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Abstract: Finite time stability involving dynamical systems whose trajectories converge to a
Lyapunov stable equilibrium state in finite time have been studied for both continuous-time and
discrete-time systems. For continuous-time systems, finite time stability is defined for equilibria
of continuous but non-Lipschitzian nonlinear dynamics, whereas discrete-time systems can exhibit
finite time stability even when the system dynamics are linear, and hence, Lipschitz continuous.
Alternatively, for impulsive dynamical systems it may be possible to reset the system states to an
equilibrium state achieving finite time stability without requiring a non-Lipschitz condition for the
continuous-time part of the hybrid system dynamics. In this paper, we develop sufficient Lyapunov
conditions for finite time stability of impulsive dynamical systems using both a scalar differential
Lyapunov inequality on the continuous-time dynamics as well as a scalar difference Lyapunov
inequality on the discrete-time resetting dynamics. Furthermore, using our proposed finite time
stability results, we design universal hybrid finite time stabilizing control laws for impulsive dynamical
systems. Finally, we present several numerical examples for finite time stabilization of network
impulsive dynamical systems.
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1. Introduction

Modern complex dynamical systems can give rise to systems which have nonsmooth dynamics
wherein the discontinuities in the system dynamics are intentionally introduced as part of the
controller architecture to achieve hierarchical system stabilization [12–14, 18, 19]. In particular, the
use of hierarchical embedded control subsystems within the feedback control system that possess a
multiechelon hierarchical hybrid control architecture characterized by continuous-time dynamics at
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the lower levels of the hierarchy and discrete-time dynamics at the higher levels of the hierarchy. The
lower-level units directly interact with the dynamical system to be controlled while the higher-level
units receive information from the lower-level units as inputs and provide (possibly discrete) output
commands, which serve to coordinate and reconcile the (sometimes competing) actions of the
lower-level units [13, 18]. The mathematical descriptions of many of these controlled dynamical
systems can be characterized by hybrid systems [8, 9, 13] and impulsive differential
equations [2–5, 13, 21, 23, 31, 32].

Impulsive dynamical systems can be viewed as a subclass of hybrid systems and consist of three
elements—namely, a continuous-time differential equation, which governs the motion of the dynamical
system between impulsive or resetting events; a difference equation, which governs the way the system
states are instantaneously changed when a resetting event occurs; and a criterion for determining when
the states of the system are to be reset. Unlike continuous-time and discrete-time dynamical systems,
which require specific system dynamics structures (e.g., non-Lipschitzian vector fields [6] and nilpotent
system matrices [15]) to hold for achieving finite convergence, a unique feature of impulsive dynamical
systems is that it may be possible to reset the system states to an equilibrium state achieving finite-time
convergence without requiring non-Lipschitzian system dynamics.

Finite-time convergence to a Lyapunov stable equilibrium, that is, finite time stability, was first
addressed by Roxin [30] and rigorously studied in [6, 7] for continuous-time, time-invariant systems
with continuous but non-Lipschitzian dynamics using continuous Lyapunov functions. Extensions
of finite-time stability to continuous-time, time-varying nonlinear dynamical systems are presented
in [17, 27], whereas extensions of finite-time stability to discrete-time autonomous dynamical systems
were recently reported in [15,16]. With the notable exception of [29], finite time stability of impulsive
dynamical systems has not been studied in the literature.

In this paper, we develop sufficient conditions for finite time stability of nonlinear impulsive
dynamical systems. Specifically, we merge the results of [6, 15, 16, 29] to develop new sufficient
Lyapunov conditions for finite time stability of impulsive dynamical systems involving a scalar
differential inequality on the Lyapunov function for the continuous-time dynamics as well as a scalar
difference inequality and a minimum operator on the Lyapunov function for the discrete-time
resetting dynamics. Furthermore, using our proposed finite time stability results, we present a finite
time hybrid stabilization framework, that is, the problem of finding universal state feedback hybrid
control laws that guarantee finite-time stability of the closed-loop system, for impulsive dynamical
systems. Finally, to show the utility of the proposed hybrid stabilization framework we apply our
results on several numerical examples involving network impulsive dynamical systems.

2. Mathematical preliminaries

In this section, we establish notation and definitions needed for developing the main results of this
paper. Let R denote the set of real numbers, R+ denote the set of positive real numbers, R+ denote
the set of nonnegative numbers, Rn denote the set of n × 1 real column vectors, Rn×m denote the set of
n×m real matrices, Z denote the set of integers, Z+ denote the set of positive integers, Z+ denote the set
of nonnegative integers, (·)T denote transpose, and (·)† denote the Moore-Penrose generalized inverse.
We write Bε(x) for the open ball centered at x with radius ε, ‖ · ‖ for the Euclidean vector norm in Rn,
V ′(x) for the Fréchet derivative of V at x, and ∆V(x) , V( f (x)) − V(x) for the difference operator of
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V : Rn → R at x for a given f (x). Furthermore, we write S and ∂S to denote the closure and boundary
of the set S ⊂ Rn, respectively.

Consider the nonlinear state-dependent impulsive dynamical system G given by

ẋ(t) = fc(x(t)), x(0) = x0, x(t) < Z, (2.1)
∆x(t) = fd(x(t)), x(t) ∈ Z, (2.2)

where, for every t ≥ 0, x(t) ∈ D ⊆ Rn, D is an open set with 0 ∈ D, ∆x(t) , x(t+) − x(t), where
x(t+) , x(t)+ fd(x(t)) = limε→0+ x(t+ε), fc : D → Rn is continuous and satisfies fc(0) = 0, fd : D → Rn

is continuous, and Z ⊂ D is the resetting set. Note that xe ∈ D is an equilibrium point of (2.1) and
(2.2) if and only if fc(xe) = 0 and fd(xe) = 0. We refer to the differential equation (2.1) as the
continuous-time dynamics, and we refer to the difference equation (2.2) as the resetting law.

A function x : Ix0 → D is a solution to the impulsive dynamical system (2.1) and (2.2) on the
interval Ix0 ⊆ R with initial condition x(0) = x0, where Ix0 denotes the maximal interval of existence
of a solution to (2.1) and (2.2), if x(·) is left-continuous and x(t) satisfies (2.1) and (2.2) for all t ∈ Ix0 .
For further discussion on solutions to impulsive differential equations, see [4, 13, 21, 26, 31].

For a particular trajectory x(t), we let tk , τk(x0) denote the kth instant of time at which x(t)
intersects Z, and we call the times tk the resetting times. Thus, the trajectory of (2.1) and (2.2) from
the initial condition x(0) = x0 is given by ψ(t, x0) for 0 < t ≤ t1, where ψ(·, ·) denotes the solution
to the continuous-time dynamics (2.1). If the trajectory reaches a state x1 , x(t1) satisfying x1 ∈ Z,
then the state is instantaneously transferred to x+

1 , x1 + fd(x1) according to the resetting law (2.2).
The trajectory x(t), t1 < t ≤ t2, is then given by ψ(t − t1, x+

1 ), and so on. Our convention here is that
the solution x(t) of (2.1) and (2.2) is left continuous, that is, it is continuous everywhere except at the
resetting times tk, and xk , x(tk) = limε→0+ x(tk − ε) and x+

k , x(tk) + fd(x(tk)) = limε→0+ x(tk + ε) for
k = 1, 2, . . ..

To ensure well-posedness of the solutions to (2.1) and (2.2), we make the following additional
assumptions [13].

