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1. Introduction

Consider the d-dimensional (dD) tropical climate model with fractional dissipation

∂tu + u · ∇u + νΛ2αu + ∇p + ∇ · (v ⊗ v) = 0,
∂tv + u · ∇v + µΛ2βv + ∇θ + v · ∇u = 0,
∂tθ + u · ∇θ + ηΛ2γθ + ∇ · v = 0,
∇ · u = 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), θ(x, 0) = θ0(x),

(1.1)

where (x, t) ∈ Rd × R+ with d ≥ 2, u = (u1(x, t), u2(x, t), · · ·, ud(x, t)) is the barotropic mode, v =

(v1(x, t), v2(x, t), · · ·, vd(x, t)) is the first baroclinic mode of vector velocity, p = p(x, t) is the scalar
pressure and θ = θ(x, t) is the scalar temperature, respectively. v⊗ v denotes the tensor product, namely
v ⊗ v = (viv j) with i, j = 1, 2, · · ·, d, the parameters ν ≥ 0, µ ≥ 0, η ≥ 0, α > 0, β > 0, γ > 0 are real
numbers, and Λ = (−∆)

1
2 denotes the Zygmund operator. The fractional operator Λr is defined via the

Fourier transform as
Λ̂r f (ξ) = |ξ|r f̂ (ξ), ξ ∈ Rd, r > 0.
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The inviscid case of system (1.1), namely ν = 0, µ = 0 and η = 0, was originally derived by Frierson,
Majda and Pauluis [7] for large-scale dynamics of precipitation fronts in the tropical atmosphere. The
viscous counterpart of system (1.1) with the standard Laplacian can be derived by the same argument
from the viscous primitive equations (see, e.g., [12]). The model considered here, namely (1.1), is
appended with fractional dissipation terms, which may be relevant in the study of viscous flows in the
thinning of atmosphere. Flows in the middle atmosphere traveling upward undergo changes due to
the changes of atmospheric properties. The effect of kinematic and thermal diffusion is attenuated by
the thinning of atmosphere. This anomalous attenuation can be modeled by using the space fractional
Laplacian (see, e.g., [3]).

Considering the 2D tropical climate model (1.1) with fractional dissipation or partial dissipation, the
global well-posedness problem has recently attracted considerable attention and significant progress
has been made. When there is no thermal diffusion in (1.1), namely η = 0, Li and Titi in [13] and
Dong, Wang, Wu and Zhang in [6] were able to establish the global regularity for the case α = β = 1
and the case α + β = 2, respectively. Concerning the case ν > 0, µ > 0 and η > 0, Ye [21] obtained the
global regularity for (1.1) when α > 0, β = 1 and γ = 1. Recently, the decay estimates were studied
by Li and Xiao [11] when α = β = γ = 1. For more results on the 2D tropical climate model, one can
refer to [3–5, 14, 15, 22] for more examples.

Concerning to the dD tropical climate model with d ≥ 3, Ye in [22] proved the global regularity of
this model in the case when α ≥ 1

2 + d
4 , α + β ≥ 1 + d

2 and β ≥ 0. When α < 1
2 + d

4 , whether classical
solutions to this model, even for the Navier-Stokes equations (namely system (1.1) with v = θ = 0),
can develop finite time singularities remains outstandingly open.

This paper focuses its attention on the case when α < 1
2 + d

4 with d ≥ 2. To the best of authors’
knowledge, compared with the magnitude of research conducted on the global well-posedness problem
of the model (1.1), the large-time behavior of solutions has been studied relatively little. Here we first
seek small data global solutions emanating from initial data in almost critical Sobolev space, and then
study the temporal decay for these global solutions. More precisely, the first result is the global stability
of solutions to (1.1) in H s(Rd), which is stated as follows.

Theorem 1.1. Let 1
2 < α, β, γ < 1

2 + d
4 with d ≥ 2. Assume that (u0, v0, θ0) ∈ H s(Rd) with s >

1 + d
2 − 2 min{α, β, γ} and ∇ · u0 = 0. Then there exists a positive constant C0 such that for all

0 < ε < C0, if
‖u0‖Hs(Rd) + ‖v0‖Hs(Rd) + ‖θ0‖Hs(Rd) < ε, (1.2)

then system (1.1) has a unique global solution (u, v, θ) satisfying, for any T > 0,

(u, v, θ) ∈ L∞(0,T ; H s(Rd)), (Λαu,Λβv,Λγθ) ∈ L2(0,T ; H s(Rd)), (1.3)

and

‖u(t)‖Hs(Rd) + ‖v(t)‖Hs(Rd) + ‖θ(t)‖Hs(Rd) < ε. (1.4)

Theorem 1.1 shall be proved by using the delicate energy method and fully exploiting the special
structure of this model. We remark that, mathematically, system (1.1) is more complex than the
magnetohydrodynamic equations ((1.1) with θ = 0 and ∇ · v = 0), since it involves the coupling of a
divergence-free vector field u and a non-divergence-free vector field v. In particular, the results
obtained in this paper also hold for the magnetohydrodynamic equations.
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The second result is to explore the long time behavior with explicit decay rates for the global
solution itself and its derivative to system (1.1) when the initial data is also in negative Sobolev space
Ḣ−σ(Rd) or negative Besov space Ḃ−σ2,∞(Rd), which is stated as in the following theorem.

