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Abstract: In this manuscript, we consider a class of nonlinear Langevin equations involving
two different fractional orders in the frame of Caputo fractional derivative with respect to another
monotonic function ϑ with antiperiodic boundary conditions. The existence and uniqueness results are
proved for the suggested problem. Our approach is relying on properties of ϑ-Caputo’s derivative, and
implementation of Krasnoselskii’s and Banach’s fixed point theorem. At last, we discuss the Ulam-
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results gained are provided. The results are novel and provide extensions to some of the findings
known in the literature.
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1. Introduction

The theme of fractional calculus (FC) has appeared as a broad and interesting research point due
to its broad applications in science and engineering. FC is now greatly evolved and embraces a wide
scope of interesting findings. To obtain detailed information on applications and recent results about
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this topic, we refer to [1–5] and the references therein.
Some researchers in the field of FC have realized that innovation for new FDs with many

non-singular or singular kernels is very necessary to address the need for more realistic modeling
problems in different fields of engineering and science. For instance, we refer to works of Caputo and
Fabrizio [6], Losada and Nieto [7] and Atangana-Baleanu [8]. The class of FDs and fractional
integrals (FIs) concerning functions is a considerable branch of FC. This class of operators with
analytic kernels is a new evolution proposed in [1, 9, 10]. Every one of these operators is appropriate
broader to cover various kinds of FC and catch diversified behaviors in fractional models. Joining the
previous ideas yields another, significantly wide, which is a class of function-dependent-kernel
fractional derivatives. This covers both of the two preceding aforesaid classes see [11, 12].

In another context, the Langevin equations (LEs) were formulated by Paul Langevin in 1908 to
describe the development of physical phenomena in fluctuating environments [13]. After that, diverse
generalizations of the Langevin equation have been deliberated by many scholars we mention here
some works [14–16]. Recently, many researchers have investigated sufficient conditions of the
qualitative properties of solutions for the nonlinear fractional LEs involving various types of
fractional derivatives (FDs) and by using different types of methods such as standard fixed point
theorems (FPTs), Leray-Schauder theory, variational methods, etc., e.g. [17–24]. Some recent results
on the qualitative properties of solutions for fractional LEs with the generalized Caputo FDs can be
found in [25–30], e.g., Ahmad et al. [25] established the existence results for a nonlinear LE involving
a generalized Liouville-Caputo-type ρ

cD
α1
a+

(
ρ
cD

α2
a+ + λ

)
z(ς) = F (ς, z(ς)), ς ∈ [a,T ], λ ∈ R,

z(a) = 0, z(η) = 0, z(T ) = µ ρIδa+z(ξ), a < η < ξ < T.
(1.1)

Seemab et al. [26] investigated the existence and UHR stability results for a nonlinear implicit LE
involving a ϑ-Caputo FD cD

α1,ϑ
a+

(
cD

α2,ϑ
a+ + λ

)
z(ς) = F (ς, z(ς),cD

α1,ϑ
a+ z(ς)), ς ∈ (a,T ), λ > 0,

z(a) = 0, z(η) = 0, z(T ) = µ Iδ;ϑa+ z(ξ), 0 ≤ a < η < ξ < T < ∞.
(1.2)

The Hyers-Ulam (U-H) stability and existence for various types of generalized FDEs are established
in the papers [31–43].

Motivated by the above works and inspired by novel developments in ϑ-FC, in the reported research,
we investigate the existence, uniqueness, and U-H-type stability of the solutions for the nonlinear
fractional Langevin differential equation (for short FLDE) described by

D
α2;ϑ
a+

(
D

α1;ϑ
a+ + λ

)
z(ς) = F (ς, z(ς)), ς ∈ J = [a, b],

z(a) = 0, z′(a) = 0, z′′(a) = 0,
D

α1;ϑ
a+ z(a) = Iδ;ϑa+ z(ξ),
D

α1;ϑ
a+ z(b) + κz(b) = 0,

(1.3)

where Dε;ϑ
a+ denote the ϑ-Caputo FD of order ε ∈ {α1, α2} such that α1 ∈ (2, 3], α2 ∈ (1, 2], ξ ∈ (a, b),

δ > 0, Iα1;ϑ
a+ is the ϑ-fractional integral of the Riemann-Liouville (RL) type, F : J × R → R is a

continuous function, and λ, κ ∈ R, ξ ∈ (a, b).
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The considered problem in this work is more general, in other words, when we take certain values
of function ϑ, the problem (1.3) is reduced to many problems in the frame of classical fractional
operators. Also, the gained results here are novel contributes and an extension of the evolution of
FDEs that involving a generalized Caputo operator, especially, the study of stability analysis of Ulam-
Hyers type of fractional Langevin equations is a qualitative addition to this work. Besides, analysis of
the results was restricted to a minimum of assumptions.

Here is a brief outline of the paper. Section 2 provides the definitions and preliminary results
required to prove our main findings. In Section 3, we establish the existence, uniqueness, and stability
in the sense of Ulam for the system (1.3). In Section 5, we give some related examples to light the
gained results.

2. Preliminaries and lemmas

We start this part by giving some basic definitions and results required for fractional analysis.
Consider the space of real and continuous functionsU = C(J,R) space with the norm

‖z‖∞ = sup{|z(ς)| : ς ∈ J}.

