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1. Introduction and main result

Let 0 ∈ Ω ⊂ RN(N ≥ 3) be a bounded domain with smooth boundary ∂Ω. In this paper, we are
interested in establishing the multiplicity of sign-changing solutions to the following semilinear elliptic
equations with variable exponent  −∆u = |u|q(x)−2u, in Ω,

u = 0, on ∂Ω,
(1.1)

where q(x) satisfies the following assumptions.

(Q1) q ∈ C(Ω), q(0) = 2 and 2 < q(x) ≤ max
x∈Ω
{q(x)} = q+ < 2∗ = 2N

N−2 for x , 0;

(Q2) there exist α ∈
(
0, N+2

2

)
and Bδ0 = {x||x| < δ0} ⊂ Ω such that q(x) ≥ 2 + |x|α for any x ∈ Bδ0 .

In 1973, Ambrosetti and Rabinowitz in [2] obtained a positive and a negative solution to the
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following superlinear elliptic problem −∆u = f (x, u), in Ω,

u = 0, on ∂Ω.
(1.2)

The existence of the third solution to problem (1.2) was established by Wang in [17]. Castro, Cossio
and Neuberger in [6] proved that the third solution to problem (1.2) obtained in [17] changes sign
only once. Bartsch and Wang in [3] obtained the existence of sign-changing solution. In addition,
Bartsch, Weth and Willem in [4] showed that problem (1.2) possesses a least energy sign-changing
solution. In order to study the sign-changing critical points of even functionals, Li and Wang in [11]
established a Ljusternik-Schnirelmann theory and showed that problem (1.2) possesses infinitely many
sign-changing solutions. Subsequently, the existence of infinitely many sign-changing solutions to
problem (1.2) was also obtained by some versions of the symmetric mountain pass lemma(see [15]
and [19]).

In fact, these papers required f (x, t) to satisfy the following condition ((AR)-condition, for short)

f (x, t)t ≥ θF(x, t) > 0, for all x ∈ Ω and |t| sufficiently large,

where θ > 2 and F(x, t) =
∫ t

0
f (x, s) ds. It is well known that (AR)-condition is important to guarantee

the boundedness of Palais-Smale sequence of the Euler-Lagrange functional associated to problem
(1.2) which plays a crucial role in applying the critical point theory. For more than 40 years, several
researchers studied problem (1.2) trying to drop the above (AR)-condition. For example, a weaker
super-quadratic condition ((S Q)-condition, for short) is that

lim
|t|→∞

F(x, t)
|t|2

= ∞ uniformly in x ∈ Ω.

Under (S Q)-condition or some extra assumptions, the existence and multiplicity of nontrivial solution
for problem (1.2) were obtained, see [7, 8, 12, 14, 16] and the references therein.

Recently, the special case of problem (1.1) as problem (1.2) is also concerned by some scholars(see
[1, 5, 9, 10, 13]). They obtained the existence or multiplicity of the nontrivial solution of problem
(1.1) from the discussion the compact embedding from H1

0(Ω) to Lq(x)(Ω) with a variable critical or
supercritical exponent. In particular, Cao, Li and Liu in [5] obtained that problem (1.1) has infinitely
many nodal solutions when q(x) = 2∗ + |x|α − 2(0 < α < min{N2 ,N − 2}) and B1 is the unit ball in RN .
In addition, Hashizume and Sano in [9] proposed that ess inf

x∈Ω
{q(x)} = 2 is another critical case. Indeed,

if there exists x0 ∈ Ω such that q(x0) = inf
x∈Ω
{q(x)} = 2, then the conditions (AR) and (S Q) do not hold.

Therefore, the problem we intend to study is a new phenomenon. To the best of our knowledge,
for either p-Laplacian equation(including semilinear elliptic equation) or p(x)-Laplacian equation,
there are no results in this case. The main difficulty with problem (1.1) is that the corresponding
functional may possess unbounded Palais-Smale sequences. To overcome this difficulty, we will use
the perturbation technique and the Moser’s iteration.

The main result of this paper reads as follows.
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Theorem 1.1. Suppose that (Q1) and (Q2) hold. Then, for every integer k ≥ 1, problem (1.1) has k
sign-changing solutions.

Remark 1.2. In [5] and [9], it is crucial to require the space is radially symmetric. However, we do
not need the domain to be radial.

To end this section, we describe the basic ideas in the proof of Theorem 1.1. Noticing that
q(0) = 2, inspired by [18], we first modify the nonlinear term to guarantee the boundedness of Palais-
Smale sequence of the corresponding functional and obtain infinitely many sign-changing solutions
of auxiliary problem by a version of the symmetric mountain pass lemma. Subsequently, we use the
Moser iteration to obtain the existence of infinitely many sign-changing solutions for problem (1.1).

Throughout this paper, let Bδ = {x||x| < δ} ⊂ Ω and Ωδ = Ω\ Bδ. We use ‖ · ‖ to denote the usual
norms of H1

0(Ω). The letter C stands for positive constant which may take different values at different
places.