Assumption 2.1. If x ∈ Z\Z, then there exists ε > 0 such that, for all 0 < δ < ε, ψ(δ, x) < Z.

Assumption 2.2. If x ∈ Z, then x + fd(x) < Z.

Assumption 2.1 ensures that if a trajectory reaches the closure of Z at a point that does not belong
to Z, then the trajectory must be directed away from Z; that is, a trajectory cannot enter Z through a
point that belongs to the closure of Z but not to Z. Furthermore, Assumption 2.2 ensures that when
a trajectory intersects the resetting set Z, it instantaneously exits Z. Finally, we note that if x0 ∈ Z,
then the system initially resets to x+

0 = x0 + fd(x0) < Z, which serves as the initial condition for the
continuous-time dynamics (2.1).

It follows from Assumptions 2.1 and 2.2 that for a particular initial condition, the resetting times
tk = τk(x0) are distinct and well defined [13]. Since the resetting set Z is a subset of the state space
and is independent of time, impulsive dynamical systems of the form (2.1) and (2.2) are
time-invariant systems. These systems are called state-dependent impulsive dynamical systems [13].
Since the resetting times are well defined and distinct, and since the solution to (2.1) exists, it follows
that the solution of the impulsive dynamical system (2.1) and (2.2) also exists over a forward time
interval. For details on the existence and uniqueness of solutions of impulsive dynamical systems in
forward time see [4, 21, 31].
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It is important to note that the analysis of impulsive dynamical systems can be quite involved.
In particular, such systems can exhibit Zenoness and beating, as well as confluence, wherein solutions
exhibit infinitely many resettings in a finite time, encounter the same resetting surface a finite or infinite
number of times in zero time, and coincide after a certain point in time. In this paper, we allow for
the possibility of confluence and Zeno solutions; however, Assumption 2.2 precludes the possibility
of beating. Furthermore, since not every bounded solution of an impulsive dynamical system over a
forward time interval can be extended to infinity due to Zeno solutions, we assume that existence and
uniqueness of solutions are satisfied in forward time. For details see [2, 4, 21].

Remark 2.1. Let x∗ ∈ D satisfy fd(x∗) = 0. Then x∗ < Z. To see this, suppose x∗ ∈ Z. Then
x∗ + fd(x∗) = x∗ ∈ Z, which contradicts the assumption that if x ∈ Z, then x + fd(x) < Z. Hence, if
x = 0 is an equilibrium point of (2.1) and (2.2), then 0 < Z. Hence, if x = x∗ is an equilibrium point
of (2.1) and (2.2), then x∗ < Z.

3. Finite time stability of impulsive dynamical systems

In this section, we present sufficient conditions for finite time stability of the nonlinear impulsive
dynamical systems. The following definition introduces the notion of finite time stability for impulsive
dynamical systems. For this definition, we denote the trajectory or solution curve of (2.1) and (2.2)
satisfying x(0) = x by s(·, x) or sx(·).

Definition 3.1. Consider the nonlinear impulsive dynamical system G given by (2.1) and (2.2). The
zero solution x(t) ≡ 0 to (2.1) and (2.2) is finite time stable if there exist an open neighborhoodN ⊆ D
of the origin and a function T : N\{0} → (0,∞), called the settling-time function, such that the
following statements hold:

i) Finite time convergence. For every x ∈ N\{0}, sx(t) is defined on [0,T (x)), sx(t) ∈ N\{0} for all
t ∈ [0,T (x)), and limt→T +(x) s(t, x) = 0.

ii) Lyapunov stability. For every ε > 0 there exists δ > 0 such that Bδ(0) ⊂ N and, for every
x ∈ Bδ(0)\{0}, s(t, x) ∈ Bε(0) for all t ∈ [0,T (x)).

The zero solution x(t) ≡ 0 to (2.1) and (2.2) is globally finite time stable if it is finite time stable with
N = D = Rn.

Remark 3.1. The notion of finite time stability introduced here is different from the same term discussed
in [1, 20, 25]. Specifically, the term finite time stability discussed in [1, 20, 25] deals with systems
whose operation is constrained to a fixed finite interval of time and requires bounds on the system state
variables.

Note that if the zero solution x(t) ≡ 0 to (2.1) and (2.2) is finite time stable, then it is asymptotically
stable, and hence, finite time stability is a stronger notion than asymptotic stability. Next, we show that
if the zero solution x(t) ≡ 0 to (2.1) and (2.2) is finite time stable, then (2.1) and (2.2) has a solution
s(·, ·) defined on R+ × N , and s(t, x) = 0 for all t > T (x), x ∈ N , where T (0) , 0.

Proposition 3.1. Consider the nonlinear impulsive dynamical system (2.1) and (2.2). Assume that the
zero solution x(t) ≡ 0 to (2.1) and (2.2) is finite time stable and letN ⊆ D and T : N\{0} → (0,∞) be
as in Definition 3.1. Then, (2.1) and (2.2) has a solution s(·, ·) defined on R+ × N , and s(t, x) = 0 for
all t > T (x), x ∈ N , where T (0) , 0.
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Proof. For the case where the finite time convergence of the zero solution x(t) ≡ 0 to (2.1) and (2.2)
occurs through the continuous dynamics (2.1), the proof is similar to the proof of Proposition 2.3 in [6],
and hence, s(t, x) is defined on R+ and satisfies s(t, x) = 0 on [T (x),∞) for every x ∈ N . In general,
however, for impulsive dynamical systems it may be possible to reset the states to the origin for some
k = m ∈ Z+. In this case, since x(t) ≡ 0 is an equilibrium point of (2.1) and (2.2), it follows that
s(t, x0) = 0, t > τm(x0) = T (x0). Moreover, it follows from Assumption 2.2 (see Remark 2.1) that
0 < Z, and hence, beating is precluded. Therefore, (2.1) and (2.2) has a solution s(·, ·) defined on
R+ × N , and s(t, x) = 0 for all t > T (x), x ∈ N , where T (0) , 0. �

The following result provides sufficient conditions for finite time stability of impulsive systems
using a Lyapunov function involving a scalar differential inequality on the continuous-time dynamics.

Theorem 3.1. Consider the nonlinear impulsive dynamical system G given by (2.1) and (2.2). Assume
there exists a continuously differentiable function V : D → R+ satisfying V(0) = 0, V(x) > 0, x ∈ D,
x , 0, and

V ′(x) fc(x) ≤ −γ(V(x))α, x < Z, (3.1)
V(x + fd(x)) ≤ V(x), x ∈ Z, (3.2)

where γ > 0 and α ∈ (0, 1). Then the zero solution x(t) ≡ 0 to (2.1) and (2.2) is finite time stable.
Moreover, there exists an open neighborhoodN of the origin and a settling-time function T : N → R+

such that

T (x0) ≤
1

γ(1 − α)
(V(x0))1−α, x0 ∈ N . (3.3)

If, in addition, D = Rn and V(·) is radially unbounded, then the zero solution x(t) ≡ 0 to (2.1) and
(2.2) is globally finite time stable.

Proof. Note that it follows from Theorem 2.1 of [13] that the zero solution to (2.1) and (2.2) is
asymptotically stable. Thus, it remains to be shown that for all initial conditions in some
neighborhood N ⊆ D of the origin the trajectories of (2.1) and (2.2) converge to the origin in finite
time. Since the system (2.1) and (2.2) is asymptotically stable, it follows that there exists δ > 0 such
that for all x0 ∈ Bδ(0) ⊂ D the trajectory s(t, x0) → 0 as t → ∞. Next, we separately consider the
cases when the trajectories of (2.1) and (2.2) have a finite and infinite number of resettings.