Let ϑ ∈ C1 = C1(J,R) be an increasing differentiable function such that ϑ′(ς) , 0, for all ς ∈ J.
Now, we start by defining ϑ-fractionals operators as follows:

Definition 2.1. [1] The ϑ-RL fractional integral of order α1 > 0 for an integrable function ω : J −→ R
is given by

I
α1;ϑ
a+ ω(ς) =

1
Γ(α1)

∫ ς

a
ϑ′(s)(ϑ(ς) − ϑ(s))α1−1ω(s)ds. (2.1)

Definition 2.2. [1] Let α1 ∈ (n − 1, n), n ∈ N, ω : J → R is an integrable function, and ϑ ∈ Cn(J,R),
the ϑ-RL FD of a function ω of order α1 is given by

D
α1;ϑ
a+ ω(ς) =

(
Dς

ϑ′(ς)

)n

I
n−α1;ϑ
a+ ω(ς),

where n = [α1] + 1 and Dς = d
dt .

Definition 2.3. [9] For α1 ∈ (n − 1, n), and ω, ϑ ∈ Cn(J,R), the ϑ-Caputo FD of a function ω of order
α1 is given by

cD
α1;ϑ
a+ ω(ς) = In−α1;ϑ

a+ ω[n]
ϑ (ς),

where n = [α1] + 1 for α1 < N, n = α1 for α1 ∈ N, and ω[n]
ϑ (ς) =

(
Dς

ϑ′(ς)

)n
ω(ς).

From the above definition, we can express ϑ-Caputo FD by formula

cD
α1;ϑ
a+ ω(ς) =


∫ ς

a
ϑ′(s)(ϑ(ς)−ϑ(s))n−α1−1

Γ(n−α1) ω[n]
ϑ (s)ds , if α1 < N,

ω[n]
ϑ (ς) , if α1 ∈ N.

(2.2)

Also, the ϑ-Caputo FD of order α1 of ω is defined as

cD
α1;ϑ
a+ ω(ς) = D

α1;ϑ
a+

ω(ς) −
n−1∑
k=0

ω[k]
ϑ (a)
k!

(ϑ(ς) − ϑ(a))k

 .
For more details see [9, Theorem 3].
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Lemma 2.4. [1] For α1, α2 > 0, and ω ∈ C(J,R), we have

I
α1;ϑ
a+ I

α2;ϑ
a+ ω(ς) = I

α1+α2;ϑ
a+ ω(ς), a.e. ς ∈ J.

Lemma 2.5. [44] Let α1 > 0.
If ω ∈ C(J,R), then

cD
α1;ϑ
a+ I

α1;ϑ
a+ ω(ς) = ω(ς), ς ∈ J,

and if ω ∈ Cn−1(J,R), then

I
α1;ϑ
a+

cD
α1;ϑ
a+ ω(ς) = ω(ς) −

n−1∑
k=0

ω[k]
ϑ (a)
k!

[ϑ(ς) − ϑ(a)]k , ς ∈ J.

for all ς ∈ J. Moreover, if m ∈ N be an integer and ω ∈ Cn+m(J,R) a function. Then, the following
holds: (

1
ϑ′(ς)

d
dt

)m

· D
α1;φ
a+ ω(ς) = cD

a+m;φ
a+ ω(ς) +

m−1∑
k=0

(ϑ(ς) − ϑ(a))k+n−α̂1−m

Γ(k + n − α1 − m + 1)
ω[k+n]
ϑ (a) (2.3)

Observe that from Eq (2.3), if ω[k]
ϑ (a) = 0, for all k = n, n + 1, . . . , n + m − 1 we can get the following

relation
z[m]
ϑ · D

a,ϑ
a+ z(ς) = cD

α1+m;ϑ
a+ z(ς), ς ∈ J

Lemma 2.6. [1, 9] For ς > a, α1 ≥ 0, α2 > 0, we have

• I
α1;ϑ
a+ (ϑ(ς) − ϑ(a))α2−1 =

Γ(α2)
Γ(α2+α1) (ϑ(ς) − ϑ(a))α2+α1−1,

• cD
α1;ϑ
a+ (ϑ(ς) − ϑ(a))α2−1 =

Γ(α2)
Γ(α2−α1) (ϑ(ς) − ϑ(a))α2−α1−1,

• cD
α1;ϑ
a+ (ϑ(ς) − ϑ(a))k = 0,∀k ∈ {0, . . . , n − 1}, n ∈ N.

Theorem 2.7. (Banach’s FPT [45]). Let (R, d) be a nonempty complete metric space with a contraction
mapping G : R → R i.e., d(Gz,Gκ) ≤ L d(z, κ) for all z, κ ∈ R, where L ∈ (0, 1) is a constant. Then G
possesses a unique fixed point.

Theorem 2.8. (Kransnoselskii’s FPT [46]). Let E be a Banach space. Let S is a nonempty convex,
closed and bounded subset of E and let A1, A2 be mapping from S to E such that:
(i) A1z + A2κ ∈ S whenever z, κ ∈ S
(ii) A1 is continuous and compact;
(iii) A2 is a contraction.
Then there exists z ∈ S such that z = A1z + A2z.

3. Main results

This portion interests in the existence, uniqueness, and Ulam stability of solutions to the suggested
problem (1.3).

