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Abstract: In this paper, we consider discretely monitored double barrier option based on the Black-
Scholes partial differential equation. In this scenario, the option price can be computed recursively
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1. Introduction

Barrier options are one of the oldest types of exotic derivatives. Since 1967, barrier options have
been traded in over-the-counter(OTC) markets, especially in the US markets. Barrier options are
considered as a type of exotic option because they are more complex than basic ordinary options. The
most important advantage of barrier options is that flexibility and possibility of matching with risk
hedging which make them more attractive to hedgers and traders in financial markets. Also, their
payoff depend on whether or not the underlying asset has reached or exceeded a predetermined price.

Nowadays, we have impressive growth in the variety of barrier options, and the most frequently
used standard barrier options are knock-in and knock-out options. A barrier option is called knock-out
if it is deactivated when the price of the underlying asset hits the barrier. Similarly, a barrier option
is called knock-in if it is activated when the price of underlying asset hits the barrier. From another
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side, an important matter is how frequently the barrier and the price of underlying asset. Although
most of researchers assume barrier options in continuous form of monitoring [1–3], but most of real
financial contracts are based on discrete monitoring for example daily, weekly or monthly. Therefore
discrete monitoring provides an additional degree of realism and also adapts the process of option
pricing with real contracts in financial markets. The Black-Scholes model [4] is a mathematical model
for pricing an option contract. In addition to the Black–Scholes option valuation theory, we can benefit
from works previously developed by researchers, such as Fusai et al. [5] and Awasthi and Tk [6]. The
options contracts can be priced using mathematical models such as the Black-Scholes model. There
are many models and methods to propose approximations based on a variety of different numerical
approaches, such as recent research studies [7–9].

Barrier options were proposed and analyzed by researchers over the last three decades. In the
academic literature, the pricing of barrier option arises in the research of Merton [10] who presented a
closed-form solution for single barrier options based on European call option. Fusai et al. [5] presented
the analytical solution for discrete barrier options. In discrete monitoring case, the trinomial method
has been presented by Kamrad and Ritchken [11], and also Kowk used the binomial and trinomial for
pricing path-dependent options [12]. The quadrature method QUAD-K20 and QUAD-K30 are applied
for pricing discrete barrier option in [13]. In [14–17] the process of pricing single and double barrier
option has been considered. In the work of [16], finite element method is applied for pricing double
barrier option.

The projection methods have been used in various fields, especially in financial mathematics. These
methods give a general flexible way to solve functional equation. In this paper, we introduce orthogonal
projection operators based on the Chebyshev polynomials and we implement new algorithm for pricing
discretely monitored double barrier option. We present numerical results which confirm acceptable
accordance with other benchmark values.

The main advantages of the proposed numerical method is that Chebyshev polynomials are more
robust than their alternatives for projection, and they form a special class of orthogonal polynomials
especially suited for approximating with higher accuracy. In our method, the move between the
coefficients of a Chebyshev expansion of a function and the values of the function quickly performed
by orthogonal projection operators involved with integration. Also, it is important to note that an
implication of our work is that our numerical method is simple to apply and to extend and provides a
reliable framework which can be used either for pricing more complex derivative instruments. This
paper is organized as follows. In Section 2, preliminaries and notations are presented. In Section 3, the
Chebyshev polynomials and their properties are introduced. Moreover, the shifted Chebyshev
polynomial of the second kind is prepared for applying in approximation. In Section 4, we implement
orthogonal projection method based on the Chebyshev polynomial of the second kind for pricing
discretely monitored double barrier option and finally, Section 5 is devoted to present numerical
results and illustrate our highly accurate results.

2. Preliminaries

In this paper we focus on the standard Black-Scholes framework. We assume the following
notation: S is the price of underlying asset, σ is its volatility, r is risk-free interest rate, t denotes the
current time and V is the value of barrier option defined as a function of underlying asset price at time
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t ∈ (tm−1, tm) with monitoring dates 0 = t0 < t1 < t2 < ... < tM = T which are determined in equal
discrete time intervals, i.e., tm = mτ where τ = T

M and T denotes the time of expiration and E is the
strike or exercise price.