Assume that for some x0 ∈ Bδ(0) the trajectory s(t, x0), t ≥ 0, exhibits a finite number of resettings
with resetting times τk(x0), k = 1, . . . ,m. If s(τ+

m(x0), x0) = 0, then since fc(0) = 0 it follows that
s(t, x0) = 0, t ≥ τm(x0), which implies that s(t, x0), t ≥ t0, converges to the origin in finite time with
a settling-time function T (x0) = τm(x0). Furthermore, note that τ1(x+

k ) ≤ Tc(x+
k ), k = 0, 1, . . . ,m − 1,

since (2.1) and (2.2) exhibits a finite number of resettings, where Tc(·) is the settling-time function for
(2.1) and (2.2) with Z = Ø. Now, for Z = Ø, it was shown in [6] that the continuous-time dynamics
are finite time stable and

V(s(t, y)) ≤ [(V(y))1−α − γ(1 − α)t]
1

1−α , t ∈ [0,Tc(y)), y ∈ Bδ(0), (3.4)

and hence, since τ1(x0) < Tc(x0), it follows that

V(x1) ≤ [(V(x0))1−α − γ(1 − α)τ1(x0)]
1

1−α . (3.5)
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Thus, since V(x + fd(x)) ≤ V(x), x ∈ Z, it follows from (3.5) that

τ1(x+
1 ) < Tc(x+

1 )

≤
1

γ(1 − α)
(V(x+

1 ))1−α

≤
1

γ(1 − α)
(V(x1))1−α

≤
1

γ(1 − α)
[(V(x0))1−α − γ(1 − α)τ1(x0)]. (3.6)

Similarly, it follows from (3.4) that, for y = x+
2 ,

τ1(x+
2 ) < Tc(x+

2 )

≤
1

γ(1 − α)
(V(x+

2 ))1−α

≤
1

γ(1 − α)
(V(x2))1−α

≤
1

γ(1 − α)
[(V(x+

1 ))1−α − γ(1 − α)τ1(x+
1 )]

≤
1

γ(1 − α)
[(V(x1))1−α − γ(1 − α)τ1(x+

1 )]

≤
1

γ(1 − α)
[(V(x0))1−α − γ(1 − α)τ1(x0) − γ(1 − α)τ1(x+

1 )]. (3.7)

Recursively repeating this procedure for k = 3, 4, . . . ,m, it follows that, with τ1(x+
0 ) = τ1(x0),

τ1(x+
m−1) <

1
γ(1 − α)

(V(x0))1−α − γ(1 − α)
m−2∑
i=0

τ1(x+
i )

 . (3.8)

Thus,

T (x0) =

m−1∑
i=0

τ1(x+
i ) <

1
γ(1 − α)

(V(x0))1−α < ∞. (3.9)

Alternatively, if s(τ+
m(x0), x0) , 0, then, for all t > τm(x0), the continuous-time dynamics are active

and it follows from (3.1) and Theorem 4.2 of [6] that the trajectory s(t, s(τ+
m(x0), x0)), t ≥ 0, converges

to the origin in finite time given by 1
γ(1−α) [V(s(τ+

m(x0), x0))]1−α. In this case, it follows from (3.9) that
the settling-time function for s(t, x0), t ≥ 0, is given by

T (x0) =

m−1∑
i=0

τ1(x+
i ) + T (x+

m) <
1

γ(1 − α)
(V(x0))1−α < ∞, (3.10)

where T (x+
m) ≤ 1

γ(1−α) (V(x+
m))1−α is the settling-time function for the piece of the trajectory

s(t, s(τ+
m(x0), x0)), t ≥ τ+

m(x0), where limt→T (x+
m) s(t, s(τ+

m(x0), x0)) = 0.
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Next, assume that for some x0 ∈ Bδ(0) the trajectory s(t, x0), t ≥ 0, exhibits an infinite number
of resettings with the resetting times τk(x0), k = 0, 1, . . ., where τ0(x0) , 0. Let x+

k , s(τ+
k (x0), x0),

k = 0, 1, . . ., where x+
0 , x0, and note that since (2.1) and (2.2) is asymptotically stable it follows

that τ1(x+
k ) → 0 as k → ∞. Now, note that since x(t) ≡ 0 is asymptotically stable, it follows that

limk→∞ τ1(x+
k ) = 0. Hence, it follows from (3.8), with m→ ∞, that

0 = lim
k→∞

τ1(x+
k ) <

1
γ(1 − α)

(V(x0))1−α − γ(1 − α)
∞∑

i=0

τ1(x+
i )

 . (3.11)

Thus,

T (x0) =

∞∑
i=0

τ1(x+
i ) <

1
γ(1 − α)

(V(x0))1−α < ∞, (3.12)

which implies that the trajectory s(·, x0) is Zeno [13] and converges to the origin in finite time with an
infinite number of resettings, that is, s(t, x0)→ 0 as t → T (x0).

Finally, suppose, ad absurdum, that s(t′, x0) , 0 for some t′ > T (x0), x0 ∈ Bδ(0). Then, since V(·)
is positive definite, V(s(t′, x0)) = β > 0. Furthermore, since s(t, x0) → 0 as t → T (x0), there exists
t′′ < T (x0) such that V(s(t′′, x0)) < β. Now, since V(s(t, x0)) is a decreasing function of time, it follows
that for t′′ < T (x0) < t′,

β = V(s(t′, x0)) < V(s(t′′, x0)) < β, (3.13)

which leads to a contradiction. Hence, s(t, x0) = 0, t ≥ T (x0), x0 ∈ Bδ(0), which implies convergence
in finite time with N , Bδ(0). This completes the proof of finite time stability.

Finally, if D = Rn and V(·) is radially unbounded, then global finite time stability follows using
standard arguments. See, for instance, [13]. �

Next, we provide a sufficient condition for finite time stability of impulsive systems using a
Lyapunov function involving a scalar difference inequality and a minimum operator on the resetting
dynamics.

Theorem 3.2. Consider the nonlinear impulsive dynamical system G given by (2.1) and (2.2). Assume
there exists a continuously differentiable function V : D → R+ satisfying V(0) = 0, V(x) > 0, x ∈ D,
x , 0, and

V ′(x) fc(x) < 0, x < Z, (3.14)
V(x + fd(x)) ≤ V(x) −min {V(x), c} , x ∈ Z, (3.15)

where c > 0 and {x ∈ D\{0} : V(x) < d} ⊆ Z, d ∈ (0, c]. Then the zero solution x(t) ≡ 0 to (2.1)
and (2.2) is finite time stable. Moreover, the possibility of Zeno solutions is precluded. If, in addition,
D = Rn and V(·) is radially unbounded, then the zero solution x(t) ≡ 0 to (2.1) and (2.2) is globally
finite time stable.