2. The modified problem

According to q(0) = 2, it seems to be difficult to confirm whether the energy function I
corresponding to (1.1) satisfies the Palais-Smale condition or not.To apply variational methods, the
first step in proving Theorem 1.1 is modifying the nonlinear term to obtain the perturbation equation.
Since q(x) is a continuous function and q+ < 2∗, we can choose r > 0 such that

r < min
{

2∗ − q+,
1

4N

}
. (2.1)

Let ψ(t) ∈ C∞0 (R, [0, 1]) be a smooth even function with the following properties: ψ(t) = 1 for |t| ≤ 1,
ψ(t) = 0 for |t| ≥ 2 and ψ(t) is monotonically decreasing on the interval (0,+∞). Define

bµ(t) = ψ(µt), mµ(t) =

∫ t

0
bµ(τ)dτ,

for µ ∈ (0, 1]. We will deal with the modified problem −∆u =
(

u
mµ(u)

)r
|u|q(x)−2u, in Ω,

u = 0, on ∂Ω.
(2.2)

Theorem 2.1. Suppose that (Q1) and (Q2) hold. Then, for any µ ∈ (0, 1], problem (2.2) has infinitely
many sign-changing solutions.

Let E := H1
0(Ω) be the usual Sobolev space endowed with the inner product 〈u, v〉 =

∫
Ω

∇u∇v dx

for u, v ∈ E and the norm ‖u‖ := 〈u, u〉
1
2 . Let P be the positive cone of E, and Y,M be two subspaces

of E with dim Y < ∞, dim Y − codimM ≥ 1. For any δ > 0, define ±D(δ) := {u ∈ E : dist(u,±P) < δ}.
Set D := D(δ) ∪ (−D(δ)) and S = E\D. Let G ∈ C1(E,R) and the gradient G′ be of the form
G′(u) = u − KG(u), where KG : E → E is a continuous operator. Let K = {u ∈ E : G′(u) = 0}
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and K[a, b] = {u ∈ K : G(u) ∈ [a, b]}. We assume that there is another norm ‖ · ‖∗ of E such that
‖u‖∗ ≤ C∗‖u‖ for all u ∈ E, where C∗ is a positive constant. Moreover, we assume that ‖un − u∗‖∗ → 0
whenever un ⇀ u∗ weakly in (E, ‖ · ‖). Write E = M1 ⊕ M. Let

Q∗(ρ) =

{
u ∈ M :

‖u‖p
∗

‖u‖2
+

‖u‖‖u‖∗
‖u‖ + D∗‖u‖∗

= ρ

}
,

where ρ > 0, D∗ > 0 and p > 2 are fixed constants. Let us assume that Q∗∗ = Q∗(ρ) ∩ Gβ ⊂ S and
γ = inf

Q∗∗
G, where β = sup

Y
G and Gβ = {u ∈ E : G(u) ≤ β}. It is easy to see β ≥ γ. In addition, we

assume that

(A) KG(±D(δ)) ⊂ ±D(δ);
(A∗1) Assume that for any a, b > 0, there is a c1 = c1(a, b) > 0 such that G(u) ≤ a and ‖u‖∗ ≤ b ⇒

‖u‖ ≤ c1;
(A∗2) lim

u∈Y, ‖u‖→∞
G(u) = −∞, sup

Y
G := β.

Now we recall the following Palais-Smale condition and abstract critical point theorem (see
Definition 3.3 and Theorem 5.6 in [19]).

Definition 2.2. The functional G is said to satisfy the (w∗ − PS ) condition if for any sequence {un}

such that {G(un)} is bounded and G′(un) → 0, we have either {un} is bounded and has a convergent
subsequence or ‖G′(un)‖‖un‖ → ∞. In particular, if {G(un)} → c, we say that (w∗ − PS )c is satisfied.

Theorem 2.3. Assume that (A), (A∗1) and (A∗2) hold. If the even functional G satisfies the (w∗ − PS )c

condition at level c for each c ∈ [γ, β], then K[γ − ε, β + ε] ∩ (E \ (P ∪ (−P)) , ∅ for all ε > 0 small.

Let 0 < λ1 < · · · < λk < · · · denote the distinct Dirichlet eigenvalues of the eigenvalue problem −∆u = λu, in Ω,

u = 0, on ∂Ω.

Then each λk has finite multiplicity. In addition, the principal eigenvalue λ1 is simple with a positive
eigenfunction ϕ1, and the eigenfunctions ϕk corresponding to λk(k ≥ 2) are sign-changing. Let Nk

denote the eigenspace of λk. Then dim Nk < ∞. We fix k and let Ek := N1 ⊕ N2 ⊕ · · · ⊕ Nk.
The formal energy functional Iµ : H1

0(Ω)→ R associated with (2.2) is defined by

Iµ(u) =
1
2

∫
Ω

|∇u|2 dx −
∫

Ω

Fµ(x, u) dx,

where fµ(x, t) =
(

t
mµ(t)

)r
|t|q(x)−2t, Fµ(x, t) =

∫ t

0
fµ(x, τ) dτ. Then Iµ ∈ C1(E,R) and I′µ = id − (−∆)−1 fµ =

id − KIµ . Obviously, the critical points of Iµ are just the weak solutions of problem (2.2).