Theorem 1.2. Let all the assumptions in Theorem 1.1 hold. Suppose also that (u0, v0, θ0) ∈ Ḣ−σ(Rd)
with 0 ≤ σ < d

2 or (u0, v0, θ0) ∈ Ḃ−σ2,∞(Rd) with 0 < σ ≤ d
2 . Then for s ≥ 1 + d

2 , the global solution
(u, v, θ) established in Theorem 1.1 satisfies for all t > 0,

‖u(t)‖Ḣ−σ(Rd) + ‖v(t)‖Ḣ−σ(Rd) + ‖θ(t)‖Ḣ−σ(Rd) ≤ C, (1.5)

or
‖u(t)‖Ḃ−σ2,∞(Rd) + ‖v(t)‖Ḃ−σ2,∞(Rd) + ‖θ(t)‖Ḃ−σ2,∞(Rd) ≤ C. (1.6)

Moreover, for any real number m with 0 ≤ m ≤ s,

‖Dmu(t)‖L2(Rd) + ‖Dmv(t)‖L2(Rd) + ‖Dmθ(t)‖L2(Rd) ≤ C(1 + t)−
m+σ

2 max{α,β,γ} . (1.7)

Remark 1.3. Note that for σ = d
p −

d
2 , Lp(Rd) ↪→ Ḣ−σ(Rd) when σ ∈ [0, d

2 ) and p ∈ (1, 2], and
Lp(Rd) ↪→ Ḃ−σ2,∞(Rd) when σ ∈ (0, d

2 ] and p ∈ [1, 2), thus Theorem 1.2 also holds for (u0, v0, θ0) ∈
Lp(Rd) with p ∈ [1, 2].

The proof of Theorem 1.2 is divided into two steps. The first uses energy method to derive the
evolution of the negative Sobolev and Besov norms of solutions (u, v, θ) to the system (1.1), and the
second establishes the desired results in Theorem 1.2 by the method of bootstrapping argument. We
remark that the negative spaces Ḣ−σ(Rd) and Ḃ−σ2,∞(Rd) were introduced to study the decay estimates
of the Boltzmann equation by Guo and Wang in [8] and Sohinger and Strain in [18], respectively.
The main advantages of these two negative spaces are that the negative Sobolev and Besov norms of
solutions are shown to be preserved along time evolution and enhance the decay rates.

The rest of this paper is organized as follows. In Section 2 and Section 3, we give the proofs of
Theorem 1.1 and Theorem 1.2, respectively. An appendix containing the Littlewood-Paley
decomposition and the definition of Besov spaces is also given for the convenience of the readers.
Throughout this manuscript, to simplify the notations, we will write

∫
f for

∫
Rd f dx, ‖ f ‖Lp for

‖ f ‖Lp(Rd), ‖ f ‖Ḣs , ‖ f ‖Hs and ‖ f ‖Ḃs
2,∞

for ‖ f ‖Ḣs(Rd), ‖ f ‖Hs(Rd) and ‖ f ‖Ḃs
2,∞(Rd) respectively. For simplicity,

we set ν = 1, µ = 1 and η = 1 in the subsequent sections.

2. Proof of the Theorem 1.1

This section is devoted to the proof of Theorem 1.1. For the purpose of proving this theorem, we
first present an a priori estimate stated in Proposition 2.2 below, which contains a major ingredient in
proving this theorem. Then we can prove this theorem by the methods of successive approximations.

As preparations we first give the following calculus inequality involving fractional differential
operators (see, e.g., [9, 10]).

Lemma 2.1. Let s > 0. Let 1 < r < ∞ and 1
r = 1

p1
+ 1

q1
= 1

p2
+ 1

q2
with q1, p2 ∈ (1,∞) and p1, q2 ∈ [1,∞].

Then
‖Λs( f g)‖Lr ≤ C (‖Λs f ‖Lp1 ‖g‖Lq1 + ‖ f ‖Lp2 ‖Λ

sg‖Lq2 ) ,
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where C is a positive constant depending on the indices s, r, p1, q1, p2 and q2.

As explained above, we start with an important global an a priori estimate. More precisely, we have
the following proposition.

Proposition 2.2. Let 1
2 < α, β, γ <

1
2 + d

4 . Assume that (u0, v0, θ0) ∈ H s(Rd) with s > 1+ d
2−2 min{α, β, γ}

and ∇ · u0 = 0. Then any solution (u, v, θ) of the system (1.1) obeys the following differential inequality

d
dt

(‖u‖2Hs + ‖v‖2Hs + ‖θ‖2Hs) + ‖Λαu‖2Hs + ‖Λβv‖2Hs + ‖Λγθ‖2Hs

≤ C(‖u‖2Hs + ‖v‖2Hs + ‖θ‖2Hs)(‖Λαu‖2Hs + ‖Λβv‖2Hs + ‖Λγθ‖2Hs).
(2.1)

Proof. Dotting (1.1)1, (1.1)2 and (1.1)3 by u, v and θ, respectively, we obtain

1
2

d
dt

(‖u‖2L2 + ‖v‖2L2 + ‖θ‖2L2) + ‖Λαu‖2L2 + ‖Λβv‖2L2 + ‖Λγθ‖2L2

= −

∫
∇ · (v ⊗ v) · u −

∫
∇θ · v −

∫
v · ∇u · v −

∫
∇ · vθ

= 0,

(2.2)

where we have used the facts that∫
∇ · (v ⊗ v) · u +

∫
v · ∇u · v = 0,

and ∫
∇θ · v +

∫
∇ · vθ = 0.