Proof. Note that it follows from Theorem 2.1 of [13] that the zero solution to (2.1) and (2.2) is
asymptotically stable. Thus, it remains to be shown that for all initial conditions in some
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neighborhood N ⊆ D of the origin the trajectories of (2.1) and (2.2) converge to the origin in finite
time. Since the system (2.1) and (2.2) is asymptotically stable, it follows that there exists δ > 0 such
that for all x0 ∈ Bδ(0) ⊂ D the trajectory s(t, x0) → 0 as t → ∞. Note that since s(t, x0) → 0 as
t → ∞, there exists t = t′ such that V(s(t′, x0)) ≤ c. Now, suppose there exists t = t′′ > t′ such that
x(t′′) = s(t′′, x0) ∈ Z and V(x(t′′)) ≥ d. In this case, if V(x) ≤ c, x ∈ Z, then V(x + fd(x)) = 0, and
hence, V(x+(t′′)) = 0, which implies convergence in finite time with N , Bδ(0). Alternatively,
suppose there exists t = t′ such that x(t′) ∈ Z and V(x(t′)) < d. In this case, since
{x ∈ D\{0} : V(x) < d} ⊆ Z, d ∈ (0, c], it follows that V(x + fd(x)) = 0, which implies convergence in
finite time with N , Bδ(0). This completes the proof of finite time stability.

Next, we separately consider the cases when the trajectories of (2.1) and (2.2) have a finite and
infinite number of resettings. Assume that for some x0 ∈ Bδ(0) the trajectory s(t, x0), t ≥ 0, exhibits
a finite number of resettings with resetting times τk(x0), k = 1, . . . ,m. It follows from {x ∈ D\{0} :
V(x) < d} ⊆ Z, d ∈ (0, c], and (3.15) that s(τ+

m(x0), x0) = 0, and hence, since fc(0) = 0 it follows that
s(t, x0) = 0, t ≥ τm(x0), which implies that s(t, x0), t ≥ 0, converges to the origin in finite time with a
settling-time function T (x0) = τm(x0).

Alternatively, suppose, ad absurdum, that for some x0 ∈ Bδ(0) the trajectory s(t, x0), t ≥ 0, exhibits
an infinite number of resettings with the resetting times τk(x0), k = 0, 1, . . ., where τ0(x0) , 0. Let
x+

k , s(τ+
k (x0), x0), k = 0, 1, . . ., where x+

0 , x0, and note that since (2.1) and (2.2) is asymptotically
stable it follows that τ1(x+

k )→ 0 as k → ∞. It follows from (3.14) and (3.15) that

V(x+
k ) ≤ V(xk) −min {V(xk), c}
< V(x+

k−1) −min {V(xk), c}
≤ V(xk−1) −min {V(xk−1), c} −min {V(xk), c}
...

≤ V(x0) −
k∑

n=0

min {V(xn), c} , (3.16)

and hence, there exists m > 0 such that V(x+
m) = 0, which leads to a contradiction. Thus, the trajectories

of (2.1) and (2.2) with (3.14) and (3.15) can only have a finite number of resettings, and hence, the
possibility of Zeno solutions is precluded.

Finally, if D = Rn and V(·) is radially unbounded, then global finite time stability follows using
standard arguments. �

Finally, we merge the hypothesis of Theorems 3.1 and 3.2 to develop a stronger Lyapunov finite
time stability theorem for impulsive dynamical systems using a Lyapunov function involving a scalar
differential and difference inequality on both the continuous-time dynamics and discrete-time resetting
dynamics.

Theorem 3.3. Consider the nonlinear impulsive dynamical system G given by (2.1) and (2.2). Assume
there exists a continuously differentiable function V : D → R+ satisfying V(0) = 0, V(x) > 0, x ∈ D,
x , 0, and

V ′(x) fc(x) ≤ −γ(V(x))α, x < Z, (3.17)
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V(x + fd(x)) ≤ V(x) −min {V(x), c} , x ∈ Z, (3.18)

where γ > 0, α ∈ (0, 1), and c > 0. Then the zero solution x(t) ≡ 0 to (2.1) and (2.2) is finite time
stable. Moreover, the possibility of Zeno solutions is precluded. Furthermore, there exists an open
neighborhood N of the origin and a settling-time function T : N → R+ such that

T (x0) ≤
1

γ(1 − α)
(V(x0))1−α, x0 ∈ N . (3.19)

If, in addition, D = Rn and V(·) is radially unbounded, then the zero solution x(t) ≡ 0 to (2.1) and
(2.2) is globally finite time stable.

Proof. The proof follows as a direct consequence of Theorems 3.1 and 3.2. �

Remark 3.2. Note that Theorems 3.2 and 3.3 also hold for the case where (3.15) and (3.18) are
replaced by

V(x + fd(x)) ≤ V(x) − c min
{

V(x)
c

,V(x)α
}
, x ∈ Z, (3.20)

where c > 0 and α ∈ (0, 1). For details of this fact, see Theorem 4.2 of [15]. A similar remark holds
for Theorems 4.2 and 4.3 below.

4. Finite time stabilization of impulsive dynamical systems

In this section, we use the finite time stability results developed in Section 3 to design hybrid finite
time stabilizing controllers for nonlinear affine in the control impulsive dynamical systems. Consider
the controlled nonlinear impulsive dynamical system given by

ẋ(t) = fc(x(t)) + Gc(x(t))uc(t), x(t) < Z, t ≥ t0, (4.1)
∆x(t) = fd(x(t)) + Gd(x(t))ud(t), x(t) ∈ Z, (4.2)

where fc : Rn → Rn satisfying fc(0) = 0 and Gc : Rn → Rn×mc are continuous functions, fd : Rn → Rn

and Gd : Rn → Rn×md are continuous, uc(t) ∈ Rmc , t ≥ t0, and ud(tk) ∈ Rmd , k ∈ Z+. For the statement of
the following results, Nn denotes the set of n × n nonnegative definite matrix functions.

Theorem 4.1. Consider the controlled nonlinear impulsive dynamical system given by (4.1) and (4.2).
If there exist a continuously differentiable function V : Rn → R+ and continuous functions P1u : Rn →

R1×md , P2u : Rn → Nmd , and L : Rn → R1×md such that V(·) is positive definite and

V(x + fd(x) + Gd(x)ud) = V(x + fd(x)) + P1u(x)ud + uT
d P2u(x)ud, x ∈ Rn, ud ∈ R

md , (4.3)
V ′(x) fc(x) ≤ −γ(V(x))α, x ∈ R, (4.4)

V(x + fd(x)) − V(x) −
1
4

P1u(x)P†2u(x)PT
1u(x) +

1
4

L(x)P†2u(x)LT(x) ≤ 0, x ∈ Z, (4.5)

where γ > 0, α ∈ (0, 1), and R , {x ∈ Rn, x < Z : V ′(x)Gc(x) = 0}, then the nonlinear impulsive
dynamical system (4.1) and (4.2) with the hybrid feedback control law (uc, ud) = (φc(·), φd(·)) given by

φc(x) =

 −
(
c0 +

(α(x)−wγ(V(x)))+
√

(α(x)−wγ(V(x)))2+(βT(x)β(x))2

βT(x)β(x)

)
β(x), β(x) , 0, x < Z,

0, β(x) = 0, x < Z,
(4.6)
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and

φd(x) = −
1
2

P†2u(x)[L(x) + P1u(x)]T, x ∈ Z, (4.7)

where α(x) , V ′(x) fc(x), x ∈ Rn, β(x) , GT
c (x)V ′T(x), x ∈ Rn, wγ(V(x)) , −γ(V(x))α, x ∈ Rn, and

c0 > 0, is finite time stable.