In this paper we assume that the price of barrier option P(S , t) satisfies the Black-Scholes equation

−
∂P
∂t

+ rS
∂P
∂S

+
1
2
σ2S 2∂

2P
∂S 2 − rP = 0. (2.1)

Also the process S t is described by the following geometric Brownian motion (GBM) [18],

dS t = rS tdt + σS tdBt, (2.2)

where Bt is a standard Brownian motion defined on the probability space (Ω,Ft,P), in which Ω is a
nonempty set called the sample space and Ft is filtration satisfying the usual conditions, and P is a
probability function. First, we consider the classification of knock-out single barrier option for call
position. According to [19, 20], this classification can be expressed as follows:

(1) Down-and-out is an option that terminates when the price of the underlying asset declines to a
predetermined level and its payoff is

DOC = (S t − E)+I{min0≤t≤T S t>L} = (S t − E)I{min0≤t≤T S t>L , S t>E}. (2.3)

(2) Up-and-out is an option that terminates when the price of the underlying asset increases to a
predetermined level and its payoff is

UOC = (S t − E)+I{max0≤t≤T S t<U} = (S t − E)I{max0≤t≤T S t<U, S t>E}. (2.4)

Where L is lower barrier, U is upper barrier and I is the indicator function. Therefore, the payoff of
knock-out double barrier option can be obtained by relations (2.3) and (2.4),

OCDouble = (S t − E)+I{max0≤t≤T (E,L)<S t<U}

= (S t − E)I{max0≤t≤T (E,L)<S t<U, S t>E}. (2.5)

In our specific case, the initial and boundary conditions can be written asP(S , t0, 0) = (S − E)I(max(E,L)<S t<U),

P(S , tm, 0) = P(S , tm,m − 1)I(L<S t<U), m = 1, 2, ...,M − 1,

and

P(S , tm,m − 1) = limt→tm P(S , t,m − 1).

Now, we apply the following transformation
θ = ln(

U
L

), µ = r −
σ2

2
, δ = max{E∗, 0}, E∗ = ln(

E
L

),

Z = ln(
S
L

), C(Z, t,m) = P(S , t,m).
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So, we obtain 

Z = ln(
S
L

)⇒
∂Z
∂S

=
1
S
,

∂P
∂t

=
∂C
∂t

= Ct,

∂P
∂S

=
∂P
∂Z
×
∂Z
∂S

=
∂C
∂Z
×
∂Z
∂S

= CZ ×
1
S
,

∂2P
∂S 2 =

∂

∂S
(
∂P
∂S

) =
∂

∂S
(

1
S

CZ) = −
1

S 2 CZ +
1

S 2 CZZ .

According to (2.1), we obtain

−Ct + rS (
1
S

CZ) +
1
2
σ2S 2(−

1
S 2 CZ +

1
S 2 CZZ) = rC

⇒−Ct + (r −
1
2
σ2)CZ +

1
2
σ2CZZ = rC

⇒−Ct + µCZ +
1
2
σ2CZZ = rC.

Since, 
Z = ln(

S
L

)⇒ S = LeZ,

E∗ = ln(
E
L

)⇒ E = LeE∗,

the initial conditions can be rewritten as
P(S , t0, 0) = C(Z, t0, 0) = S − E = L(eZ − eE∗), δ < Z < θ,

while max(E, L) < S < U,

P(S , tm, 0) = C(Z, tm,m − 1), 0 < Z < θ.

Now apply further transformation

C(Z, tm,m) = eαZ+βth(Z, t,m), (2.6)

where

α = −
µ

σ2 , β = αµ + α2σ
2

2
− r, λ2 =

σ2

2
.