Lemma 2.4. The function Fµ(x, t) defined above satisfies the following inequalities:

Fµ(x, t) ≤
1

q(x)
t fµ(x, t), Fµ(x, t) ≤

1
q(x) + r

t fµ(x, t) + Cµ,

for t > 0, where Cµ > 0 is a positive constant.
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Proof. Since bµ(t) to is monotonically decreasing on the interval (0,+∞), we have

d
dt

(
t

mµ(t)

)
=

mµ(t) − tbµ(t)
m2
µ(t)

=
t(bµ(ξ) − bµ(t))

m2
µ(t)

≥ 0,

for t > 0, where ξ ∈ (0, t). Therefore, t
mµ(t) is monotonically increasing on the interval (0,+∞). Hence,

fµ(x,t)
tq(x)−1 =

(
t

mµ(t)

)r
is also monotonically increasing on the interval (0,+∞). It follows that

Fµ(x, t) =

∫ t

0
fµ(x, τ)dτ ≤

∫ t

0

fµ(x, t)
tq(x)−1 τ

q(x)−1dτ =
1

q(x)
t fµ(x, t), (2.3)

for t > 0.
By definition of the function mµ, we have mµ(t) = A

µ
for t ≥ 2

µ
, where A = 1 +

∫ 2

1
ψ(τ)dτ. For t > 2

µ
,

one has

Fµ(x, t) =

∫ 2
µ

0
fµ(x, τ) dτ +

∫ t

2
µ

(
µ

A

)r
τq(x)+r−1 dτ

=

∫ 2
µ

0

(
fµ(x, τ) −

(
µ

A

)r
τq(x)+r−1

)
dτ +

∫ t

0

(
µ

A

)r
τq(x)+r−1 dτ

≤ Cµ +
t fµ(x, t)
q(x) + r

. (2.4)

It implies from (2.3) and (2.4) that

Fµ(x, t) ≤
1

q(x) + r
t fµ(x, t) + Cµ

for t > 0. �

Lemma 2.5. Suppose that (Q1) and (Q2) hold. Then, for any µ ∈ (0, 1], Iµ satisfies the (PS ) condition.

Proof. Let {un} be a (PS ) sequence of Iµ in E. This means that there exists C > 0 such that

|Iµ(un)| ≤ C, I
′

µ(un)→ 0 as n→ ∞. (2.5)

From (2.1) and Lemma 2.4, we derive that

Iµ(un) −
1

2 + r
〈I
′

µ(un), un〉

=
r

2(2 + r)
‖un‖

2 +

∫
Ω

(
1

2 + r
−

1
q(x) + r

)
fµ(x, un)undx −Cµ

≥
r

2(2 + r)
‖un‖

2 −Cµ,

which implies that r
2(2+r)‖un‖

2 ≤ C +Cµ+o(‖un‖). We obtain {un} is bounded in E. Up to a subsequence,
we may assume that  un ⇀ u, in E,

un → u, in Ls(Ω), 1 ≤ s < 2∗.
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For any integer pair (i, j), one has

‖ui − u j‖
2 = 〈I

′

µ(ui) − I
′

µ(u j), ui − u j〉 +

∫
Ω

( fµ(x, ui) − fµ(x, u j))(ui − u j)dx.

It follows from (2.5) that

〈I
′

µ(ui) − I
′

µ(u j), ui − u j〉 → 0, as i, j→ +∞. (2.6)

It is easy to see that

| fµ(x, t)| ≤ |t|q(x)−1 +

(
µ

A

)r
|t|q(x)+r−1.

Note that 2 ≤ q(x) < q(x) + r ≤ q+ + r < 2∗. It implies that∣∣∣∣∣∫
Ω

( fµ(x, ui) − fµ(x, u j))(ui − u j)dx
∣∣∣∣∣

≤ C
∫

Ω

(
|ui| + |u j| + |ui|

q++r−1 + |u j|
q++r−1

)
|ui − u j| → 0 (2.7)

as i and j tend to +∞. From (2.6) and (2.7), we have ‖ui − u j‖ → 0 as i, j → +∞, which implies that
{un} contains a strongly convergent subsequence in E. Hence Iµ satisfies the (PS ) condition. �

G, Y and M are taken to be Iµ, Ek and E⊥k−1 in Theorem 2.3, respectively. Next we will complete the
proof of Theorem 2.1 by verifying the conditions of Theorem 2.3 one by one.

Lemma 2.6. Suppose that (Q1) holds. If we replace G, Y and M with Iµ, Ek and E⊥k−1, respectively,
then conditions (A∗1) and (A∗2) are satisfied.

Proof. Consider another norm ‖u‖∗ = ‖u‖s of E, s ∈ (2, 2∗). Then ‖u‖s ≤ C∗‖u‖ for all u ∈ E, where
C∗ > 0 is a constant and ‖un − u∗‖∗ → 0 whenever un ⇀ u∗weakly in (E, ‖ · ‖). Define βk = sup

Ek

Iµ. Let

Q∗k(ρ) =

u ∈ E⊥k−1 :
‖u‖ss
‖u‖2

+
‖u‖‖u‖s

‖u‖ + λ
βk
k ‖u‖s

= ρ

 ,
it is easy to obtain that there exists a constant c2 > 0 such that ‖u‖s ≤ c2 for any u ∈ Q∗k(ρ). By
assumption (Q1) and definition of the function mµ, we have

|Fµ(x, t)| ≤
|t|q(x)

q(x)
+
|t|q(x)+r

q(x) + r
≤ |t|q(x) + |t|q(x)+r.