Proof. Note that between resettings the time derivative of V(·) along the trajectories of (4.1), with
uc = φc(x), x ∈ Rn, given by (4.6), is given by

V̇(x) = V ′(x)[ fc(x) + Gc(x)φc(x)]
= α(x) + βT(x)φc(x)

=

{
−c0β

T(x)β(x) −
√

(α(x) − wγ(V(x)))2 + (βT(x)β(x))2 + wγ(V(x)), β(x) , 0,
α(x), β(x) = 0,

≤ wγ(V(x)), x < Z. (4.8)

In addition, using (4.3) and (4.5), the difference of V(·) at the resetting instants, with ud = φd(x), x ∈ Z,
given by (4.7), is given by

∆V(x) = V(x + fd(x) + Gd(x)φd(x)) − V(x)
= V(x + fd(x)) − V(x) + P1u(x)φd(x) + φT

d (x)P2u(x)φd(x)

= V(x + fd(x)) − V(x) −
1
4

P1u(x)P†2u(x)PT
1u(x) +

1
4

L(x)P†2u(x)LT(x)

≤ 0, x ∈ Z. (4.9)

Hence, it follows from Theorem 3.1 that the zero solution x(t) ≡ 0 to (4.1) and (4.2) with uc = φc(x),
x < Z, given by (4.6) and ud = φd(x), x ∈ Z, given by (4.7), is finite time stable, which proves the
result. �

Theorem 4.2. Consider the controlled nonlinear impulsive dynamical system given by (4.1) and (4.2).
If there exist a continuously differentiable function V : Rn → R+ and continuous functions P1u : Rn →

R1×md , P2u : Rn → Nmd , and L : Rn → R1×md such that V(·) is positive definite, (4.3) holds, and

V ′(x) fc(x) < 0, x ∈ R\{0}, (4.10)

V(x + fd(x)) − V(x) −
1
4

P1u(x)P†2u(x)PT
1u(x) +

1
4

L(x)P†2u(x)LT(x) ≤ −min {V(x), c} , x ∈ Z, (4.11)

where c > 0, α ∈ (0, 1), {x ∈ D\{0} : V(x) < d} ⊆ Z, d ∈ (0, c], and
R , {x ∈ Rn, x < Z : V ′(x)Gc(x) = 0}, then the nonlinear impulsive dynamical system (4.1) and (4.2)
with the hybrid feedback control law (uc, ud) = (φc(·), φd(·)) given by

φc(x) =

 −
(
α(x)+
√
α2(x)+(βT(x)β(x))2

βT(x)β(x)

)
β(x), β(x) , 0, x < Z,

0, β(x) = 0, x < Z,
(4.12)

and

φd(x) = −
1
2

P†2u(x)[L(x) + P1u(x)]T, x ∈ Z, (4.13)

where α(x) , V ′(x) fc(x), x ∈ Rn, and β(x) , GT
c (x)V ′T(x), x ∈ Rn, is finite time stable.
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Proof. Note that between resettings the time derivative of V(·) along the trajectories of (4.1), with
uc = φc(x), x ∈ Rn, given by (4.12), is given by

V̇(x) = V ′(x)[ fc(x) + Gc(x)φc(x)]
= α(x) + βT(x)φc(x)

=

{
−

√
α2(x) + (βT(x)β(x))2, β(x) , 0,

α(x), β(x) = 0,

< 0, x < Z, x , 0. (4.14)

In addition, using (4.3) and (4.11), the difference of V(·) at the resetting instants, with ud = φd(x),
x ∈ Z, given by (4.13), is given by

∆V(x) = V(x + fd(x) + Gd(x)φd(x)) − V(x)
= V(x + fd(x)) − V(x) + P1u(x)φd(x) + φT

d (x)P2u(x)φd(x)

= V(x + fd(x)) − V(x) −
1
4

P1u(x)P†2u(x)PT
1u(x) +

1
4

L(x)P†2u(x)LT(x)

≤ −min {V(x), c} , x ∈ Z. (4.15)

Hence, it follows from Theorem 3.2 that the zero solution x(t) ≡ 0 to (4.1) and (4.2) with uc = φc(x),
x < Z, given by (4.12) and ud = φd(x), x ∈ Z, given by (4.13), is finite time stable, which proves the
result. �

Theorem 4.3. Consider the controlled nonlinear impulsive dynamical system given by (4.1) and (4.2).
If there exist a continuously differentiable function V : Rn → R+ and continuous functions P1u : Rn →

R1×md , P2u : Rn → Nmd , and L : Rn → R1×md such that V(·) is positive definite, (4.3) holds, and

V(x + fd(x) + Gd(x)ud) = V(x + fd(x)) + P1u(x)ud + uT
d P2u(x)ud, x ∈ Rn, ud ∈ R

md , (4.16)
V ′(x) fc(x) ≤ −γ(V(x))α, x ∈ R, (4.17)

V(x + fd(x)) − V(x) −
1
4

P1u(x)P†2u(x)PT
1u(x) +

1
4

L(x)P†2u(x)LT(x) ≤ −min {V(x), c} , x ∈ Z, (4.18)

where γ > 0, α ∈ (0, 1), c > 0, and R , {x ∈ Rn, x < Z : V ′(x)Gc(x) = 0}, then the nonlinear
impulsive dynamical system (4.1) and (4.2) with the hybrid feedback control law (uc, ud) = (φc(·), φd(·))
given by

φc(x) =

 −
(
c0 +

(α(x)−wγ(V(x)))+
√

(α(x)−wγ(V(x)))2+(βT(x)β(x))2

βT(x)β(x)

)
β(x), β(x) , 0, x < Z,

0, β(x) = 0, x < Z,
(4.19)

and

φd(x) = −
1
2

P†2u(x)[L(x) + P1u(x)]T, x ∈ Z, (4.20)

where α(x) , V ′(x) fc(x), x ∈ Rn, β(x) , GT
c (x)V ′T(x), x ∈ Rn, wγ(V(x)) , −γ(V(x))α, x ∈ Rn, and

c0 > 0, is finite time stable.
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Proof. Note that between resettings the time derivative of V(·) along the trajectories of (4.1), with
uc = φc(x), x ∈ Rn, given by (4.19), is given by

V̇(x) = V ′(x)( fc(x) + Gc(x)φc(x))
= α(x) + βT(x)φc(x)

=

{
−c0β

T(x)β(x) −
√

(α(x) − wγ(V(x)))2 + (βT(x)β(x))2 + wγ(V(x), β(x) , 0,
α(x), β(x) = 0,

≤ wγ(V(x), x < Z. (4.21)

In addition, using (4.3) and (4.18), the difference of V(·) at the resetting instants, with ud = φd(x),
x ∈ Z, given by (4.20), is given by

∆V(x) = V(x + fd(x) + Gd(x)φd(x)) − V(x)
= V(x + fd(x)) − V(x) + P1u(x)φd(x) + φT

d (x)P2u(x)φd(x)

= V(x + fd(x)) − V(x) −
1
4

P1u(x)P†2u(x)PT
1u(x) +

1
4

L(x)P†2u(x)LT(x)

≤ −min {V(x), c} , x ∈ Z. (4.22)

Hence, it follows from Theorem 3.3 that the zero solution x(t) ≡ 0 to (4.1) and (4.2) with uc = φc(x),
x < Z, given by (4.19) and ud = φd(x), x ∈ Z, given by (4.20), is finite time stable, which proves the
result. �

Since fc(·) and Gc(·) are continuous and V(·) is continuously differentiable, it follows that α(x)
and β(x), x ∈ Rn, are continuous functions, and hence, φc(x) given by (4.6), (4.12), and (4.19) are
continuous for all x ∈ Rn if either β(x) , 0 or α(x) − wγ(V(x)) < 0. Hence, the feedback control
laws given by (4.6), (4.12), and (4.19) are continuous everywhere except for the origin. The following
result provides necessary and sufficient conditions under which the feedback control laws given by
(4.6), (4.12), and (4.19) are guaranteed to be continuous at the origin in addition to being continuous
everywhere else.