Therefore,

Ct = (βh + ht)eαZ+βt, (2.7)
CZ = (αh + hZ)eαZ+βt, (2.8)

CZZ =
∂

∂Z
(
∂C
∂Z

) =
∂

∂Z
(αh + hZ)eαZ+βt = (α2h + 2αhZ + hZZ)eαZ+βt. (2.9)
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Subtituting (2.7), (2.8) and (2.9) into (2.1) yields

−(βh + ht)eαZ+βt − ασ2(αh + hZ)eαZ+βt +
σ2

2
(α2h + 2αhZ + hZZ)eαZ+βt = (−α2σ2 + α2σ

2

2
− β)heαZ+βt.

For simplification, we have

(−βh − ht − α
2σ2h − ασ2hZ +

σ2

2
α2h + ασ2hZ +

σ2

2
hZZ)eαZ+βt = (−α2σ2h + α2σ

2

2
h − βh)eαZ+βt

=⇒ −ht +
σ2

2
hZZ = 0.

The final result of these transformations is that the Black-Scholes equation has been reduced to the
much simpler PDE, called the heat equation as follows

ht = λ2hZZ .

So, we achieve the following heat equation
ht = λ2hZZ ,

h(Z, t0, 0) = Le−αZ(eZ − eE∗)I(δ<Z<θ),

h(Z, tm,m) = h(Z, tm,m − 1)I(0<Z<θ), m = 1, 2, ...,M − 1.

According to [21], the analytical solution of heat equation is considered as follows

h(Z, t,m) =


∫ θ

δ
κ(Z − ξ, t)Le−αξ(eξ − eE∗)dξ, m = 0,

∫ θ

0
κ(Z − ξ, t − tm)h(Z, tm,m − 1)dξ, m = 1, 2, ...,M − 1,

where
κ(Z, t) =

1
√

4πλ2t
e
−Z2

4λ2t .

For simplicity, let us formulate this analytical solution in new frame by defining fm(Z) = h(Z, tm,m−1),

f0(Z) = Le−αZ(eZ − eE∗)I(δ<Z<θ), (2.10)

f1(Z) =

∫ θ

0
κ(Z − ξ, τ) f0(ξ)dξ, (2.11)

fm(Z) =

∫ θ

0
κ(Z − ξ, τ) fm−1(ξ)dξ, m = 2, 3, ...,M. (2.12)

3. Chebyshev polynomials approximation

In this section, we describe in more details the projection method based on the Chebyshev
polynomials of the second kind. The Chebyshev polynomials of the second kind with orthogonality
property in interval [−1, 1] are defined as follows

Un(x) = 2xUn−1(x) − Un−2(x), n = 2, 3, ..., (3.1)
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where, U0(x) = 1 and U1(x) = 2x.
The orthogonality property of these polynomials is given as follows which defines an inner product

on C[a, b],

〈Un(x),Um(x)〉 =

∫ 1

−1

√
1 − x2Un(x)Um(x)dx =


π

2
, m = n , 0,

π, m = n = 0,
0, m , n.

(3.2)

In order to use these polynomials, the range of the variable x is the interval [−1, 1]. So we map the
independent variable x to the variable t in the interval [a, b] by transformation

x =
2t − (a + b)

b − a
.

Therefore, the relation (3.1) is led to the shifted Chebyshev polynomial of the second kind [22]. Now
we set a = 0 and b = θ and consider the polynomial on the interval [0, θ].

A function f (t) ∈ L2[0, θ], can be expressed in terms of the shifted Chebyshev polynomials as

f (t) =

∞∑
n=0

AnUn(
2t
θ
− 1), (3.3)

where {An}
∞
n=0 are the coefficients of the Fourier series [23]. These coefficients can be found by using

orthogonality property of the Chebyshev polynomial as follows∫ θ

0
Un(

2t
θ
− 1)Um(

2t
θ
− 1)

(
1 − (

2t
θ
− 1)2

) 1
2

dt = δm,nhm, (3.4)

where δm,n is the Dirac function which can be defined as bellow

δm,n =

1, m = n,

0, m , n,

and also hm can be defined with

hm =



π

4
θ, m = n , 0,

π

2
θ, m = n = 0,

0, m , n.