It implies that ∣∣∣∣∣∫
Ω

Fµ(x, u) dx
∣∣∣∣∣ ≤ ∫

Ω

(|u|q(x) + |u|q(x)+r) dx. (2.8)

By the Sobolev imbedding theorem, it implies from 2 ≤ q(x) < q(x) + r ≤ q+ + r < 2∗ that∫
Ω

|u|q(x)+r dx ≤
∫

Ω

(|u|2+r + |u|q
++r) dx. (2.9)
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Set Ωε = {x ∈ Ω|2 ≤ q(x) < 2 + ε}. By the Hölder inequality and the Sobolev imbedding theorem, we
have ∫

Ω

|u|q(x) dx =

∫
Ωε

|u|q(x) dx +

∫
Ω\Ωε

|u|q(x) dx

≤

∫
Ωε

(|u|2 + |u|2+ε) dx +

∫
Ω\Ωε

(|u|2+ε + |u|q
+

) dx

≤

∫
Ωε

|u|2 dx +

∫
Ω

(|u|2+ε + |u|q
+

) dx

≤ C|Ωε|
2∗−2

2∗ ‖u‖2 +

∫
Ω

(|u|2+ε + |u|q
+

) dx. (2.10)

Since Ω0 = {0}, we obtain |Ωε| → 0 as ε→ 0. Therefore, there exists ε0 > 0 such that

|Ωε|
2∗−2

2∗ <
1

4C
(2.11)

for any ε ∈ (0, ε0). From (2.8)-(2.11), for any a, b > 0, there is a c1 = c1(a, b) > 0 such that Iµ(u) ≤ a
and ‖u‖q++r ≤ b⇒ ‖u‖ ≤ c1. That is, condition (A∗1) is satisfied.

For t > max
{
1, 2

µ

}
, one has

Fµ(x, t) =

∫ 2
µ

0
fµ(x, τ) dτ +

∫ t

2
µ

(
µ

A

)r
τq(x)+r−1 dτ

=

∫ 2
µ

0

(
fµ(x, τ) −

(
µ

A

)r
τq(x)+r−1

)
dτ +

∫ t

0

(
µ

A

)r
τq(x)+r−1 dτ

≥
1

q(x) + r

(
µ

A

)r
tq(x)+r

≥
1

q+ + r

(
µ

A

)r
t2+r.

Set Y = Ek. Noticing that dim Ek < ∞ and all norms of finite dimensional space are equivalent, it
implies that

Iµ(u)
‖u‖2

≤
1
2
−

∫
Ω

F(x, u)
‖u‖2

dx→ −∞

as ‖u‖ → ∞, u ∈ Ek. Therefore, lim
u∈Ek , ‖u‖→∞

Iµ(u) = −∞. So condition (A∗2) is satisfied. �

Let Q∗∗k = Q∗k(ρ) ∩ Iβk
µ ⊂ S and γk = inf

Q∗∗
Iµ. Set P := {u ∈ E : u(x) ≥ 0 for a.e x ∈ Ω. Then, P(−P)

is the positive(negative) cone of E and weakly closed. By Lemma 5.4 in [19], there is a η = η(βk) > 0
such that dist(Q∗∗, P) = η > 0. We define ±D0(δ0) := {u ∈ E : dist(u,±P) < δ0}, where δ0 is
determined by the following lemma.

Lemma 2.7. Under the assumption (Q1), there is a δ0 ∈ (0, η) such that KIµ(±D0(δ0)) ⊂ ±D0(δ0).
Therefore, condition (A) is satisfied.
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Proof. Write u± = max{±u, 0}. For any u ∈ E and each s ∈ (2.2∗], there exists a Cs > 0 such that

‖u±‖s ≤ Csdist(u,∓P). (2.12)

Let v = KIµ(u). Similar to the derivation of (2.8), (2.9) and (2.10), we have∫
Ω

fµ(x, u+)v+dx ≤
∫

Ωε

|u+||v+|dx +

∫
Ω

(
|u+|1+ε + |u+|q

++r−1
)
|v+|dx. (2.13)

From (2.12) and (2.13), by the Hölder inequality and the Sobolev imbedding theorem, we obtain

dist(v,−P)‖v+‖

≤ ‖v+‖2

= 〈v+, v+〉

=

∫
Ω

fµ(x, u+)v+dx

≤ C

(∫
Ωε

|u+|2|dx
) 1

2

+ ‖u+‖1+ε
2+ε + ‖u+‖

q++r−1
q++r

 ‖v+‖

≤ C
(
|Ωε|

2∗−2
2·2∗ ‖u+‖2∗ + ‖u+‖1+ε

2+ε + ‖u+‖
q++r−1
q++r

)
‖v+‖

≤ C
(
|Ωε|

2∗−2
2·2∗ dist(u,−P) + (dist(u,−P))1+ε + (dist(u,−P))q++r−1

)
‖v+‖.

That is,

dist(KIµ(u),−P) ≤ C
(
|Ωε|

2∗−2
2·2∗ dist(u,−P) + (dist(u,−P))1+ε + (dist(u,−P))q++r−1

)
.

It follows from (2.11) that there exists a δ0 ∈ (0, η) such that dist(KIµ(u),−P) < δ0 for every u ∈
−D0(δ0). Similarly, dist(KIµ(u),P) < δ0 for every u ∈ D0(δ0). The conclusion follows. �

Now we are in a position to prove the main result of this section.