The next auxiliary lemma, which attentions the linear term of a problem (1.3), plays a central role
in the afterward findings.
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Lemma 3.1. Let α1 ∈ (2, 3], α2 ∈ (1, 2]. Then the linear BVP
D

α2;ϑ
a+

(
Dα1;ϑ + λ

)
z(ς) = σ(ς), ς ∈ J = [a, b],

z(a) = 0, z′(a) = 0, z′′(a) = 0,
D

α1;ϑ
a+ z(a) = Iδ;ϑa+ z(γ),
D

α1;ϑ
a+ z(b) + κz(b) = 0,

(3.1)

has a unique solution defined by

z(ς) = I
α1+α2;ϑ
a+ σ(ς) − λIα1;ϑ

a+ z(ς) + µ(ς)Iδ;ϑa+ σ(ξ)

+ ν(ς)
{
λ(κ − λ)Iα1;ϑ

a+ z(b) − (κ − λ)Iα1+α2;ϑ
a+ σ(b) − Iα2;ϑ

a+ σ(b) −$Iδ;ϑa+ z(ξ)
}
,

(3.2)

where

µ(ς) =
(ϑ(ς) − ϑ(a))α1

Γ(α1 + 1)
, (3.3)

and

ν(ς) =
(ϑ(ς) − ϑ(a))α1+1

(ϑ(b) − ϑ(a)) Γ(α1 + 2) + (κ − λ)
, (3.4)

with

$ =

(
1 +

(κ − λ)
Γ(α1 + 1)

)
, (3.5)

Proof. Applying the RL operator Iα2;ϑ
a+ to (3.1) it follows from Lemma 2.5 that(

D
α1
a+ + λ

)
z(ς) = c0 + c1 (ϑ(ς) − ϑ(a)) + I

α2;ϑ
a+ σ(ς), ς ∈ (a, b]. (3.6)

Again, we apply the RL operator Iα1;ϑ
a+ and use the results of Lemma 2.5 to get

z(ς) =I
α1+α2;ϑ
a+ σ(ς) − λIα1

a+z(ς)

+ c0
(ϑ(ς) − ϑ(a))α1+1

Γ(α1 + 2)
+ c1

(ϑ(ς) − ϑ(a))α1

Γ(α1 + 1)
+ c2 (ϑ(ς) − ϑ(a))2 + c3 (ϑ(ς) − ϑ(a)) + c4,

(3.7)

where c0, c1, c2, c3, c4 ∈ R. By utilizing the boundary conditions in (3.1) and (3.7), we obtain c2 =

0, c3 = 0, c4 = 0.
Hence,

z(ς) =I
α1+α2;ϑ
a+ σ(ς) − λIα1

a+z(ς) + c0
(ϑ(ς) − ϑ(a))α1+1

Γ(α1 + 2)
+ c1

(ϑ(ς) − ϑ(a))α1

Γ(α1 + 1)
, (3.8)

Now, by using the conditionsDα1;ϑ
a+ z(a) = Iδ;ϑa+ z(γ) andDα1;ϑ

a+ z(b) + κz(b) = 0, we get

c1 = Iδ;ϑa+ z(ξ), (3.9)

c0 =

(
(ϑ(ς) − ϑ(a))α1+1

(ϑ(b) − ϑ(a)) Γ(α1 + 2) + (κ − λ)

)
×

{
λ(κ − λ)Iα1;ϑ

a+ z(b) − (κ − λ)Iα1+α2;ϑ
a+ σ(b) − Iα2;ϑ

a+ σ(b) −
(
1 +

(κ − λ)
Γ(α1 + 1)

)
I
δ;ϑ
a+ z(ξ)

}
.

(3.10)

Substituting c0 and c1 in (3.8), we finish with (3.2).
The reverse direction can be shown easily with the help of results in Lemmas 2.5 and 2.6, i.e. Eq (3.2)
solves problem (3.1). This ends the proof. �
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Now, we shall need to the following lemma:

Lemma 3.2. The functions µ and ν are continuous functions on J and satisfy the following properties:
(1) µ∗ = max0≤ς≤b |µ(ς)|,
(2) ν∗ = max0<ς<b |ν(ς)|,
where µ and ν are defined by Lemma 3.1.

Here, we give the following hypotheses:
(H1) The function F : J × R→ R is continuous.
(H2) There exists a constant L > 0 such that

|F (ς, z) − F (ς, κ)| ≤ L|z − κ|, ς ∈ J, z, κ ∈ R.

(H3) There exist positive functions h(ς) ∈ C (J,R+) with bounds ‖h‖ such that

|F (ς, z(ς))| ≤ h(ς), for all (ς, z) ∈ J × R.

For simplicity, we denote
M := sup

ς∈[a,b]
|F (ς, 0)|.

∆ : =

{(
L

(ϑ(b) − ϑ(a))α1+α2

Γ(α1 + α2 + 1)
(1 + ν∗|κ − λ|) + |λ| (1 + ν∗|κ − λ|)

(ϑ(b) − ϑ(a))α1

Γ(α1 + 1)

)
+

(
Lν∗

(ϑ(b) − ϑ(a))α2

Γ(α2 + 1)
+ (µ∗ + ν∗|$|)

(ϑ(ξ) − ϑ(a))δ

Γ(δ + 1)

)}
,

(3.11)

G
χ
ϑ(ς, s) =

ϑ′(s)(ϑ(ς) − ϑ(s))χ−1

Γ(χ)
, χ > 0. (3.12)

As a result of Lemma 3.1, we have the subsequent lemma:

Lemma 3.3. Suppose that F : J × R→ R is continuous. A function z(ς) solves (1.3) if and only if it is
a fixed-point of the operator G : U → U defined by

Gz(ς) =

∫ ς

a
G
α1+α2
ϑ (ς, s)F (s, z(s)) ds + λ

∫ ς

a
G
α1
ϑ (ς, s)z(s)ds

+ µ(ς)
∫ ξ

a
Gδϑ(ξ, s)F (s, z(s)) ds

+ ν(ς)
{
λ(κ − λ)

∫ b

a
G
α1
ϑ (b, s)z(s)ds − (κ − λ)

∫ b

a
G
α1+α2
ϑ (b, s)F (s, z(s)) ds

−

∫ b

a
G
α2
ϑ (b, s)F (s, z(s)) ds −$

∫ ξ

a
Gδϑ(ξ, s)z(s)ds

}
.