Proposition 4.1. The feedback control laws φc(x) given by (4.6) and (4.19) are continuous on Rn if
and only if for every ε > 0, there exists δ > 0 such that for all 0 < ‖x‖ < δ there exists uc ∈ R

mc such
that ‖uc‖ < ε and α(x) + βT(x)uc < wγ(V(x)).

Proof. The proof is similar to the proof of Proposition 5.1 in [28] and, hence, is omitted. �

Proposition 4.2. The feedback control law φc(x) given by (4.12) is continuous on Rn if and only if for
every ε > 0, there exists δ > 0 such that for all 0 < ‖x‖ < δ there exists uc ∈ R

mc such that ‖uc‖ < ε and
α(x) + βT(x)uc < 0.

Proof. The proof is similar to the proof of Theorem 6.8 in [11] and, hence, is omitted. �

Remark 4.1. If the conditions of Proposition 4.1 (respectively, Proposition 4.2) are satisfied, then
the feedback control laws φc(x) given by (4.6) and (4.19) (respectively, (4.12)) are continuous on Rn.
However, it is important to note that for a particular trajectory x(t), t ≥ 0, of (4.1) and (4.2), φc(x(t))
is left-continuous on [0,∞) and is continuous everywhere on [0,∞) except on an unbounded closed
discrete set of times when the resettings occur for x(t), t ≥ 0.
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5. Finite time stabilizing hybrid control for impulsive network systems

In this section, we apply the hybrid control frameworks developed in Section 4 to the control of
nonlinear impulsive network systems. Specifically, we consider the network dynamical system G
involving information exchange between n interconnected nodes or subsystems, where
xi : [0,∞) → R denotes the information of the ith subsystem, uci : [0,∞) → R denotes the control
input to the ith subsystem, σci j : Rn → R, i , j, i, j = 1, . . . , n, denotes the instantaneous rate of
information transfer from the jth subsystem to the ith subsystem between resettings, σdi j : Rn → R,
i , j, i, j = 1, . . . , n, denotes the amount of information transferred from the jth subsystem to the ith
subsystem at the resetting instant, andZ ⊂ Rn is a resetting set for the impulsive network system G.

An information balance for each subsystem Gi, i = 1, . . . n, representing a multiagent system yields
[10, 13]

ẋi(t) =

n∑
j=1, j,i

φci j(xi(t), x j(t)) + Gci(xi(t))uci(t), xi(t0) = xi0, xi(t) < Zi, t ≥ t0, (5.1)

∆xi(t) =

n∑
j=1, j,i

φdi j(xi(t), x j(t)) + Gdi(x(t))udi(t), xi(t) ∈ Zi, i = 1, . . . , n, (5.2)

whereZi ⊂ R, i ∈ {1, . . . , n}, or, equivalently, in vector form

ẋ(t) = fc(x(t)) + Gc(x(t))uc(t), x(t0) = x0, x(t) < Z, t ≥ t0, (5.3)
∆x(t) = fd(x(t)) + Gd(x(t))ud(t), x(t) ∈ Z, (5.4)

where x(t) = [x1(t), . . . , xn(t)]T, t ≥ t0, fci(x) =
∑n

j=1, j,i φci j(xi, x j), where φci j(xi, x j) , σci j(xi, x j) −
σc ji(xi, x j), i , j, i, j = 1, . . . , n, denotes the net information transfer from the jth subsystem to the ith
subsystem between resettings, Gc(x) = diag[Gc1(x1), . . . ,Gcn(xn)], x ∈ Rn, Gci : R → R, i = 1, . . . , n,
is such that xiGci(xi) = 0 if and only if xi = 0 for all i = 1, . . . , n, Gd(x) = diag[Gd1(x), . . . ,Gdn(x)],
x ∈ Z, Gdi : Rn → R, i = 1, . . . , n, uc(t) ∈ Rn, t ≥ t0, ud(tk) ∈ Rn, k ∈ Z, fdi(x) =

∑n
j=1, j,i φdi j(xi, x j),

where φdi j(xi, x j) , σdi j(xi, x j) − σd ji(xi, x j), xi ∈ Zi, i , j, i, j = 1, . . . , n, denotes the net amount
of information transferred from the jth subsystem to the ith subsystem at the instant of resetting, and
Z = ∪n

i=1{x ∈ R
n : xi ∈ Zi}.

Here, we assume that σci j(0) = 0, i , j, i, j = 1, . . . , n, and uc = [uc1, . . . , ucn]T : R → Rn is such
that uci : R → R, i = 1, . . . , n, are bounded piecewise continuous functions of time. Furthermore, we
assume that for i, j = 1, . . . , n, (xi− x j)φci j(xi, x j) ≤ 0, x < Z, (xi− x j)φdi j(xi, x j) ≤ 0, x ∈ Z, and (∆xi−

∆x j)/(xi − x j) ≥ −1, xi , x j, x ∈ Z. The first and second assumptions imply that information flows
from information rich subsystems to information poor subsystems between resettings as well as across
resetting events and in reminiscent of the second law of thermodynamics, whereas the third assumption
implies that for any pair of connected subsystems the information difference across resetting events is
monotonic. For further details of these assumptions, see [10].

For the dynamical system G given by (5.3) and (5.4) we construct feedback stabilizing controllers
using Theorems 4.1–4.3. Specifically, consider the Lyapunov function candidate V(x) = xTx, x ∈ Rn

and note that V(0) = 0 and V(x) > 0, x , 0, x ∈ Rn. It follows from (4.3) that

P1u(x) = 2(x + fd(x))TGd(x), (5.5)
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P2u(x) = GT
d (x)Gd(x). (5.6)

Furthermore, note that R , {x ∈ Rn, x < Z : V ′(x)Gc(x) = 0} = {x ∈ Rn, x < Z : xiGci(xi) = 0, i =

1, . . . , n} = {0}.
First, we use Theorem 4.1 to construct a finite-time stabilizing hybrid feedback controller for the

dynamical system G given by (5.3) and (5.4). Note that with α(x) = V ′(x) fc(x) = 2xT fc(x)
= 2

∑n
i=1

∑n
j=1, j,i xiφci j(xi, x j), β(x) = GT

c (x)V ′T(x) = 2GT
c (x)x, γ = 1, α = 0.5, and c0 > 0, a finite-time

stabilizing hybrid feedback controller (4.6) and (4.7) is given by

φc(x) =

 −
(
c0 +

2xT fc(x)+(xT x)1/2+
√

[2xT fc(x)+(xT x)1/2]2+[βT(x)β(x)]2

βT(x)β(x)

)
β(x), β(x) , 0, x < Z,

0, β(x) = 0, x < Z,
(5.7)

and, with L(x) = −2[x + fd(x)]TGd(x),

φd(x) = −
1
2

[GT
d (x)Gd(x)]†[L(x) + 2(x + fd(x))TGd(x)]T

= 0, x ∈ Z. (5.8)