Now by defining the shifted Chebyshev polynomial of the second kind U∗n(t) as Un(
2t
θ
− 1) = U∗n(t)

and the weight function as Wθ(t) =
√
θt − t2, the relation (3.4) will be change into:∫ θ

0
U∗n(t)U∗m(t)Wθ(t)dt = δm,nĥm, (3.5)
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where

ĥm =


π

2
, m = n , 0,

π, m = n = 0,
0, m , n.

By multiplying U∗m(t)Wθ(t) on the both sides of equation (3.3) and integrating from 0 to θ, we can
achieve ∫ θ

0
f (t)U∗m(t)Wθ(t)dt =

∞∑
n=0

AN

∫ θ

0
U∗n(t)U∗m(t)Wθ(t)dt = ANδm,nĥm.

Therefore the matrix form of coefficients in (3.4) can be presented as:

AN = [a0, a1, ..., aN]T,

where

a0 =
1
π

∫ θ

0
f (t)U∗0(t)Wθ(t)dt =

1
π

∫ θ

0
f (t)Wθ(t)dt,

an =
2
π

∫ θ

0
f (t)U∗n(t)Wθ(t)dt, n = 1, 2, ...,N.

Now, if we define

Ũ∗m(x) =

√
Wθ(t)

ĥm
U∗m(t), for ĥm , 0,

then {Ũ∗m(t)}∞m=0 is as an orthogonal basis for L2[0, θ].

4. Implementing projection method based on the Chebyshev polynomials

In this section, implementation of orthogonal projection method based on the Chebyshev
polynomials is organized as follows:

• Step 1: Choose an orthogonal basis, a norm ||.|| and an inner product < . >,
• Step 2: Choose a degree of approximation (n), and define a projection operator Pn,
• Step 3: Construct a computable approximation by choosing suitable kind of orthogonal

polynomials,
• Step 4: Evaluate projections involved with integration.

Theorem 4.1. Let f (x) be a polynomial of degree k or less. Then the following expansion can be
presented

f (x) = d0 p0(x) + d1 p1(x) + ... + dk pk(x),

where d0, d1, ..., dk are unique coefficients, di =
〈 f , pi〉

〈pi, pi〉
and {pi(x)}∞i=0 are orthogonal polynomials.

Proof. Refer to [24]. �
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Due to Theorem 4.1, we can define projection operator Pn : L2[0, θ] → ψn, where ψn is the space
of all polynomials of degree n or less [25], and

∀ f ∈ L2[0, θ], Pn( f ) =

∞∑
i=0

< f , Ũ∗i (t) > Ũ∗i (t). (4.1)

Also, by relation (3.3) and defined operator in (4.1), we can approximate the value of f by f̃m,n as
follows [15]:

f̃m,n = ϕT
n Km−1F1. (4.2)

The matrix form of ϕT
n , F1 and K can be obtained as

ϕT
n = [Ũ∗0(t), Ũ∗1(t), ..., Ũ∗n(t)],

F1 = [a10, a11, ..., a1n]T ,

K = (Ki j)(n+1)(n+1),

where a1i =
∫ θ

0

∫ θ

δ
Ũ∗i (η)κ(η − ε, τ)dεdη, 0 ≤ i ≤ n,

Ki j =
∫ θ

0

∫ θ

δ
Ũ∗i−1(η)Ũ∗j−1(ε)κ(η − ε, τ)dεdη, 1 ≤ i, j ≤ n + 1.

5. Numerical results and comparison studies

In order to verify accuracy of the presented method and demonstrate our analytical results, we
prepare numerical examples with the considered value of parameters in Table 1. The all simulations
are done by using MATLAB R2017a. In this section our numerical results are compared with trinomial
tree [26] and projection method based on the Legendre polynomials [15] and quadrature method [13].

Table 1. The parameter values used in Examples 5.1 and 5.2.

E S 0 r σ U T
100 100 0.05 0.25 120 0.5

Example 5.1. We consider discretely monitored knock-out double barrier option for call position. The
barriers are fixed and two monitoring dates m = 25, 125 have been considered.