Applying Λs to the first three equations in (1.1), dotting the resulting equations with Λsu, Λsv and Λsθ

respectively, integrating in space domain and adding the results up, one obtains

1
2

d
dt

(‖Λsu‖2L2 + ‖Λsv‖2L2 + ‖Λsθ‖2L2) + ‖Λs+αu‖2L2 + ‖Λs+βv‖2L2 + ‖Λs+γθ‖2L2

= −

∫
Λs(u · ∇u) · Λsu −

∫
Λs∇ · (v ⊗ v) · Λsu −

∫
Λs(u · ∇v) · Λsv

−

∫
Λs∇θ · Λsv −

∫
Λs(v · ∇u) · Λsv −

∫
Λs(u · ∇θ) · Λsθ

−

∫
Λs(∇ · v) · Λsθ

= I1 + I2 + I3 + I4 + I5 + I6 + I7.

(2.3)

Integration by parts implies

I4 + I7 = −

∫
Λs∇θ · Λsv −

∫
Λs(∇ · v) · Λsθ = 0. (2.4)
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Applying Hölder’s inequality, Lemma 2.1 and Sobolev embedding inequality, we estimate the term I1

as

I1 = −

∫
Λs−α(u · ∇u) · Λs+αu

= −

∫
Λs−α∇ · (u ⊗ u) · Λs+αu

≤ C‖Λs+1−α(u ⊗ u)‖L2‖Λs+αu‖L2

≤ C‖u‖
L

d
2α−1
‖Λs+1−αu‖

L
2d

d+2−4α
‖Λs+αu‖L2

≤ C‖Λ1+ d
2−2αu‖L2‖Λs+αu‖2L2 .

Similarly, we have

I2 ≤ C‖Λs+1−α(v ⊗ v)‖L2‖Λs+αu‖L2

≤ C‖v‖
L

d
α+β−1
‖Λs+1−αv‖

L
2d

d+2−2(α+β)
‖Λs+αu‖L2

≤ C‖Λ1+ d
2−(α+β)v‖L2‖Λs+βv‖L2‖Λs+αu‖L2 .

I3 ≤ ‖Λ
s+1−β(u ⊗ v)‖L2‖Λs+βv‖L2

≤ C(‖Λs+1−βu‖
L

2d
d+2−2(α+β)

‖v‖
L

d
α+β−1

+ ‖u‖
L

d
2β−1
‖Λs+1−βv‖

L
2d

d+2−4β
)‖Λs+βv‖L2

≤ C(‖Λ1+ d
2−(α+β)v‖L2‖Λs+αu‖L2‖Λs+βv‖L2 + ‖Λ1+ d

2−2βu‖L2‖Λs+βv‖2L2).

I6 ≤ ‖Λ
s+1−γ(u ⊗ θ)‖L2‖Λs+γθ‖L2

≤ C(‖Λs+1−γu‖
L

2d
d+2−2(α+γ)

‖θ‖
L

d
α+γ−1

+ ‖u‖
L

d
2γ−1
‖Λs+1−γθ‖

L
2d

d+2−4γ
)‖Λs+γθ‖L2

≤ C(‖Λ1+ d
2−(α+γ)θ‖L2‖Λs+αu‖L2‖Λs+γθ‖L2 + ‖Λ1+ d

2−2γu‖L2‖Λs+γθ‖2L2).

We cannot bound I5 as above, since v is not divergence free. Using Hölder’s inequality and Lemma
2.1, we derive that

I5 = −

∫
Λs−β(v · ∇u) · Λs+βv

≤ ‖Λs−β(v · ∇u)‖L2‖Λs+βv‖L2

≤ C(‖Λs−βv‖
L

2d
d−2β
‖∇u‖

L
d
β

+ ‖v‖
L

d
α+β−1
‖Λs−β+1u‖

L
2d

d+2−2(α+β)
)‖Λs+βv‖L2

≤ C(‖Λsv‖L2‖Λ1+ d
2−βu‖L2‖Λs+βv‖L2 + ‖Λ1+ d

2−(α+β)v‖L2‖Λs+αu‖L2‖Λs+βv‖L2).

Combining these bounds and (2.4) with (2.3) together, we get

1
2

d
dt

(‖Λsu‖2L2 + ‖Λsv‖2L2 + ‖Λsθ‖2L2) + ‖Λs+αu‖2L2 + ‖Λs+βv‖2L2 + ‖Λs+γθ‖2L2

≤ C(‖u‖Hs‖Λαu‖2Hs + ‖v‖Hs‖Λαu‖Hs‖Λβv‖Hs + ‖u‖Hs‖Λβv‖2Hs

+ ‖θ‖Hs‖Λαu‖Hs‖Λγθ‖Hs + ‖u‖Hs‖Λγθ‖2Hs).

(2.5)

Adding (2.2) and (2.5) up, then the Young inequality implies the desired inequality (2.1). Thus the
proof of Proposition 2.2 is completed.

�
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With Proposition 2.2 at our disposal, we are ready to prove Theorem 1.1.

Proof of the Theorem 1.1. We apply the method of successive approximation. It consists of
constructing a successive approximation sequence (un, vn, θn) with n ≥ 0 and showing its convergence
to the solution (u, v, θ) of the system (1.1).