Since R = {0}, (4.4) is trivially satisfied. Moreover, it follows from assumptions (xi− x j)φdi j(xi, x j) ≤ 0,
x ∈ Z, and (∆xi − ∆x j)/(xi − x j) ≥ −1, xi , x j, i, j = 1, . . . , n, x ∈ Z, that

V(x + fd(x)) − V(x) −
1
4

P1u(x)P†2u(x)PT
1u(x) +

1
4

L(x)P†2u(x)LT(x)

= (x + fd(x))T(x + fd(x)) − xTx

= 2
n∑

i=1

n∑
j=1, j,i

[xi + fdi(x)]φdi j(xi, x j) −
n∑

i=1

 n∑
j=1, j,i

φdi j(xi, x j)


2

= 2
n−1∑
i=1

n∑
j=i+1

[
xi + fdi(x) − x j − fd j(x)

]
φdi j(xi, x j)

−

n∑
i=1

 n∑
j=1, j,i

φdi j(xi, x j)


2

≤ 0, x ∈ Z, (5.9)

and hence, (4.5) is satisfied. Thus, it follows from Theorem 4.1 that the closed-loop system (5.3) and
(5.4) with hybrid feedback control law (5.7) and (5.8) is finite time stable.

Next, we use Theorem 4.2 to construct a finite-time stabilizing hybrid feedback controller for the
dynamical system G given by (5.3) and (5.4). The finite time stabilizing hybrid feedback controller
(4.12) and (4.13) is given by

φc(x) =

 −
(

2xT fc(x)+
√

[2xT fc(x)]2+[βT(x)β(x)]2

βT(x)β(x)

)
β(x), β(x) , 0, x < Z,

0, β(x) = 0, x < Z,
(5.10)
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and, with L(x) = [L1(x), . . . , Ln(x)], Li : R→ R, i = 1, . . . , n, Li(x) = −2Gdi(x)[xi−sign(xi) min{|xi|, c}],
where sign(xi) , xi/|xi|, xi , 0, sign(0) , 0,

φd(x) = −G†d(x)[x + fd(x)] −
1
2

[GT
d (x)Gd(x)]†LT(x)

= −G†d(x)
[
fd(x) + min{x, c}

]
, x ∈ Z, (5.11)

where min{x, c} = [sign(x1) min{|x1|, c}, . . . , sign(xn) min{|xn|, c}]T. Since R = {0}, (4.10) is trivially
satisfied. Moreover, note that

V(x + fd(x)) − V(x) −
1
4

P1u(x)P†2u(x)PT
1u(x) +

1
4

L(x)P†2u(x)LT(x)

= (x + fd(x))T(x + fd(x)) − xTx − (x + fd(x))TGd(x)
[
GT

d (x)Gd(x)
]†

GT
d (x)(x + fd(x))

+
1
4

L(x)
[
GT

d (x)Gd(x)
]†

LT(x)

=

n∑
i=1

[
(min{|xi|, c})2

− 2xisign(xi) min{|xi|, c}
]

≤ −

n∑
i=1

(min{|xi|, c})2

≤ −min

 n∑
i=1

x2
i , c

2


= −min{V(x), c2}, x ∈ Z, (5.12)

and hence, (4.11) is satisfied. Thus, it follows from Theorem 4.2 that the closed-loop system (5.3) and
(5.4) with hybrid feedback control law (5.10) and (5.11) is finite time stable.

Finally, we use Theorem 4.3 to construct a finite-time stabilizing hybrid feedback controller for
(5.3) and (5.4) using (4.19) and (4.20), given by

φc(x) =

 −
(
c0 +

2xT fc(x)+(xT x)1/2+
√

[2xT fc(x)+(xT x)1/2]2+[βT(x)β(x)]2

βT(x)β(x)

)
β(x), β(x) , 0, x < Z,

0, β(x) = 0, x < Z,
(5.13)

and, with L(x) = [L1(x) . . . Ln(x)], Li : R→ R, i = 1, . . . , n, Li(x) = −2Gdi(x)[xi − sign(xi) min{|xi|, c}],

φd(x) = −G†d(x)
[
fd(x) + min{x, c}

]
, x ∈ Z. (5.14)

Since R = {0}, (4.17) is trivially satisfied. Moreover, it follows from (5.12) that (4.18) is satisfied.
Thus, it follows from Theorem 4.3 that the closed-loop system (5.3) and (5.4) with hybrid feedback
control law (5.13) and (5.14) is finite time stable.

For the following simulations we consider (5.3) and (5.4) with σci j(xi, x j) = σci jx j, σdi j(xi, x j) =

σdi jx j, Gci(xi) = sign(xi)|xi|
−1/4, and Gdi = sign(xi)|xi|

1/2, where σci j ≥ 0, i , j, i, j = 1, . . . , n, σdi j ≥ 0,
i, j = 1, . . . , n. To show that the conditions of Proposition 4.1 are satisfied with control law (5.7) and
wγ(V(x)) , −γ(V(x))α, let uc = −1

2 [|x1|
1/4, . . . , |xn|

1/4]T and note that it follows from the assumption
(xi − x j)φci j(xi, x j) ≤ 0, i, j = 1, . . . , n, x < Z, that

α(x) + βT(x)uc = 2xT fc(x) + 2xTGc(x)uc
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= 2
n∑

i=1

n∑
j=1, j,i

xiφci j(xi, x j) −
n∑

i=1

xisign(xi)|xi|
−1/4|xi|

1/4

= 2
n−1∑
i=1

n∑
j=i+1

(
xi − x j

)
φci j(xi, x j) −

n∑
i=1

|xi|

< −

 n∑
i=1

|xi|
2

1/2

= wγ(V(x)), x ∈ Rn, x , 0. (5.15)

Thus, for every ε > 0 there exists δ > 0, such that for all 0 < ‖x‖ < δ there exists uc ∈ R
mc such that

‖uc‖ < ε and α(x) + βT(x)uc < wγ(V(x)), and hence, the continuous-time feedback control law (5.7) is
continuous on Rn. Similarly, it follows from (5.15) that the conditions of Proposition 4.2 (respectively,
Proposition 4.1) are satisfied with control law (5.10) (respectively, (5.13)), and hence, the continuous-
time feedback control law (5.10) (respectively, (5.13)) is continuous on Rn.

We set n = 2, σc12 = 1.5, σc21 = 1.5, σd12 = 0.25, σd21 = 0.25, c0 = 1, c = 0.5, and α = 0.5, with
the initial condition x0 = [8, 4]T. To construct the feedback control law (5.8), let L : R2 → R1×2 be
given by

L(x) = −2
[
(x1 + σd12x2 − σd21x1) sign(x1)|x1|

1/2

(x2 + σd21x1 − σd12x2) sign(x2)|x2|
1/2

]T

. (5.16)

Next, to construct the feedback control law (5.11) and (5.14), let L : R2 → R1×2 be given by

L(x) = −2
[
sign(x1)|x1|

3/2 − |x1|
1/2sign(x1) min{|x1|, c}

sign(x2)|x2|
3/2 − |x2|

1/2sign(x2) min{|x2|, c}

]T

, (5.17)

where c > 0. For our simulations we consider several different resetting sets.
For the first simulation, consider Z1 , {x1\{0} : x1 −

3
2 x2 = 0} and Z2 , {x2\{0} : x2 −

2
3 x1 = 0}.