(3.13)

Now, we are willing to give our first result which based on Theorem 2.7.

Theorem 3.4. Suppose that (H1) and (H2) hold. If ∆ < 1, where ∆ is given by (3.11), then there exists
a unique solution for (1.3) on the interval J.
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Proof. Thanks to Lemma 3.1, we consider the operator G : U → U defined by (3.13). Thus, G is well
defined as F is a continuous. Then the fixed point of G coincides with the solution of FLDE (1.3).
Next, the Theorem 2.7 will be used to prove that G has a fixed point. For this end, we show that G is a
contraction.

Let BR = {z ∈ U : ‖z‖ ≤ R}, where R > MΛ1
1−LΛ1−Λ2

. Since

|F (s, z(s)| = |F (s, z(s)) − F (s, 0) + F (s, 0)|
≤ |F (s, z(s)) − F (s, 0)| + |F (s, 0)|
≤ (L |z(s)| + |F (s, 0)|)

≤ LR +M

we obtain

|Gz(ς)| =
∫ ς

a
G
α1+α2
ϑ (ς, s)|F (s, z(s))|ds + |λ|

∫ ς

a
G
α1
ϑ (ς, s)|z(s)|ds

+ µ∗
∫ ξ

a
Gδϑ(ξ, s)|z(s)|ds + ν(ς)

{
|λ(κ − λ)|

∫ b

a
G
α1
ϑ (b, s)|z(s)|ds

+ (κ − λ)
∫ b

a
G
α1+α2
ϑ (b, s)|F (s, z(s))|ds +

∫ b

a
G
α2
ϑ (b, s)|F (s, z(s))|ds

+$

∫ ξ

a
Gδϑ(ξ, s)|z(s)|ds

}
≤ LR +M

{∫ ς

a
G
α1+α2
ϑ (ς, s)|F (s, z(s))|ds + ν(ς)

{
|κ − λ|

∫ b

a
G
α1+α2
ϑ (b, s)|F (s, z(s))|ds

+ν∗
∫ b

a
G
α2
ϑ (b, s)|F (s, z(s))|ds

}
+ R

{
|λ|

∫ ς

a
G
α1
ϑ (ς, s)|z(s)|ds + µ∗

∫ ξ

a
Gδϑ(ξ, s)|z(s)|ds + ν(ς)

{
|λ(κ − λ)|

∫ b

a
G
α1
ϑ (b, s)|z(s)|ds

+$

∫ ξ

a
Gδϑ(ξ, s)|z(s)|ds

}}
≤ LR +M

{
(ϑ(b) − ϑ(a))α1+α2

Γ(α1 + α2 + 1)
(1 + ν∗|κ − λ|) + ν∗

(ϑ(b) − ϑ(a))α2

Γ(α2 + 1)

}
+ R

{
|λ| (1 + ν∗|κ − λ|)

(ϑ(b) − ϑ(a))α1

Γ(α1 + 1)
+ (µ∗ + ν∗|$|)

(ϑ(ξ) − ϑ(a))δ

Γ(δ + 1)

}
≤ (LR +M)Λ1 + Λ2R ≤ R.

(3.14)
which implies that ‖Gz‖ ≤ R, i.e.,

GBR ⊆ BR.

Now, let z, κ ∈ U. Then, for every ς ∈ J, using (H2), we can get

AIMS Mathematics Volume 6, Issue 6, 5518–5534.
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|Gκ(ς) − Gz(ς)| ≤
∫ ς

a
G
α1+α2
ϑ (ς, s)|F (s, κ(s)) − F (s, z(s))|ds + |λ|

∫ ς

a
G
α1
ϑ (ς, s)|κ(s) − z(s)|ds

+ µ∗
∫ ξ

a
Gδϑ(ξ, s)|κ(s) − z(s)|ds + ν(ς)

{
|λ(κ − λ)|

∫ b

a
G
α1
ϑ (b, s)|κ(s) − z(s)|ds

+ |κ − λ|

∫ b

a
G
α1+α2
ϑ (b, s)|F (s, κ(s)) − F (s, z(s))|ds

+

∫ b

a
G
α2
ϑ (b, s)|F (s, κ(s)) − F (s, z(s))|ds +$

∫ ξ

a
Gδϑ(ξ, s)|κ(s) − z(s)|ds

}
≤

∫ ς

a
LG

a+α2
ϑ (ς, s)|κ(s) − z(s)|ds + |λ|

∫ ς

a
G
α1
ϑ (ς, s)|κ(s) − z(s)|ds

+ µ∗
∫ ξ

a
Gδϑ(ξ, s)|κ(s) − z(s)|ds + ν(ς)