Consider successive approximation sequences (un, vn, θn) satisfying

u0 = 0, v0 = 0, θ0 = 0,
∂tun+1 + un · ∇un+1 + Λ2αun+1 + ∇pn+1 + ∇ · vn+1vn + vn · ∇vn+1 = 0,
∂tvn+1 + un · ∇vn+1 + Λ2βvn+1 + ∇θn+1 + vn · ∇un+1 = 0,
∂tθ

n+1 + un · ∇θn+1 + Λ2γθn+1 + ∇ · vn+1 = 0,
∇ · un+1 = 0,
un+1(x, 0) = u0(x), vn+1(x, 0) = v0(x), θn+1(x, 0) = θ0(x).

(2.6)

To show that (un, vn, θn) converges, we first prove that there exists a constant ε > 0 independent of n,
such that for any T > 0,

‖un(t)‖2Hs + ‖vn(t)‖2Hs + ‖θn(t)‖2Hs

+
1
2

∫ t

0
(‖Λαun(τ)‖2Hs + ‖Λβvn(τ)‖2Hs + ‖Λγθn(τ)‖2Hs)dτ

≤ ε2,

(2.7)

for all 0 < t ≤ T .
We will prove (2.7) by mathematical induction. Obviously, (2.7) holds for n = 0. Assume that (2.7)

is true for n ≥ 0. We start to show it for n + 1. We proceed as in the proof of Proposition 2.2. Actually,
after going through the steps as in proof of Proposition 2.2, we arrive at

d
dt

(‖un+1‖2Hs + ‖vn+1‖2Hs + ‖θn+1‖2Hs) + ‖Λαun+1‖2Hs + ‖Λβvn+1‖2Hs + ‖Λγθn+1‖2Hs

≤ C(‖un‖2Hs + ‖vn‖2Hs + ‖θn‖2Hs)(‖Λαun+1‖2Hs + ‖Λβvn+1‖2Hs + ‖Λγθn+1‖2Hs).
(2.8)

Integrating this in [0, t], together with (1.2) and inductive assumption, we derive that

‖un+1(t)‖2Hs + ‖vn+1(t)‖2Hs + ‖θn+1(t)‖2Hs

+

∫ t

0
(‖Λαun+1‖2Hs + ‖Λβvn+1‖2Hs + ‖Λγθn+1‖2Hs)(τ)dτ

≤ ‖u0‖
2
Hs + ‖v0‖

2
Hs + ‖θ0‖

2
Hs

+ C
∫ t

0
(‖un‖2Hs + ‖vn‖2Hs + ‖θn‖2Hs)(‖Λαun+1‖2Hs + ‖Λβvn+1‖2Hs + ‖Λγθn+1‖2Hs)(τ)dτ

≤ ε2 + Cε2
∫ t

0
(‖Λαun+1‖2Hs + ‖Λβvn+1‖2Hs + ‖Λγθn+1‖2Hs)(τ)dτ.

This implies (2.7) holds for n + 1 by choosing ε sufficiently small such that ε ≤ 1
√

2C
. Thus (2.7) is true

for all n ≥ 0.
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Next we show that (un, vn, θn) is a Cauchy sequence in C([0,T ]; H s). Resorting to (2.8) and (2.7), it
infers that for all 0 ≤ t1 ≤ t2 ≤ T ,

|(‖un(t2)‖2Hs + ‖vn(t2)‖2Hs + ‖θn(t2)‖2Hs) − (‖un(t1)‖2Hs + ‖vn(t1)‖2Hs + ‖θn(t1)‖2Hs)|

=

∣∣∣∣∣∣
∫ t2

t1

d
dτ

(‖un(τ)‖2Hs + ‖vn(τ)‖2Hs + ‖θn(τ)‖2Hs)dτ

∣∣∣∣∣∣
≤ Cε2

∫ t2

t1
(‖Λαun(τ)‖2Hs + ‖Λβvn(τ)‖2Hs + ‖Λγθn(τ)‖2Hs)dτ,

which implies that (un, vn, θn) is absolutely continuous from [0,T ] to H s or simply
(un, vn, θn) ∈ C([0,T ]; H s).

To prove that (un, vn, θn) is a Cauchy sequence, we consider the differences

u(n+1) = un+1 − un, v(n+1) = vn+1 − vn, θ(n+1) = θn+1 − θn, p(n+1) = pn+1 − pn,

which satisfy 

∂tu(n+1) + un · ∇u(n+1) + u(n) · ∇un + Λ2αu(n+1) + ∇p(n+1)

+∇ · v(n+1)vn + ∇ · vnv(n) + vn · ∇v(n+1) + v(n) · ∇vn = 0,
∂tv(n+1) + un · ∇v(n+1) + u(n) · ∇vn + Λ2βv(n+1) + ∇θ(n+1)

+vn · ∇u(n+1) + v(n) · ∇un = 0,
∂tθ

(n+1) + un · ∇θ(n+1) + u(n) · ∇θn + Λ2γθ(n+1) + ∇ · v(n+1) = 0,
∇ · u(n+1) = 0
u(n+1)(x, 0) = 0, v(n+1)(x, 0) = 0, θ(n+1)(x, 0) = 0.

(2.9)

After going through a similar procedure as above, we obtain

d
dt

(‖u(n+1)‖2Hs + ‖v(n+1)‖2Hs + ‖θ(n+1)‖2Hs) + ‖Λαu(n+1)‖2Hs + ‖Λβv(n+1)‖2Hs + ‖Λγθ(n+1)‖2Hs

≤ C(‖u(n)‖2Hs + ‖v(n)‖2Hs + ‖θ(n)‖2Hs)(‖Λαun‖2Hs + ‖Λβvn‖2Hs + ‖Λγθn‖2Hs)
+ C(‖un‖2Hs + ‖vn‖2Hs + ‖θn‖2Hs)(‖Λαu(n+1)‖2Hs + ‖Λβv(n+1)‖2Hs + ‖Λγθ(n+1)‖2Hs).