Proof of Theorem 2.1. By Theorem 2.3, Lemmas 2.5, 2.6 and 2.7, we obtain

K[γk − ε, βk + ε] ∩ (E \ (P ∪ (−P)) , ∅

for all ε > 0 small. That is, there exists a uk,µ ∈ E \ (P ∪ (−P) (sign-changing critical point) such that

I′µ(uk,µ) = 0, Iµ(uk,µ) ∈ [γk − 1, βk + 1],

where γk = inf
Q∗∗k

Iµ. Next we show the γk → ∞ as k → ∞. Recall the Gagliardo-Nirenberg inequality,

‖u‖s ≤ cs‖u‖α‖u‖1−α2 , u ∈ E. (2.14)

where s ∈ (2, 2∗) and α ∈ (0, 1) is defined by

1
s

=

(
1
2
−

1
N

)
α +

1
2

(1 − α). (2.15)
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In addition, for u ∈ E⊥k , we see that ‖u‖2 ≤ 1
λ1/2

k
‖u‖. Combine (2.14) with (2.15), we have

‖u‖s−2
s ≤ cs−2

s ‖u‖
s−2λ−(1−α)(s−2)/2

k , u ∈ E⊥k . (2.16)

For u ∈ Q∗k(ρ), by the Sobolev imbedding theorem, we deduce from (2.16) that

ρ =
‖u‖ss
‖u‖2

+
‖u‖‖u‖s

‖u‖ + λ
βk
k ‖u‖s

≤
‖u‖‖u‖s

2(‖u‖λβk
k ‖u‖s)

1/2
+
‖u‖2s
‖u‖2
‖u‖s−2

s

≤
(‖u‖‖u‖s)1/2

2(λβk
k )1/2

+ C2
∗‖u‖

s−2
s

≤
C1/2
∗ ‖u‖

2(λβk
k )1/2

+ C2
∗‖u‖

s−2
s

≤
C1/2
∗ ‖u‖

2(λβk
k )1/2

+ C2
∗c

s−2
s ‖u‖

s−2λ−(1−α)(s−2)/2
k

≤ max
{
C1/2
∗ λ

−βk/2
k ‖u‖, 2C2

∗c
s−2
s λ−(1−α)(s−2)/2

k ‖u‖s−2
}
. (2.17)

It implies that

‖u‖ ≥ Λ∗sTkT, (2.18)

where Λ∗s = min
{
C−1/2
∗ , 2−1/(s−2)C−2/(s−2)

∗ c−1
s

}
, Tk = min

{
λ
βk/2
k , λ(1−α)/2

k

}
and T = min

{
ρ, ρ1/(s−2)

}
. From

(2.8)-(2.11), we know that∣∣∣∣∣∫
Ω

Fµ(x, u) dx
∣∣∣∣∣ ≤ 1

4
‖u‖2 + C

∫
Ω

|u|q
++r dx, u ∈ E.

We can choose that ρ > 0 such that ρ < 1
8C . For any u ∈ Q∗k(ρ), we see that ‖u‖ss/‖u‖

2 ≤ ρ. Therefore,
for any u ∈ Q∗k(ρ), it implies from (2.18) that

Iµ(u) =
1
2
‖u‖2 −

∫
Ω

Fµ(x, u) dx

≥
1
4
‖u‖2 −C

∫
Ω

|u|q
++r dx

≥ ‖u‖2
1
4
−C
‖u‖q

++r
q++r

‖u‖2


≥

(
1
4
−Cρ

)
‖u‖2

≥
1
8
‖u‖2

≥
1
8

(Λ∗p++rTkT )2.
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Since λk → ∞ as k → ∞, we obtain Tk = min
{
λ
βk/2
k , λ(1−α)/2

k

}
→ ∞ as k → ∞. Therefore, γk → ∞

as k → ∞. Hence, for any µ ∈ (0, 1], problem (2.2) has infinitely many sign-changing solutions. The
proof is complete. �

3. A priori estimate and proof of Theorem 1.1

In this section, we will show that solutions of auxiliary problem (2.2) are indeed solutions of
original problem (1.1). For this purpose, we need the following uniform L∞-estimate for critical points
of the functional Iµ.

Proposition 3.1. Suppose that (Q1) and (Q2) hold. If v is a critical point of Iµ with Iµ(v) ≤ L, then
there exists a positive constant M = M(L) independent of µ such that ‖v‖L∞(Ω) ≤ M.

In order to prove Proposition 3.1, we need some preliminaries.

Lemma 3.2. Suppose that (Q1) and (Q2) hold. If Iµ(v) ≤ L and I′µ(v) = 0, then, for any δ ∈ (0, δ0),

there exists Cδ > 0 independent of µ such that
∫

Ωδ

|∇v|2dx ≤ Cδ.

Proof. By Lemma 2.4 and (Q1), we have

L ≥ Iµ(v) −
〈
I
′

µ(v),
v

q(x)

〉
=

∫
Ω

(
1
2
−

1
q(x)

)
|∇v|2dx +

∫
Ω

(
fµ(x, v)v

q(x)
− Fµ(x, v)

)
dx

≥

∫
Ω

(
1
2
−

1
q(x)

)
|∇v|2dx

≥

∫
Ωδ

(
1
2
−

1
q(x)

)
|∇v|2dx. (3.1)

According to (Q1), for any δ ∈ (0, δ0), we know that there exists mδ > 0 such that 1
2 −

1
q(x) ≥ mδ for any

x ∈ Ωδ. Therefore, we have∫
Ωδ

|∇v|2dx ≤ m−1
δ

∫
Ωδ

(
1
2
−

1
q(x)

)
|∇v|2dx ≤ m−1

δ L = Cδ.