{
|λ(κ − λ)|

∫ b

a
G
α1
ϑ (b, s)|κ(s) − z(s)|ds

+ (κ − λ)
∫ b

a
G
α1+α2
ϑ (b, s)L|κ(s) − z(s)|ds

+

∫ b

a
G
α2
ϑ (b, s)L|κ(s) − z(s)|ds +$

∫ ξ

a
Gδϑ(ξ, s)|κ(s) − z(s)|ds

}
=

∫ ς

a

(
LG

α1+α2
ϑ (ς, s) + |λ|Gα1

ϑ (ς, s)
)
|κ(s) − z(s)|ds

+ (µ∗ + ν∗ |$|)
∫ ξ

a
Gδϑ(ξ, s)|κ(s) − z(s)|ds

+ ν∗
∫ b

a

(
|κ − λ|

(
λGα1

ϑ (b, s) +LG
α1+α2
ϑ (ς, s)

)
+LG

α2
ϑ (b, s)

)
|κ(s) − z(s)|ds

≤ ‖κ − z‖∞

{∫ ς

a

(
LG

α1+α2
ϑ (ς, s) + |λ|Gα1

ϑ (ς, s)
)

ds + (µ∗ + ν∗ |$|)
∫ ξ

a
Gδϑ(ξ, s)ds

+ν∗
∫ b

a

(
|κ − λ|

(
λGα1

ϑ (b, s) +LG
α1+α2
ϑ (ς, s)

)
+LG

α2
ϑ (b, s)

)
ds

}
(3.15)

Also note that ∫ ς

a
G
χ
ϑ(ς, s)ds ≤

(ϑ(b) − ϑ(a))χ

Γ(χ + 1)
, χ > 0.

Using the above arguments, we get

‖Gκ − Gz‖∞ ≤
{(
L

(ϑ(b) − ϑ(a))α1+α2

Γ(α1 + α2 + 1)
(1 + ν∗|κ − λ|) + |λ| (1 + ν∗|κ − λ|)

(ϑ(b) − ϑ(a))α1

Γ(α1 + 1)

)
+

(
Lν∗

(ϑ(b) − ϑ(a))α2

Γ(α2 + 1)
+ (µ∗ + ν∗|$|)

(ϑ(ξ) − ϑ(a))δ

Γ(δ + 1)

)}
‖κ − z‖∞

= ∆‖κ − z‖∞.

As ∆ < 1, we derive that G is a contraction. Hence, by Theorem 2.7, G has a unique fixed point which
is a unique solution of FLDE (1.3). This ends the proof. �
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Now, we apply the Theorem 2.8 to obtain the existence result.

Theorem 3.5. Let us assume (H1)–(H3) hold. Then FLDE (1.3) has at least one solution on J if Λ3 < 1,
where it is supposed that

Λ3 :=
{(
L

(ϑ(b) − ϑ(a))α1+α2

Γ(α1 + α2 + 1)
(ν∗|κ − λ|) + |λ| (ν∗|κ − λ|)

(ϑ(b) − ϑ(a))α1

Γ(α1 + 1)

)
+

(
Lν∗

(ϑ(b) − ϑ(a))α2

Γ(α2 + 1)
+ (µ∗ + ν∗|$|)

(ϑ(ξ) − ϑ(a))δ

Γ(δ + 1)

)}
.

Proof. By the assumption (H3), we can fix

ρ ≥
λ1‖h‖

(1 − λ2)
,

where Bρ = {z ∈ U : ‖z‖ ≤ ρ}. Let us split the operator G : U → U defined by (3.13) as G = G1 + G2,

where G1 and G2 are given by

G1z(ς) =

∫ ς

a
G
α1+α2
ϑ (ς, s)F (s, z(s)) ds + λ

∫ ς

a
G
α1
ϑ (ς, s)z(s)ds, (3.16)

and

G2z(ς) = µ(ς)
∫ ξ

a
Gδϑ(ξ, s)F (s, z(s)) ds

+ ν(ς)
{
λ(κ − λ)

∫ b

a
G
α1
ϑ (b, s)z(s)ds − (κ − λ)

∫ b

a
G
α1+α2
ϑ (b, s)F (s, z(s)) ds

−

∫ b

a
G
α2
ϑ (b, s)F (s, z(s)) ds −$

∫ ξ

a
Gδϑ(ξ, s)z(s)ds

}
.

(3.17)

The proof will be split into numerous steps:
Step 1: G1(z) + G2(z) ∈ Bρ.

‖G1z + G2z1‖ = sup
ς∈J
|G1z(ς) + G2z1(ς)|

≤

∫ ς

a
G
α1+α2
ϑ (ς, s)|F (s, z(s))|ds + |λ|

∫ ς

a
G
α1
ϑ (ς, s)|z(s)|ds

+ µ∗
∫ ξ

a
Gδϑ(ξ, s)|z(s)|ds + ν(ς)

{
|λ(κ − λ)|

∫ b

a
G
α1
ϑ (b, s)|z(s)|ds

+ |κ − λ|

∫ b

a
G
α1+α2
ϑ (b, s)|F (s, z(s))|ds

+

∫ b

a
G
α2
ϑ (b, s)|F (s, z(s))|ds +$

∫ ξ

a
Gδϑ(ξ, s)|z(s)|ds

}
(3.18)
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≤ ‖h‖
{∫ ς

a
G
α1+α2
ϑ (ς, s)|F (s, z(s))|ds + ν(ς)