(2.10)

Integrating this inequality with respect to time, together with (2.7), one infers that for all 0 ≤ t ≤ T ,

‖u(n+1)(t)‖2Hs + ‖v(n+1)(t)‖2Hs + ‖θ(n+1)(t)‖2Hs

+

∫ t

0
(‖Λαu(n+1)‖2Hs + ‖Λβv(n+1)‖2Hs + ‖Λγθ(n+1)‖2Hs)(τ)dτ

≤ Cε2 sup
0≤τ≤t

(‖u(n)(τ)‖2Hs + ‖v(n)(τ)‖2Hs + ‖θ(n)(τ)‖2Hs)

+ Cε2
∫ t

0
(‖Λαu(n+1)‖2Hs + ‖Λβv(n+1)‖2Hs + ‖Λγθ(n+1)‖2Hs)(τ)dτ.

(2.11)

By choosing ε > 0 as above, it follows from (2.11) that

sup
0≤t≤T

(‖u(n+1)(t)‖2Hs + ‖v(n+1)(t)‖2Hs + ‖θ(n+1)(t)‖2Hs)

≤
1
2

sup
0≤t≤T

(‖u(n)(t)‖2Hs + ‖v(n)(t)‖2Hs + ‖θ(n)(t)‖2Hs),
(2.12)
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which implies that (un, vn, θn) is a Cauchy sequence in C([0,T ]; H s). Therefore, the limit function
(u, v, θ) satisfying system (1.1) indeed exists in C([0,T ]; H s). Moreover, it obeys

‖u(t)‖2Hs + ‖v(t)‖2Hs + ‖θ(t)‖2Hs

+
1
2

∫ t

0
(‖Λαu(τ)‖2Hs + ‖Λβv(τ)‖2Hs + ‖Λγθ(τ)‖2Hs)dτ

≤ ε2,

(2.13)

for all 0 < t < T .
Finally, we prove the uniqueness. Let (u, v, θ) and (ũ, ṽ, θ̃) be two solutions of system (1.1) in

the regularity class (2.13). Similar process as the proof of convergence above, we derive that their
difference (ū, v̄, θ̄) with

ū = u − ũ, v̄ = v − ṽ, θ̄ = θ − θ̃

satisfies

sup
0≤t≤T

(‖ū(t)‖2Hs + ‖v̄(t)‖2Hs + ‖θ̄(t)‖2Hs)

≤
1
2

sup
0≤t≤T

(‖ū(t)‖2Hs + ‖v̄(t)‖2Hs + ‖θ̄(t)‖2Hs).
(2.14)

This inequality implies (ū, v̄, θ̄) = 0 or (u, v, θ) = (ũ, ṽ, θ̃) for all 0 ≤ t ≤ T . Thus we complete the proof
of Theorem 1.1.

�

3. Proof of the Theorem 1.2

This section proves Theorem 1.2. To this end, we first establish the global a priori estimates for the
global solution (u, v, θ) of system (1.1) in the negative Sobolev norm Ḣ−σ with 0 ≤ σ < d

2 and negative
Besov norm Ḃ−σ2,∞ with 0 < σ ≤ d

2 , respectively. Then we will establish Theorem 1.2 by the method of
bootstrapping argument.

As preparations we recall the Hardy-Littlewood-Sobolev inequality for fractional integration and an
inequality for homogeneous Besov norm (see [19] and [18] respectively).

Lemma 3.1. Let 0 ≤ σ < d
2 and 1 < p ≤ 2 with 1

2 + σ
d = 1

p . Then

‖Λ−σ f ‖L2(Rd) ≤ C‖ f ‖Lp(Rd). (3.1)

Lemma 3.2. Let 0 < σ ≤ d
2 and 1 ≤ p < 2 with 1

2 + σ
d = 1

p . Then

‖ f ‖Ḃ−σ2,∞(Rd) ≤ C‖ f ‖Lp(Rd). (3.2)

Now we show the global a priori estimates for the global solution (u, v, θ) established in Theorem
1.1 in Ḣ−σ with 0 ≤ σ < d

2 . More precisely, we have the following lemma.
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Lemma 3.3. Let the assumptions stated in Theorem 1.2 hold. Then for s > d
2 , (u, v, θ) obeys

d
dt

(‖u‖2Ḣ−σ + ‖v‖2Ḣ−σ + ‖θ‖2Ḣ−σ)

≤ C(‖u‖
4s+2σ−d−2

2s

L2 + ‖v‖
4s+2σ−d−2

2s

L2 + ‖θ‖
4s+2σ−d−2

2s

L2 )(‖u‖
d+2−2σ

2s

Ḣs + ‖v‖
d+2−2σ

2s

Ḣs + ‖θ‖
d+2−2σ

2s

Ḣs )

× (‖u‖Ḣ−σ + ‖v‖Ḣ−σ + ‖θ‖Ḣ−σ).