The proof is complete. �

Lemma 3.3. Let 1 < p < N
2 and 0 < r < R. Suppose that the nonnegative functions w(x) and g(x)

satisfy g ∈ Lp(BR) and

−∆w ≤ g, in BR. (3.2)

Then, we have

‖w‖
L

N p
N−2p (Br)

≤ C
(
‖w‖

L
(N−2)p
N−2p (BR\Br)

+ ‖g‖Lp(BR)

)
, (3.3)

where C = C(N, p,R, r) > 0.
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Proof. Set ξ =
N(p−1)
N−2p . Then, we have the following identity

N(1 + ξ)
N − 2

=
N p

N − 2p
=

pξ
p − 1

. (3.4)

Let ϕ ∈ C∞0 (RN , [0, 1]) satisfies ϕ(x) = 1 for |x| ≤ r and ϕ(x) = 0 for |x| ≥ R. For any θ > 0, multiply
inequality (3.2) by the test function ((w + θ)ξ − θξ)ϕ2 and integrate to obtain∫

BR

∇w∇(((w + θ)ξ − θξ)ϕ2)dx ≤
∫

BR

g((w + θ)ξ − θξ)ϕ2dx. (3.5)

By the Young inequality, we hace∫
BR

∇w∇(((w + θ)ξ − θξ)ϕ2)dx

= ξ

∫
BR

|∇w|2(w + θ)ξ−1ϕ2dx + 2
∫

BR

((w + θ)ξ − θξ)ϕ∇w∇ϕdx

≥
4ξ

(ξ + 1)2

∫
BR

∣∣∣∣∇(w + θ)
ξ+1

2

∣∣∣∣2 ϕ2dx −C
∫

BR

∇(w + θ)
ξ+1

2 (w + θ)
ξ+1

2 ϕ∇ϕdx

≥ C
∫

BR

∣∣∣∣∣∇ ((
(w + θ)

ξ+1
2 − θ

ξ+1
2

)
ϕ
)∣∣∣∣∣2 dx −C

∫
BR

(w + θ)ξ+1|∇ϕ|2dx

≥ C
(∫

BR

((
(w + θ)

ξ+1
2 − θ

ξ+1
2

)
ϕ
) 2N

N−2
dx

) N−2
N

−C
∫

BR

(w + θ)ξ+1|∇ϕ|2dx. (3.6)

According to 1 < p < N
2 , we have 2p

p−1 >
2N

N−2 . It implies that

∫
BR

g((w + θ)ξ − θξ)ϕ2dx ≤ ‖g‖Lp(BR)

(∫
BR

((w + θ)ξ − θξ)
p

p−1ϕ
2p
p−1 dx

) p−1
p

≤ ‖g‖Lp(BR)

(∫
BR

((w + θ)ξ)
p

p−1ϕ
2N

N−2 dx
) p−1

p

. (3.7)

Letting θ → 0, we conclude from (3.5), (3.6) and (3.7) that(∫
BR

w
N(ξ+1)

N−2 ϕ
2N

N−2 dx
) N−2

N

≤ C
∫

BR

wξ+1|∇ϕ|2dx + C‖g‖Lp(BR)

(∫
BR

w
pξ

p−1ϕ
2N

N−2 dx
) p−1

p

,

which implies that (∫
BR

w
N(ξ+1)

N−2 ϕ
2N

N−2 dx
) N−2

N

≤ C
∫

BR

wξ+1|∇ϕ|2dx, (3.8)
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or (∫
BR

w
N(ξ+1)

N−2 ϕ
2N

N−2 dx
) N−2

N

≤ C‖g‖Lp(BR)

(∫
BR

w
pξ

p−1ϕ
2N

N−2 dx
) p−1

p

. (3.9)

From (3.4), (3.8) and (3.9), we have(∫
BR

w
N p

N−2pϕ
2N

N−2 dx
) N−2p

N p

≤ C
(∫

BR

w
(N−2)p
N−2p |∇ϕ|2dx

) N−2p
(N−2)p

= C
(∫

BR\Br

w
(N−2)p
N−2p dx

) N−2p
(N−2)p

,

or (∫
BR

w
N p

N−2pϕ
2N

N−2 dx
) N−2p

N p

≤ C‖g‖Lp(BR).

Therefore, we obtain

‖w‖
L

N p
N−2p (Br)

≤

(∫
BR

w
N p

N−2pϕ
2N

N−2 dx
) N−2p

N p

≤ C
(
‖w‖

L
(N−2)p
N−2p (BR\Br)

+ ‖g‖Lp(BR)

)
.

The proof is complete. �

Lemma 3.4. Suppose that (Q1) and (Q2) hold. If Iµ(v) ≤ L and I′µ(v) = 0, then there exist δ1 ∈ (0, δ0)

and C > 0 independent of µ such that
∫

Bδ
|∇v|2dx ≤ C for any δ ∈ (0, δ1).

