J. Liang, Characterization of k-subconnected graphs, Appl. Math. Comput., 364 (2020), 124620.
13. J. A. Bondy, U. S. R. Murty, Graph theory with applications, MacMillan Press Ltd., 1976.
14. W. T. Tutte, A theorem on planar graphs, T. Am. Math. Soc., 82 (1956), 99-116.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