(3.3)

Proof. Applying Λ−σ to (1.1)1 − (1.1)3, and taking the L2-inner products with Λ−σu, Λ−σv and Λ−σθ

respectively, we obtain

1
2

d
dt

(‖Λ−σu‖2L2 + ‖Λ−σv‖2L2 + ‖Λ−σθ‖2L2) + (‖Λα−σu‖2L2 + ‖Λβ−σv‖2L2 + ‖Λγ−σθ‖2L2)

= −

∫
Λ−σ(u · ∇u) · Λ−σu −

∫
Λ−σ∇ · (v ⊗ v) · Λ−σu −

∫
Λ−σ(u · ∇v) · Λ−σv

−

∫
Λ−σ(v · ∇u) · Λ−σv −

∫
Λ−σ(u · ∇θ) · Λ−σθ

:= K1 + K2 + K3 + K4 + K5,

(3.4)

where we have used the fact∫
Λ−σ∇θ · Λ−σv +

∫
Λ−σ(∇ · v) · Λ−σθ = 0.

Using Hölder’s inequality, Lemma 3.1 and the Gagliardo-Nirenberg inequality, we derive that

K1 = −

∫
Λ−σ(u · ∇u) · Λ−σu

≤ ‖Λ−σ(u · ∇u)‖L2‖Λ−σu‖L2

≤ C‖u · ∇u‖
L

2d
d+2σ
‖Λ−σu‖L2

≤ C‖u‖
L

d
σ
‖∇u‖L2‖Λ−σu‖L2

≤ C‖u‖
4s+2σ−d−2

2s

L2 ‖Λsu‖
d+2−2σ

2s

L2 ‖Λ−σu‖L2 .

Similarly, we have

K2 ≤ C‖v‖
4s+2σ−d−2

2s

L2 ‖Λsv‖
d+2−2σ

2s

L2 ‖Λ−σu‖L2 .

Again applying Hölder’s inequality, Lemma 3.1 and the Gagliardo-Nirenberg inequality, we derive that

K3 = −

∫
Λ−σ(u · ∇v) · Λ−σv

≤ ‖Λ−σ(u · ∇v)‖L2‖Λ−σv‖L2

≤ C‖u · ∇v‖
L

2d
d+2σ
‖Λ−σv‖L2

≤ C‖u‖
L

d
σ
‖∇v‖L2‖Λ−σv‖L2

≤ C‖u‖
2s+2σ−d

2s

L2 ‖Λsu‖
d−2σ

2s

L2 ‖v‖
s−1

s

L2 ‖Λ
sv‖

1
s

L2‖Λ
−σv‖L2 .
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Similarly, we obtain

K4 ≤ C‖v‖
2s+2σ−d

2s

L2 ‖Λsv‖
d−2σ

2s

L2 ‖u‖
s−1

s

L2 ‖Λ
su‖

1
s

L2‖Λ
−σv‖L2 .

K5 ≤ C‖u‖
2s+2σ−d

2s

L2 ‖Λsu‖
d−2σ

2s

L2 ‖θ‖
s−1

s

L2 ‖Λ
sθ‖

1
s

L2‖Λ
−σθ‖L2 .

Inserting the above bounds into (3.4), together with the Young inequality, leads to (3.3). Thus the proof
of Lemma 3.3 is completed.

�

Next we establish the global a priori estimates for the global solution (u, v, θ) established in
Theorem 1.1 in Ḃ−σ2,∞ with 0 < σ ≤ d

2 , as stated in the following lemma.

Lemma 3.4. Let the assumptions stated in Theorem 1.2 hold. Then for s > d
2 , (u, v, θ) obeys

d
dt

(‖u‖2Ḃ−σ2,∞
+ ‖v‖2Ḃ−σ2,∞

+ ‖θ‖2Ḃ−σ2,∞
)

≤ C(‖u‖
4s+2σ−d−2

2s

L2 + ‖v‖
4s+2σ−d−2

2s

L2 + ‖θ‖
4s+2σ−d−2

2s

L2 )(‖u‖
d+2−2σ

2s

Ḣs + ‖v‖
d+2−2σ

2s

Ḣs + ‖θ‖
d+2−2σ

2s

Ḣs )

× (‖u‖Ḃ−σ2,∞
+ ‖v‖Ḃ−σ2,∞

+ ‖θ‖Ḃ−σ2,∞
).

(3.5)

Proof. We remark that the argument is similar to the proof of Lemma 3.3, here we give the details for
reader’s convenience. Applying ∆̇ j, which definition is in the appendix, to (1.1)1 − (1.1)3, taking the
L2-inner products with ∆̇ ju, ∆̇ jv and ∆̇ jθ respectively, multiplying the results by 2−2σ j, and taking the
supremum over j ∈ Z, we conclude that

1
2

d
dt

(‖u‖2Ḃ−σ2,∞
+ ‖v‖2Ḃ−σ2,∞

+ ‖θ‖2Ḃ−σ2,∞
)

≤ sup
j∈Z

2−2σ j
∣∣∣∣∣∫ ∆̇ j(u · ∇u) · ∆̇ ju

∣∣∣∣∣ + sup
j∈Z

2−2σ j
∣∣∣∣∣∫ ∆̇ j∇ · (v ⊗ v) · ∆̇ ju

∣∣∣∣∣
+ sup

j∈Z
2−2σ j

∣∣∣∣∣∫ ∆̇ j(u · ∇v) · ∆̇ jv
∣∣∣∣∣ + sup

j∈Z
2−2σ j

∣∣∣∣∣∫ ∆̇ j(v · ∇u) · ∆̇ jv
∣∣∣∣∣

+ sup
j∈Z

2−2σ j
∣∣∣∣∣∫ ∆̇ j(u · ∇θ) · ∆̇ jθ

∣∣∣∣∣
:= M1 + M2 + M3 + M4 + M5,

(3.6)

where we used the fact that ∫
∆̇ j∇θ · ∆̇ jv +

∫
∆̇ j(∇ · v) · ∆̇ jθ = 0.