Applying transformation xi =
2ti

θ
− 1, the maximum deviation of

n∏
i=0
|x − xi| from zero in the interval

[0, θ], can be considered as follows [27],

max
n∏

i=0

|x − xi| = |
θ

2
|n+1 max

n∏
j=0

|t − t j| ≤
1
2n |

θ

2
|n+1.

Tables 2 and 3 report the double barrier option pricing results of comparing the proposed method with
other methods in weekly and daily observation modes, respectively. In Tables 4 and 5, the absolute
error of employed numerical method is presented with respect to other methods. Also, these numerical
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Table 2. Comparison of double barrier option prices due to Example 5.1 by weekly observations (M=25).

L M N Presented Method Trinomial P.M-Legendre Quad-K30
80 25 15 1.9428 1.9490 1.9420 1.9420
90 25 15 1.5362 1.5630 1.5354 1.5354
95 25 15 0.8669 0.8823 0.8668 0.8668
99 25 15 0.2933 0.3153 0.2931 0.2931

Table 3. Comparison of double barrier option prices due to Example 5.1 by daily observations (M=125).

L M N Presented Method Trinomial P.M-Legendre Quad-K30
80 125 15 1.6811 1.7477 1.6808 1.6808
90 125 15 1.2032 1.2370 1.2029 1.2029
95 125 15 0.5524 0.5699 0.5532 0.5532
99 125 15 0.1039 0.1201 0.1042 0.1042

Table 4. Absolute error of projection method based on the Chebyshev polynomials with respect to other
methods (M=25, N=15).

L M Trinomial P.M-Legendre Quad-K30
80 25 0.0062 0.0008 0.0008
90 25 0.0268 0.0008 0.0008
95 25 0.0154 0.0001 0.0001
99 25 0.0220 0.0002 0.0002

Table 5. Absolute error of projection method based on the Chebyshev polynomials with respect to other
methods (M=125, N=15).

L M Trinomial P.M-Legendre Quad-K30
80 125 0.0666 0.0003 0.0003
90 125 0.0347 0.0003 0.0009
95 125 0.0175 0.0008 0.0008
99 125 0.0162 0.0003 0.0003
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results demonstrate the adaptation of our method with other benchmark methods. Tables 4 and 5 allow
us to observe the effect of increasing observation dates on the computational results. These show that
the computational results are not deteriorated as it usually happens with other numerical methods such
as finite difference schemes and trinomial trees.

Example 5.2. In this example, we consider knock-out double barrier option as L = 95.5, U = 120,
r = 0.05, σ = 0.25, E = 100 and T = 0.5. In Table 6, we price knock-out double barrier option with
different number of nodes (N). Due to these results, as we increase the number of nodes, we achieve
highly accurate and reliable results. In this example, we select quadrature method (Quad-K30) as the
benchmark value.

Table 6. Double barrier option pricing of Example 5.2 with increasing number of nodes.

N(Number of nodes) M=5 M=25 M=125
5 1.7101 0.8968 05882

10 1.7021 0.8918 0.5832
15 1.6991 0.8898 0.5762
20 1.6931 0.8858 0.5712
25 1.6881 0.8758 0.5662
30 1.6871 0.8708 0.5592
35 1.6851 0.8698 0.5572
40 1.6851 0.8698 0.5562

Benchmark value 1.6831 0.8668 0.5532

Fig. 1 shows the errors comparison for various number of monitoring date. According to Fig. 1, the
approximation error tends to zero when the number of basis functions (nodes)
increases. Furthermore, the obtained values of the proposed numerical method tends to the
benchmark value when the number of basis functions (nodes) increases.

Figure 1. Errors comparison of the presented method for pricing double barrier option.
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6. Conclusions

In this paper, we have implemented orthogonal projection method based on the Chebyshev
polynomials of the second kind for pricing discretely monitored double barrier options. We presented
numerical results and compared the performance of our method with other benchmark methods such
as the trinomial tree, projection method based on the Legendre polynomials and quadrature
method. These results demonstrate acceptable accordance of our method with other benchmark
methods. The strength of the presented numerical method is particularly demonstrated in pricing
knock-out double barrier options with highly accurate results. Future research can be devoted to
extend this idea for other types of options.
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