{
|κ − λ|

∫ b

a
G
α1+α2
ϑ (b, s)|F (s, z(s))|ds

+ν∗
∫ b

a
G
α2
ϑ (b, s)|F (s, z(s))|ds

}
+ ρ

{
|λ|

∫ ς

a
G
α1
ϑ (ς, s)|z(s)|ds + µ∗

∫ ξ

a
Gδϑ(ξ, s)|z(s)|ds + ν(ς)

{
|λ(κ − λ)|

∫ b

a
G
α1
ϑ (b, s)|z(s)|ds

+$

∫ ξ

a
Gδϑ(ξ, s)|z(s)|ds

}}
≤ ‖h‖

{
(ϑ(b) − ϑ(a))α1+α2

Γ(α1 + α2 + 1)
(1 + ν∗|κ − λ|) + ν∗

(ϑ(b) − ϑ(a))α2

Γ(α2 + 1)

}
+ ρ

{
|λ| (1 + ν∗|κ − λ|)

(ϑ(b) − ϑ(a))α1

Γ(α1 + 1)
+ (µ∗ + ν∗|$|)

(ϑ(ξ) − ϑ(a))δ

Γ(δ + 1)

}
≤ ‖h‖Λ1 + Λ2ρ ≤ ρ.

(3.19)

Hence
‖G1(z) + G2(z1)‖ ≤ ρ,

which shows that G1z + G2z1 ∈ Bρ.

Step 2: G2 is a contraction map on Bρ.
Due to the contractility of G as in Theorem 3.4, then G2 is a contraction map too.

Step 3: G1 is completely continuous on Bρ.
From the continuity of F (·, z(·)), it follows that G1 is continuous.

Since

‖G1z‖ = sup
ς∈J
|G1z(ς)| ≤

∫ ς

a
G
α1+α2
ϑ (ς, s)|F (s, z(s))|ds + |λ|

∫ ς

a
G
α1
ϑ (ς, s)|z(s)|ds

≤ ‖h‖
(ϑ(b) − ϑ(a))α1+α2

Γ(α1 + α2 + 1)
+ |λ|

(ϑ(b) − ϑ(a))α1

Γ(α1 + 1)
ρ := N , z ∈ Bρ,

we get ‖G1z‖ ≤ N which emphasize that G1 uniformly bounded on Bρ.
Finally, we prove the compactness of G1.
For z ∈ Bρ and ς ∈ J, we can estimate the operator derivative as follows:∣∣∣(G1z)(1)

ϑ (ς)
∣∣∣ ≤ ∫ ς

a
G
α1+α2−1
ϑ (ς, s)|F (s, z(s))|ds + |λ|

∫ ς

a
G
α1−1
ϑ (ς, s)|z(s)|ds

≤ ‖h‖
(ϑ(b) − ϑ(a))α1+α2

Γ(α1 + α2 + 1)
+ |λ|

(ϑ(b) − ϑ(a))α1

Γ(α1 + 1)
ρ := `,

where we used the fact

Dk
ϑ I

α1,ϑ
a+ = I

α1−k,ϑ
a+ , ω(k)

ϑ (ς) =

(
1

ϑ′(ς)
d

dς

)k

ω(ς) for k = 0, 1, ..., n − 1.

Hence, for each ς1, ς2 ∈ J with a < ς1 < ς2 < b and for z ∈ Bρ, we get

|(G1z) (ς2) − (G1z) (ς1)| =
∫ ς2

ς1

|(G1z)′(s)| ds ≤ `(ς2 − ς1),
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which as (ς2 − ς1) tends to zero independent of z. So, G1 is equicontinuous. In light of the foregoing
arguments along with Arzela–Ascoli theorem, we derive that G1 is compact on Bρ. Thus, the
hypotheses of Theorem 2.8 holds, so there exists at least one solution of (1.3) on J. �

4. Ulam-Hyers stability analysis for the ϑ-Caputo FLDE (1.3)

In the current section, we are interested in studying Ulam-Hyers (U-H) and the generalized Ulam-
Hyers stability types of the problem (1.3).

Let ε > 0. We consider the next inequality:∣∣∣∣Dα2;ϑ
a+

(
D

a;ϑ
a+ − λ

)
z̃(ς) − F (ς, z̃(ς))

∣∣∣∣ ≤ ε, ς ∈ J. (4.1)

Definition 4.1. FLDE (1.3) is stable in the frame of U-H type if there exists cF ∈ R+ such that for
every ε > 0 and for each solution z̃ ∈ U of the inequality (4.1) there exists a solution z ∈ U of (1.3)
with

|z̃(ς) − z(ς)| ≤ εcF , ς ∈ J.

Definition 4.2. FLDE (1.3) has the generalized U-H stability if there exists CF : C (R+,R+) along with
CF (0) = 0 such that for every ε > 0 and for each solution z̃ ∈ U of the inequality (4.1), a solution
z ∈ C(J,R) of (1.3) exists uniquely for which

|z̃(ς) − z(ς)| ≤ CF (ε), ς ∈ J.

Remark 4.3. A function z̃ ∈ U is a solution of the inequality (4.1) if and only if there exists a function
% ∈ U (which depends on solution z̃ ) such that

1.|%(ς)| ≤ ε, ς ∈ J.
2.Dα2;ϑ

a+

(
D

a,ϑ
a+ − λ

)
z̃(ς) = F (ς, z̃(ς)) + %(ς), ς ∈ J.