Applying Hölder’s inequality, Lemma 3.2 and the Gagliardo-Nirenberg inequality, one infers that

M1 ≤ ‖u · ∇u‖Ḃ−σ2,∞
‖u‖Ḃ−σ2,∞

≤ ‖u · ∇u‖
L

2d
d+2σ
‖u‖Ḃ−σ2,∞

≤ C‖u‖
L

d
σ
‖∇u‖L2‖u‖Ḃ−σ2,∞

≤ C‖u‖
4s+2σ−d−2

2s

L2 ‖Λsu‖
d+2−2σ

2s

L2 ‖u‖Ḃ−σ2,∞
.
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Similarly, we have

M2 ≤ C‖v‖
4s+2σ−d−2

2s

L2 ‖Λsv‖
d+2−2σ

2s

L2 ‖u‖Ḃ−σ2,∞
.

M3 ≤ C‖u‖
2s+2σ−d

2s

L2 ‖Λsu‖
d−2σ

2s

L2 ‖v‖
s−1

s

L2 ‖Λ
sv‖

1
s

L2‖v‖Ḃ−σ2,∞
.

M4 ≤ C‖v‖
2s+2σ−d

2s

L2 ‖Λsv‖
d−2σ

2s

L2 ‖u‖
s−1

s

L2 ‖Λ
su‖

1
s

L2‖v‖Ḃ−σ2,∞
.

M5 ≤ C‖u‖
2s+2σ−d

2s

L2 ‖Λsu‖
d−2σ

2s

L2 ‖θ‖
s−1

s

L2 ‖Λ
sθ‖

1
s

L2‖θ‖Ḃ−σ2,∞
.

Then (3.5) eventually follows from the above bounds, (3.6) and the Young inequality. This completes
the proof of Lemma 3.4. �

With Lemma 3.3 and Lemma 3.4 at our disposal, we are ready to prove Theorem 1.2 by the method
of bootstrapping argument.

Proof of the Theorem 1.2. We will just focus on the case (u0, v0, θ0) ∈ Ḣ−σ. The case (u0, v0, θ0) ∈ Ḃ−σ2,∞
can be treated similarly. Assume that

‖u0‖
2
Ḣ−σ + ‖v0‖

2
Ḣ−σ + ‖θ0‖

2
Ḣ−σ = C0. (3.7)

Suppose that for all t ∈ [0,T ],

‖u(t)‖2Ḣ−σ + ‖v(t)‖2Ḣ−σ + ‖θ(t)‖2Ḣ−σ ≤ 2C0. (3.8)

If we can derive that for all t ∈ [0,T ],

‖u(t)‖2Ḣ−σ + ‖v(t)‖2Ḣ−σ + ‖θ(t)‖2Ḣ−σ ≤
3C0

2
, (3.9)

then an application of the bootstrapping argument would imply that the solution (u, v, θ) of system (1.1)
satisfies (3.9) for all t ∈ [0,T ], which implies (1.5).

With (3.7) and (3.8) at our disposal, we shall show that (3.9) holds. At the same time, the decay
estimates (1.5) will be established in this process. Similar as the proof of (2.5), one can show that for
0 ≤ m ≤ s,

1
2

d
dt

(‖Λmu‖2L2 + ‖Λmv‖2L2 + ‖Λmθ‖2L2) + ‖Λm+αu‖2L2 + ‖Λm+βv‖2L2 + ‖Λm+γθ‖2L2

≤ C(‖u‖Hs‖Λαu‖2Hm + ‖v‖Hs‖Λαu‖Hm‖Λβv‖Hm + ‖u‖Hs‖Λβv‖2Hm

+ ‖θ‖Hs‖Λαu‖Hm‖Λγθ‖Hm + ‖u‖Hs‖Λγθ‖2Hm).

(3.10)

Then this inequality together with the Young inequality implies

d
dt

(‖Λmu‖2L2 + ‖Λmv‖2L2 + ‖Λmθ‖2L2) + ‖Λm+αu‖2L2 + ‖Λm+βv‖2L2 + ‖Λm+γθ‖2L2

≤ C(‖u‖2Hs + ‖v‖2Hs + ‖θ‖2Hs)(‖Λm+αu‖2L2 + ‖Λm+βv‖2L2 + ‖Λm+γθ‖2L2).
(3.11)
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Using (1.4) with ε < 1
√

2C
, it follows from (3.11) that

d
dt

(‖Λmu‖2L2 + ‖Λmv‖2L2 + ‖Λmθ‖2L2) +
1
2

(‖Λm+αu‖2L2 + ‖Λm+βv‖2L2 + ‖Λm+γθ‖2L2) ≤ 0. (3.12)

Applying the Gagliardo-Nirenberg inequality, together with (3.8), we obtain

‖Λmu‖L2 ≤ C‖u‖
α

m+α+σ

Ḣ−σ
‖Λm+αu‖

m+σ
m+α+σ

L2

≤ C‖Λm+αu‖
m+σ

m+α+σ

L2 .
(3.13)

Similarly, we have

‖Λmv‖L2 ≤ C‖Λm+βv‖
m+σ

m+β+σ

L2 . (3.14)

‖Λmθ‖L2 ≤ C‖Λm+γθ‖
m+σ

m+γ+σ

L2 . (3.15)