Proof. It follows from I′µ(v) = 0 that v is a solution of problem (2.2). For any δ ∈ (0, δ0) and B2δ ⊂ Ω,
let φ ∈ C∞0 (Ω, [0, 1]) satisfies φ(x) = 1 for |x| ≤ δ, φ(x) = 0 for |x| ≥ 2δ and |∇φ| ≤ C for x ∈ Ω.
Multiply equation (2.2) by vφ2 and integrate to obtain∫

Ω

∇v∇(vφ2)dx =

∫
Ω

kµ(x, v)vφ2dx ≤
∫

B2δ

kµ(x, v)vdx. (3.10)

By the Young inequality, we have ∫
Ω

∇v∇(vϕ2)dx

=

∫
Ω

|∇v|2ϕ2dx + 2
∫

Ω

vϕ∇v∇ϕdx

≥
1
2

∫
Ω

|∇v|2ϕ2dx −C
∫

Ω

v2|∇φ|2dx

≥
1
2

∫
Bδ
|∇v|2dx −C

∫
B2δ

v2dx. (3.11)
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By definition of the function mµ, we know that mµ(t) = t for t ≤ 1
µ

and mµ(t) ≥ 1
µ

for t > 1
µ
. Therefore,

we have

|kµ(x, v)| ≤ Cµr|v|q(x)+r−1 ≤ C|v|q(x)+r−1 ≤ C|v|q
++r−1, (3.12)

for any µ ∈ (0, 1] and x ∈ Ω. From (3.10), (3.11) and (3.12), we obtain∫
Bδ
|∇v|2dx ≤ C

∫
B2δ

kµ(x, v)vdx + C
∫

B2δ

v2dx ≤ C
∫

B2δ

|v|q
++rdx. (3.13)

In order to complete our proof, we just need to prove that there exists δ2 > 0 such that
∫

Bδ2

|v|q
++rdx ≤

C.
By definition of the function kµ, we obtain kµ(x, t) ≥ tq(x)−1. According to Lemma 2.4, (Q1) and

(Q2), for any δ ∈ (0, δ0), we have

L ≥ Iµ(v) −
1
2
〈I
′

µ(v), v〉

=

∫
Ω

(
kµ(x, v)v

2
− Kµ(x, v)

)
dx

≥

∫
Ω

(
1
2
−

1
q(x)

)
kµ(x, v)vdx

≥
1

2q+

∫
Bδ
|x|α|v|q(x)dx. (3.14)

Noticing that N ≥ 3, from (Q2) and (2.1), we have

0 <
α(1 + r)

2 − (1 + r)
=
α(1 + r)

1 − r
<
α(4N + 1)

4N − 1
<

(N + 2)(4N + 1)
2(4N − 1)

< N.

Therefore, we can choose p ∈
(
1, 2N

N+1

)
satisfying

p(1 − r)
p − 1

> 2 and 0 <
pα(1 + r)

2 + r − p(1 + r)
<

7N + 2
8

< N. (3.15)

Let q+
δ = sup{q(x)|x ∈ Bδ}. It follows from (Q1) and (3.15) that there exists δ3 < min{1, δ0} such that

q+
δ ≤

p(1 − r)
p − 1

and 0 <
pα(q+

δ − 1 + r)
q+
δ − p(q+

δ − 1 + r)
< N (3.16)

for any δ ∈ (0, δ3). Using the Young inequality, we deduce from (3.14) and (3.16) that∫
Bδ
|v|p(q(x)+r−1)dx =

∫
Bδ

(
|x|α|v|q(x)

) p(q(x)+r−1)
q(x)

· |x|−
pα(q(x)+r−1)

q(x) dx

≤ C
∫

Bδ
|x|α|v|q(x)dx + C

∫
Bδ
|x|−

pα(q(x)+r−1)
q(x)−p(q(x)+r−1) dx
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≤ C
∫

Bδ
|x|α|v|q(x)dx + C

∫
Bδ
|x|
−

pα(q+
δ

+r−1)

q+
δ
−p(q+

δ
+r−1) dx

≤ 2q+CL + Cδ
N−

pα(q+
δ

+r−1)

q+
δ
−p(q+

δ
+r−1) , (3.17)

for any δ ∈ (0, δ3). According to (3.12) and (3.17), for any δ ∈ (0, δ3), we obtain

‖kµ(x, v)‖Lp(Bδ) ≤ Cδ. (3.18)

Since −4v = kµ(x, v) in Bδ. By Lemma 3.2 and Lemma 3.3, for any δ′ ∈ (0, δ), it implies from (3.18)
that

‖v‖
L

N p
N−2p (Bδ′ )

≤ C
(
‖v‖

L
(N−2)p
N−2p (Bδ\Bδ′ )

+ ‖kµ(x, v)‖Lp(Bδ)

)
≤ C

(
‖v‖

L
(N−2)p
N−2p (Ωδ′ )

+ ‖kµ(x, v)‖Lp(Bδ)

)
≤ C

(∫
Ωδ′

|∇v|2dx
) 1

2∗

+ C‖kµ(x, v)‖Lp(Bδ)

≤ C, (3.19)

where δ ∈ (0, δ3) and C = C(δ′, δ,N, p) > 0 is independent of µ.
If ζ1 =

N p
N−2p ≥ q+ + r, using the Hölder inequality, we are done. Otherwise, using the fact r < 1

4N <
2

N−2 provided by (2.1), we can choose σ1 ∈ (0, δ) ⊂ (0, δ3) such that τ1 = q+
σ1

+ r − 1 < N
N−2 . It follows

from (3.12) that

|kµ(x, v)| ≤ C|v|τ1 ,

for any µ ∈ (0, 1] and x ∈ Bσ1 . Noticing that ζ1 >
N

N−2 , we have p1 =
ζ1
τ1
> 1. According to (3.19), we

obtain kµ(x, v) ∈ Lp1(Bσ1). Similar to (3.19), we can choose σ2 ∈ (0, σ1) to obtain