Theorem 4.4. Let ∆ < 1, (H1) and (H2) hold. Then the FLDE (1.3) is U-H stable on J and
consequently generalized U-H stable.

Proof. For ε > 0 and z̃ ∈ C(J,R) be a function which fulfills the inequality (4.1). Let z ∈ U the unique
solution of 

D
α2;ϑ
a+

(
Dα1;ϑ + λ

)
z(ς) = F (ς, z(ς)), ς ∈ J = [a, b],

z(a) = 0, z′(a) = 0, z′′(a) = 0,
D

α1;ϑ
a+ z(a) = Iδ;ϑa+ z(γ),
D

α1;ϑ
a+ z(b) + κz(b) = 0.

(4.2)

By Lemma 3.1, we have

z(ς) =

∫ ς

a
G
α1+α2
ϑ (ς, s)F (s, z(s)) ds + λ

∫ ς

a
G
α1
ϑ (ς, s)z(s)ds

+ µ(ς)
∫ ξ

a
Gδϑ(ξ, s)F (s, z(s)) ds

+ ν(ς)
{
λ(κ − λ)

∫ b

a
G
α1
ϑ (b, s)z(s)ds − (κ − λ)

∫ b

a
G
α1+α2
ϑ (b, s)F (s, z(s)) ds

−

∫ b

a
G
α2
ϑ (b, s)F (s, z(s)) ds −$

∫ ξ

a
Gδϑ(ξ, s)z(s)ds

}
.

(4.3)
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Since we have assumed that z̃ is a solution of (4.1), hence by Remark 4.3
D

α2;ϑ
a+ (Dα1;ϑ

a+ + λ)̃z(ς) = F (ς, z̃(ς)) + %(ς), ς ∈ J = [0, b],
z(a) = 0, z′(a) = 0, z′′(a) = 0,
D

α1;ϑ
a+ z(a) = Iδ;ϑa+ z(γ),
D

α1;ϑ
a+ z(b) + κz(b) = 0.

(4.4)

Again by Lemma 3.1, we have

z̃(ς) =

∫ ς

a
G
α1+α2
ϑ (ς, s)F (s, z̃(s)) ds + λ

∫ ς

a
G
α1
ϑ (ς, s)̃z(s)ds

+ µ(ς)
∫ ξ

a
Gδϑ(ξ, s)F (s, z̃(s)) ds

+ ν(ς)
{
λ(κ − λ)

∫ b

a
G
α1
ϑ (b, s)̃z(s)ds − (κ − λ)

∫ b

a
G
α1+α2
ϑ (b, s)F (s, z̃(s)) ds

−

∫ b

a
G
α2
ϑ (b, s)F (s, z̃(s)) ds −$

∫ ξ

a
Gδϑ(ξ, s)̃z(s)ds

}
+

∫ ς

a
G
α1+α2
ϑ (ς, s)% (s) ds + µ(ς)

∫ ξ

a
Gδϑ(ξ, s)% (s) ds

+ ν(ς)
{

(λ − κ)
∫ b

a
G
α1+α2
ϑ (b, s)% (s) ds −

∫ b

a
G
α2
ϑ (b, s)% (s) ds

}
.

(4.5)

On the other hand, for any ς ∈ J

|z̃(ς) − z(ς)| ≤
∫ ς

a
G
α1+α2
ϑ (ς, s)|%(s)|ds + ν∗|κ − λ|

∫ b

a
G
α1+α2
ϑ (b, s)|%(s)|ds + ν∗

∫ b

a
G
α2
ϑ (b, s)|%(s)|ds

+

∫ ς

a
G
α1+α2
ϑ (ς, s)|F (s, κ(s)) − F (s, z(s))|ds + |λ|

∫ ς

a
G
α1
ϑ (ς, s)|κ(s) − z(s)|ds

+ µ∗
∫ ξ

a
Gδϑ(ξ, s)|κ(s) − z(s)|ds + ν(ς)

{
|λ(κ − λ)|

∫ b

a
G
α1
ϑ (b, s)|κ(s) − z(s)|ds

+ (κ − λ)
∫ b

a
G
α1+α2
ϑ (b, s)|F (s, κ(s)) − F (s, z(s))|ds

+

∫ b

a
G
α2
ϑ (b, s)|F (s, κ(s)) − F (s, z(s))|ds +$

∫ ξ

a
Gδϑ(ξ, s)|κ(s) − z(s)|ds

}
.

Using part (i) of Remark 4.3 and (H2), we get

|z̃(ς) − z(ς)| ≤
(
(ϑ(b) − ϑ(a))α1+α2

Γ(α1 + α2 + 1)
[ν∗|κ − λ| + 1] + ν∗

(ϑ(b) − ϑ(a))α2

Γ(α2 + 1)

)
ε + ∆‖z̃ − z‖,

where ∆ is defined by (3.11). In consequence, it follows that

‖z̃ − z‖∞ ≤
(
(ϑ(b) − ϑ(a))α1+α2

Γ(α1 + α2 + 1)
[ν∗|κ − λ| + 1]

(1 − ∆)
+

ν∗

(1 − ∆)
(ϑ(b) − ϑ(a))α2

Γ(α2 + 1)

)
ε.

If we let cF =
(

(ϑ(b)−ϑ(a))α1+α2

Γ(α1+α2+1)
[ν∗(κ−λ)+1]

(1−∆) + ν∗

(1−∆)
(ϑ(b)−ϑ(a))α2

Γ(α2+1)

)
, then, the U-H stability condition is satisfied.