Figure 1 shows the states of the closed-loop system with the feedback control law (5.7) and (5.8) versus
time, Figure 2 shows the phase portrait of the closed-loop system, where the dashed line denotes the
resetting setZI , Z1 ∪Z2 = {x ∈ R2\{0} : 3x2 − 2x1 = 0}, and Figure 3 shows the control signals as a
function of time. Next, Figure 4 shows the states of the closed-loop system with the feedback control
law (5.10) and (5.11) versus time, Figure 5 shows the phase portrait of the closed-loop system, where
the dashed line denotes the resetting setZ′I , {x ∈ R

2\{0} : 3x2 − 2x1 = 0} ∪ {x ∈ R2\{0} : V(x) < 0.1},
and Figure 6 shows the control signals as a function of time. Finally, Figure 7 shows the states of the
closed-loop system with the feedback control law (5.13) and (5.14) versus time, Figure 8 shows the
phase portrait of the closed-loop system, where the dashed line denotes the resetting set ZI = {x ∈
R2\{0} : 3x2 − 2x1 = 0}, and Figure 9 shows the control signals as a function of time.

For the next simulation, consider Z1 , {x1\{0} : x1 −
5
4 x2 = 0} and Z2 , {x2\{0} : x2 −

4
5 x1 = 0}.

Figure 10 shows the states of the closed-loop system with the feedback control law (5.7) and (5.8)
versus time, Figure 11 shows the phase portrait of the closed-loop system, where the dashed line
denotes the resetting set ZII , Z1 ∪ Z2 = {x ∈ R2\{0} : 5x2 − 4x1 = 0}, and Figure 12 shows the
control signals as a function of time. Next, Figure 13 shows the states of the closed-loop system with
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the feedback control law (5.10) and (5.11) versus time, Figure 14 shows the phase portrait of the closed-
loop system, where the dashed line denotes the resetting setZ′II , {x ∈ R

2\{0} : 5x2 − 4x1 = 0} ∪ {x ∈
R2\{0} : V(x) < 0.1}, and Figure 15 shows the control signals as a function of time. Finally, Figure
16 shows the states of the closed-loop system with the feedback control law (5.13) and (5.14) versus
time, Figure 17 shows the phase portrait of the closed-loop system, where the dashed line denotes the
resetting setZII = {x ∈ R2\{0} : 5x2 − 4x1 = 0}, and Figure 18 shows the control signals as a function
of time.

The achieved settling times of (5.3) and (5.4) with the different resetting sets and hybrid feedback
control laws are given in Table 1. Note that the hybrid feedback control law (5.10) and (5.11) does not
always outperform (5.7) and (5.8); its performance depends on the resetting set and initial condition.
However, note that the hybrid feedback control law (5.13) and (5.14) always outperforms the other two
hybrid controller architectures.

Table 1. Achieved settling time of G given by (5.3) and (5.4).

Resetting Set (5.7) & (5.8) (5.10) & (5.11) (5.13) & (5.14)
ZI T (x0) = 1.0848 s – T (x0) = 0.7543 s
Z′I – T (x0) = 0.8408 s –
ZII T (x0) = 1.0926 s – T (x0) = 0.8266 s
Z′II – T (x0) = 1.1306 s –
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Figure 1. Controlled system states versus time with control law (5.7) and (5.8), and resetting
setZI = {x ∈ R2\{0} : 3x2 − 2x1 = 0}.
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Figure 2. Phase portrait of the controlled system with control law (5.7) and and (5.8), and
resetting setZI = {x ∈ R2\{0} : 3x2 − 2x1 = 0}.
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Figure 3. Control signals in each control channel versus time with control law (5.7) and and
(5.8), and resetting setZI = {x ∈ R2\{0} : 3x2 − 2x1 = 0}.
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Figure 4. Controlled system states versus time with control law (5.10) and (5.11), and
resetting setZ′I , {x ∈ R

2\{0} : 3x2 − 2x1 = 0} ∪ {x ∈ R2\{0} : V(x) < 0.1}.
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Figure 5. Phase portrait of the controlled system with control law (5.10) and (5.11), and
resetting setZ′I , {x ∈ R

2\{0} : 3x2 − 2x1 = 0} ∪ {x ∈ R2\{0} : V(x) < 0.1}.
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Figure 6. Control signals in each control channel versus time with control law (5.10) and
and (5.11), and resetting setZ′I , {x ∈ R

2\{0} : 3x2 − 2x1 = 0} ∪ {x ∈ R2\{0} : V(x) < 0.1}.
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Figure 7. Controlled system states versus time with control law (5.13) and (5.14), and
resetting setZI = {x ∈ R2\{0} : 3x2 − 2x1 = 0}.
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Figure 8. Phase portrait of the controlled system with control law (5.13) and (5.14), and
resetting setZI = {x ∈ R2\{0} : 3x2 − 2x1 = 0}.
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Figure 9. Control signals in each control channel versus time with control law (5.13) and
and (5.14), and resetting setZI = {x ∈ R2\{0} : 3x2 − 2x1 = 0}.
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Figure 10. Controlled system states versus time with control law (5.7) and (5.8), and
resetting setZII = {x ∈ R2\{0} : 5x2 − 4x1 = 0}.
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Figure 11. Phase portrait of the controlled system with control law (5.7) and (5.8), and
resetting setZII = {x ∈ R2\{0} : 5x2 − 4x1 = 0}.
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Figure 12. Control signals in each control channel versus time with control law (5.7) and
(5.8), and resetting setZII = {x ∈ R2\{0} : 5x2 − 4x1 = 0}.
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Figure 13. Controlled system states versus time with control law (5.10) and (5.11), and
resetting setZ′II , {x ∈ R

2\{0} : 5x2 − 4x1 = 0} ∪ {x ∈ R2\{0} : V(x) < 0.1}.
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Figure 14. Phase portrait of the controlled system with (5.10) and (5.11), and resetting set
Z′II , {x ∈ R

2\{0} : 5x2 − 4x1 = 0} ∪ {x ∈ R2\{0} : V(x) < 0.1}.
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Figure 15. Control signals in each control channel versus time with control law (5.10) and
(5.11), and resetting setZ′II , {x ∈ R

2\{0} : 5x2 − 4x1 = 0} ∪ {x ∈ R2\{0} : V(x) < 0.1}.
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Figure 16. Controlled system states versus time with control law (5.13) and (5.14), and
resetting setZII = {x ∈ R2\{0} : 5x2 − 4x1 = 0}.
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Figure 17. Phase portrait of the controlled system with control law (5.13) and (5.14), and
resetting setZII = {x ∈ R2\{0} : 5x2 − 4x1 = 0}.
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Figure 18. Control signals in each control channel versus time with control law (5.13) and
(5.14), and resetting setZII = {x ∈ R2\{0} : 5x2 − 4x1 = 0}.

6. Conclusions

The notion of finite time stability for impulsive dynamical systems originally developed in [29] was
extended to develop new Lyapunov theorems for finite time stability of hybrid systems involving a
scalar differential inequality on the Lyapunov function for the continuous-time dynamics as well as a
scalar difference inequality and a minimum operator on the Lyapunov function for the discrete-time
resetting dynamics. These results were then used to develop universal finite-time stabilizing hybrid
controllers for nonlinear impulsive dynamical systems. Finally, the results were used to design hybrid
feedback stabilizers for several illustrative numerical examples involving network impulsive dynamical
systems. Future research will explore merging the results of [22, 24] with the results in this paper to
obtain finite time Lyapunov stability theorems for hybrid systems with time delay.
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