‖v‖Lζ2 (Bσ2 ) ≤ C,

where C = C(σ1, σ2,N, p1) > 0 is independent of µ and

ζ2 =
N p1

N − 2p1
=

Nζ1

Nτ1 − 2ζ1
≥

N
(N − 2)τ1

ζ1 = d1ζ1,

here d1 = N
(N−2)τ1

> 1. If ζ2 ≥ q+ + r, using the Hölder inequality, we are done. Otherwise, repeating
the above process and using a finite number of iterations, we obtain that there exist ζk > 0 and σk ∈

(0, σk−1) such that ζk ≥ 2∗ > q+ + r and ‖v‖Lζk (Bσk ) ≤ C, where C > 0 is independent of µ. Using the
Hölder inequality, we have

‖v‖Lq++r(Bσk ) ≤ C. (3.20)

Let δ1 =
ζk
2 . It implies from (3.13) and (3.20) that∫

Bδ
|∇v|2dx ≤ C

∫
B2δ

|v|q
++rdx ≤ C

∫
Bσk

|v|q
++rdx ≤ C,

for any δ ∈ (0, δ1). �
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Proof of Proposition 3.1. By Lemma 3.2 and Lemma 3.4, we obtain that there exists C > 0
independent of µ such that ∫

Ω

|∇v|2dx ≤ C. (3.21)

Using the Sobolev embedding theorem, we have∫
Ω

|v|2
∗

dx ≤ C
(∫

Ω

|∇v|2dx
) 2∗

2

≤ C. (3.22)

Let s > 0 and t = q+ + r. According to (3.12), multiply equation (2.2) by v2s+1 and integrate to obtain∫
Ω

∇v∇v2s+1dx =

∫
Ω

kµ(x, v)v2s+1dx ≤ C
∫

Ω

|v|2s+tdx.

It implies that ∫
Ω

|∇v|2v2sdx =
1

2s + 1

∫
Ω

∇v∇v2s+1dx ≤ C
∫

Ω

|v|2s+tdx. (3.23)

On the one hand, by the Sobolev embedding theorem, we have∫
Ω

|∇v|2v2sdx =
1

(1 + s)2

∫
Ω

|∇v1+s|2dx ≥
C

(1 + s)2

(∫
Ω

|v|(1+s)2∗dx
) 2

2∗

. (3.24)

On the other hand, by the Hölder inequality and (3.22), we have∫
Ω

|v|2s+tdx ≤

(∫
Ω

|v|2
∗

dx
) t−2

2∗
(∫

Ω

|v|2(1+s) 2∗
2∗−t+2 dx

) 2∗−t+2
2∗

≤ C
(∫

Ω

|v|(1+s) 2∗
d dx

) 2d
2∗

, (3.25)

where d = 2∗−t+2
2 > 1. According to (3.23), (3.24) and (3.25), we obtain(∫

Ω

|v|(1+s)2∗dx
) 2

2∗

≤ (C(1 + s))2
(∫

Ω

|v|(1+s) 2∗
d dx

) 2d
2∗

,

which implies that (∫
Ω

|v|(1+s)2∗dx
) 1

(1+s)2∗

≤ (C(1 + s))
1

1+s

(∫
Ω

|v|(1+s) 2∗
d dx

) d
(1+s)2∗

. (3.26)

Now we carry out an iteration process. Set sk = dk − 1 for k = 1, 2, · · · . By (3.26), we have(∫
Ω

|v|d
k2∗dx

) 1
dk2∗

≤ (Cdk)
1

dk

(∫
Ω

|v|d
k−12∗dx

) 1
dk−12∗
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≤ Πk
j=1(Cd j)

1
d j

(∫
Ω

|v|2
∗

dx
) 1

2∗

≤ C
∑k

j=1 d− j
· d

∑k
j=1 jd− j

(∫
Ω

|v|2
∗

dx
) 1

2∗

. (3.27)

Since d > 1, the series
∞∑
j=1

d− j and
∞∑
j=1

jd− j are convergent. Letting k → ∞, we conclude from (3.22)

and (3.27) that ‖v‖L∞(Ω) ≤ M. The proof is complete. �

Proof of Theorem 1.1. By the proof of Theorem 2.1, for every integer k ≥ 1, we know that problem
(2.2) has k sign-changing solutions uk,µ satisfying γk − 1 < Iµ(uk,µ) < βk + 1. Consider the functional

J(u) =
1
2

∫
Ω

|∇u|2 dx −
∫

Ω

|u|p(x)

p(x)
dx.

By definition of the function fµ, we obtain | fµ(x, t)| ≥ |t|q(x)−1. It is easy to see that Iµ(u) ≤ J(u).
Therefore, there exists a sequence of positive numbers {Υk} independent of µ such that βk + 1 ≤ Υk.
Let Lk = max{Υ1,Υ2, · · · ,Υk}. By Proposition 3.1, there exists a positive constant Mk = Mk(Lk)
independent of µ such that ‖uk,µ‖L∞(Ω) ≤ Mk. By definition of the function mµ, we have mµ(t) = t for
t ≤ 1

µ
. Hence, problem (2.2) reduces to problem (1.1) for |t| ≤ 1

µ
. Let µ < 1

2Mk
. It is easy to see that uk,µ

is indeed a sign-changing solution of problem (1.1). �
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