Inserting (3.13)–(3.15) into (3.12), there exists a positive constant C1 > 0 such that

d
dt

(‖Λmu‖2L2 + ‖Λmv‖2L2 + ‖Λmθ‖2L2) + C1(‖Λmu‖2L2 + ‖Λmv‖2L2 + ‖Λmθ‖2L2)
m+a+σ

m+σ ≤ 0

with a0 = max{α, β, γ}. Integrating this inequality with respect to time, we derive that

‖Λmu‖2L2 + ‖Λmv‖2L2 + ‖Λmθ‖2L2 ≤ C(1 + t)−
m+σ
a0 , (3.16)

which implies (1.7).
Now we start to show (3.9). Integrating (3.3) in [0, t] with 0 < t ≤ T , together with (3.16), (3.7) and

(1.4), one infers that

‖u(t)‖2Ḣ−σ + ‖v(t)‖2Ḣ−σ + ‖θ(t)‖2Ḣ−σ
≤ ‖u0‖

2
Ḣ−σ + ‖v0‖

2
Ḣ−σ + ‖θ0‖

2
Ḣ−σ + C sup

0≤τ≤t
(‖u(τ)‖Ḣ−σ + ‖v(τ)‖Ḣ−σ + ‖θ(τ)‖Ḣ−σ)

×

∫ t

0
(‖u(τ)‖

4s+2σ−d−2
2s

L2 + ‖v(τ)‖
4s+2σ−d−2

2s

L2 + ‖θ(τ)‖
4s+2σ−d−2

2s

L2 )

× (‖u(τ)‖
d+2−2σ

2s

Ḣs + ‖v(τ)‖
d+2−2σ

2s

Ḣs + ‖θ(τ)‖
d+2−2σ

2s

Ḣs )dτ

≤ C0 + C sup
0≤τ≤t

(‖u(τ)‖Ḣ−σ + ‖v(τ)‖Ḣ−σ + ‖θ(τ)‖Ḣ−σ)

× εε0

∫ t

0
(1 + τ)−( σ

2a0
( 4s+2σ−d−2

2s −ε0)+ (s+σ)(d+2−2σ)
4a0 s )dτ

≤ C0 + Cεε0 sup
0≤τ≤t

(‖u(τ)‖Ḣ−σ + ‖v(τ)‖Ḣ−σ + ‖θ(τ)‖Ḣ−σ),

(3.17)

where ε0 > 0 is chosen small enough such that σ
2a0

(4s+2σ−d−2
2s −ε0)+ (s+σ)(d+2−2σ)

4a0 s > 1, which is meaningful
since assumptions 1

2 < a0 <
d+2

4 and 0 ≤ σ < d
2 implies that σ(4s+2σ−d−2)+(s+σ)(d+2−2σ)

4a0 s > 1. By choosing
ε sufficiently small, then (3.17) together with the Young inequality yields (3.9) for all t ∈ [0,T ], which
closes the proof. Thus we complete the proof of Theorem 1.2.

�
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4. Appendix

This appendix provides the definition of the Littlewood-Paley decomposition and the definition of
Besov spaces. Some related facts used in the previous sections are also included. Materials presented
in this appendix can be found in several books and many papers (see, e.g., [1, 2, 16, 17, 20]).

We start with several notation. S denotes the usual Schwarz class and S′ its dual, the space of
tempered distributions. To introduce the Littlewood-Paley decomposition, we write for each j ∈ Z

A j =
{
ξ ∈ Rd : 2 j−1 ≤ |ξ| < 2 j+1

}
.

The Littlewood-Paley decomposition asserts the existence of a sequence of functions {Φ j} j∈Z ∈ S such
that

suppΦ̂ j ⊂ A j, Φ̂ j(ξ) = Φ̂0(2− jξ) or Φ j(x) = 2 jdΦ0(2 jx),

and
∞∑

j=−∞

Φ̂ j(ξ) =

{
1, if ξ ∈ Rd \ {0},
0, if ξ = 0.

Therefore, for a general function ψ ∈ S, we have

∞∑
j=−∞

Φ̂ j(ξ)ψ̂(ξ) = ψ̂(ξ) for ξ ∈ Rd \ {0}.

We now choose Ψ ∈ S such that

Ψ̂(ξ) = 1 −
∞∑
j=0

Φ̂ j(ξ), ξ ∈ Rd.

Then, for any ψ ∈ S,

Ψ ∗ ψ +

∞∑
j=0

Φ j ∗ ψ = ψ

and hence

Ψ ∗ f +

∞∑
j=0

Φ j ∗ f = f (4.1)

in S′ for any f ∈ S′. To define the inhomogeneous Besov space, we set

∆ j f =


0, if j ≤ −2,
Ψ ∗ f , if j = −1,
Φ j ∗ f , if j = 0, 1, 2, · · · .

(4.2)

To define the homogeneous Besov space, we set

∆̇ j f = Φ j ∗ f , if j = 0,±1,±2, · · · . (4.3)
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Definition 4.1. The inhomogeneous and homogeneous Besov spaces Bs
p,q and Ḃs

p,q with s ∈ R and
p, q ∈ [1,∞] consists of f ∈ S′ satisfying

‖ f ‖Bs
p,q ≡ ‖2

js‖∆ j f ‖Lp‖lqj
< ∞,

and
‖ f ‖Ḃs

p,q
≡ ‖2 js‖∆̇ j f ‖Lp‖lqj

< ∞,

respectively.
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