More generally, for CF (ε) =
(

(ϑ(b)−ϑ(a))α1+α2

Γ(α1+α2+1)
[ν∗ |κ−λ|+1]

(1−∆) + ν∗

(1−∆)
(ϑ(b)−ϑ(a))α2

Γ(α2+1)

)
ε ; CF (0) = 0 the generalized

U-H stability condition is also fulfilled. �
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5. Examples

This section is intended to illustrate the reported results with relevant examples.

Example 5.1. We formulate the system of FLDE in the frame of Caputo type:
cD1.2

0+

(
cD2.5

0+ + 0.4
)

z(ς) = 1
eς+9

(
1 +

|z(ς)|
1+|z(ς)|

)
, ς ∈ [0, 1],

z(0) = 0, z′(0) = 0, z′′(0) = 0,
D

1.2;ς
0+ z(0) = I0.5;ϑ

0+ z(0.1),
D

1.2;ς
0+ z(1) + 0.5z(1) = 0.

(5.1)

In this case we take

α1 = 2.5, α2 = 1.2, λ = 0.4, κ = 0.5, δ = 0.5, ξ = 0.1, a = 0, b = 1, ϑ(ς) = ς

and F (ς, z) =
1

eς + 9

(
1 +

|z(ς)|
1 + |z(ς)|

)
.

Obviously, the hypothesis (H1) of the Theorem 3.4 is fulfilled. On the opposite hand, for each ς ∈
[0, 1], z, κ ∈ R we have

|F (ς, z) − F (ς, κ)| ≤
1

10
|z − κ|.

Hence, (H2) holds with L = 0.1. Thus, we find that ∆ = 0.7635 < 1. Since all the assumptions in
Theorem 3.4 hold, the FLDE (5.1) has a unique solution on [0, 1]. Moreover, Theorem 4.4 ensures that
the FLDE (1.3) is U-H stable and generalized U-H stable.

Example 5.2. We formulate the system of FLDE in the frame of Hadamard type:
HD

1.5;ln ς
1+

(
HD

2.7;ln ς
1+ + 0.18

)
z(ς) = 1

(ς+1)2 (1 + sin z(ς)), ς ∈ [1, e],
z(1) = 0, z′(1) = 0, z′′(1) = 0,
HD

1.5;ln ς
1+ z(1) = HI

0.9;ln ς
1+ z(2),

HD
1.5;ln ς
1+ z(e) + 0.2z(e) = 0.

(5.2)

Here

F (ς, z(ς)) =
1

5(ς + 1)2 (1 + sin z(ς)). (5.3)

Obviously, the assumption (H1) of the Theorem 3.4 holds. On the other hand, for any ς ∈ [1, e], z, κ ∈ R
we get

|F (ς, z) − F (ς, κ)| ≤
1

10
|z − κ|.

Consequently, (H2) holds with L = 0.1. Besides, by computation directly we find that ∆ = 0.8731 < 1.
To illustrate Theorem 3.5, it is clear that the function f satisfies (H1) and (H3) with ‖h‖ = 0.1.

In addition, Λ3 ≈ 0.7823 < 1. It follows from theorem 3.5 that the FLDE (5.2) has a unique solution
on [1, e].
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Example 5.3. We formulate the system of FLDE in the frame of ϑ-Caputo type:
cD

1.9;ϑ
0+

(
cD

2.9;ϑ
0+ + 0.25

)
z(ς) = eς

4(eς+1) (1 + arctan z(ς)), ς ∈ [0, 1],
z(0) = 0, z′(0) = 0, z′′(0) = 0,
D

α1;ϑ
0+ z(0) = I5.4;ϑ

a+ z(0.3),
D

α1;ϑ
0+ z(1) + 0.1z(1) = 0.

(5.4)

Take
α1 = 1.9, α2 = 2.5, λ = 0.25, δ = 5.4, κ = 0.1, ξ = 0.3, a0 = 0, b0 = 1, ϑ(ς) = eς

F (ς, z) =
eς

4(eς + 1)
(1 + arctan z(ς)). (5.5)

For any ς ∈ [0, 1], z, κ ∈ R we obtain

|F (ς, z) − F (ς, κ)| ≤
1
8
|z − κ|.

Hence, (H2) holds with L = 0.125. Moreover, by computation directly we find that ∆ = 0.7133 < 1. It
follows from Theorem 3.4 that FLDE (5.4) has a unique solution on [0, 1].

To illustrate Theorem 3.5, it is clear that the function F (ς, z) given by (5.5) satisfies the
hypotheses (H1)–(H3) with ‖h‖ = 0.125. and Λ3 ≈ 0.3247 < 1. It follows from Theorem 3.5 that the
FLDE (5.2) has a unique solution on [0, 1].

6. Conclusions

In this reported article, we have considered a class of nonlinear Langevin equations involving two
different fractional orders in the frame of Caputo function-dependent-kernel fractional derivatives
with antiperiodic boundary conditions. The existence and uniqueness results are established for the
suggested problem. Our perspective is based on properties of ϑ-Caputo’s derivatives and applying of
Krasnoselskii’s and Banach’s fixed point theorems. Moreover, we discuss the Ulam-Hyers stability
criteria for the at-hand problem. Some related examples illustrating the effectiveness of the theoretical
results are presented. The results obtained are recent and provide extensions to some known results in
the literature. Furthermore, they cover many fractional Langevin equations that contain classical
fractional operators.
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