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1. Introduction and definitions

The function class H (E) is a collection of the function f which are holomorphic in the open unit
disc

E={z:2zeC and |7 <1}.


http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2021320

5422

Let A, denote the class of all functions f which are analytic and p-valent in the open unit disk £ and
has the Taylor series expansion of the form

f@=2+ ) ad, (peN={12,.). (1.1)

n=p+1

For briefly, we write as:
A = A.

Moreover, S represents the subclass of A which is univalent in open unit disk £. Further in
area of Geometric Function Theory, numerous researchers offered their studies for the class of analytic
function and its subclasses as well. The role of geometric properties is remarkable in the study of
analytic functions, for instance convexity, starlikeness, close-to-convexity. A function f € A, is
known as p-valently starlike (S’;,) and convex (7(,,) , whenever it satisfies the inequality

%(Zf’(z)

Q) )> 0, (zekE)

and

zf"(2)
/'@

Moreover, a function f(z) € A,, is said to be p-valently starlike function of order @, written as
f@) € S, (), if and only if

?’\(1+ )>O, (z€ E).

% (Zf (2)

f(@)

Similarly, a function f(z) € A,, is said to be p-valently convex functions of order a, written as f(z) €
K,(@), if and only if

)>a/, (z€ E).

II(Z)
‘R(I+Zf, )>a/, (z € E),
/(@
for some 0 < @ < p. In particular, we have
S,0) =S,
and
K,(0) = K,

The convolution (Hadamard product) of f(z) and g(z) is defined as:

(o)

f@)*8@) = ) anba?" = 82 % (2,

n=0

where

[

f@ =) aandg@) = ) b, (z€E).

n=0 n=0
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Let # denote the well-known Carathéodory class of functions m, analytic in the open unit disk E of the
form

m@) =1+ ) e, (1.2)
n=1
and satisfy
R (m(z)) > 0.

The quantum (or g-) calculus has a great important because of its applications in several fields of
mathematics, physics and some related areas. The importance of g-derivative operator (D,) is pretty
recongnizable by its applications in the study of numerous subclasses of analytic functions. Initially in
1908, Jackson [14] defined the g-analogue of derivative and integral operator as well as provided some
of their applications. Further in [11] Ismail et al. gave the idea of g-extension of class of g-starlike
functions after that Srivastava [37] studied g-calculus in the context of univalent functions theory,
also numerous mathematician studied g-calculus in the context of geometric functions theory. Kanas
and Raducanu [17] introduced the g-analogue of Ruscheweyh differential operator and Arif et al. [3,4]
discussed some of its applications for multivalent functions while Zhang et al. in [50] studied g-starlike
functions related with generalized conic domain €, ,. By using the concept of convolution Srivastava
et al. [40] introduced g-Noor integral operator and studied some of its applications, also Srivastava
et al. published set of articles in which they concentrated class of g-starlike functions from different
aspects (see [24,41,42,44,46,47]). Additionally, a recently published survey-cum-expository review
article by Srivastava [38] is potentially useful for researchers and scholars working on these topics. For
some more recent investigation about g-calculus we may refer to [1, 18-23,25,31-34,38,39,45].

For better understanding of the article we recall some concept details and definitions of the g-
difference calculus. Throughout the article we presume that

0<g<1 and peN={1,2,3.}.

Definition 1. ( [10]) The g-number [¢], for g € (0, 1) is defined as:

t

L= (teC),

1-g°
[t]q = nl
Y4, (@t=neN).
k=0

Definition 2. The g-factorial [n],! for g € (0, 1) is defined as:

1, (n=0),

(=1,
k]:[l[k]q , (n € N).

Definition 3. The g-generalized Pochhammer symbol [f],. 4, € C, is defined as:

1, (n=0),
[t]n,q =
([t + 11t + 20t + 1= 11, (n € N),
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And the g-Gamma function be defined as:
,+1)=[t],I';,(r) and T ,(1)=1.

Definition 4. The g-integral of any function f(z) was defined be Jackson [15] as follows:

f f@dz=0-9z) fdDq"
n=0

provided that the series on right hand side converges absolutely.

Definition S. ( [14]) For given ¢ € (0, 1), the g-derivative operator or g-difference operator of f is
defined by:

f(@) - f(qz2)
-9z °

1+ > [l
n=2

Now we extend the idea of g-difference operator to a function f given by (1.1) from the class A,
as:

D,f(2) 2#0,q#1, (1.3)

Definition 6. For f € A,, let the g-derivative operator (or g-difference operator) be defined as:

D,f(2) J‘((Zi:—;‘;gz)’ z#0,q#1,
= [pl, 27"+ ] Il (1.4)
n=p+1

We can observe that for p = 1, and ¢ — 1—in (1.4) we have
lim D, f(2) = f@.

Definition 7. An analytic function f(z) € S; (a, g) of p-valent g-starlike functions of order « in E, if
f(z) € A,, satisfies the condition

R (Zqu(Z)

7Q) ) >a, (z€E),

for some 0 < a < p.

Definition 8. An analytic function f(z) € K,(a, q) of p-valent g-convex functions of order @ in E, if
f(2) € A,, satisfies the condition

{Dq (2D,f(2))

for some 0 < @ < p.
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Remark 1. Let f(z) € A,, it follows that

2Dy f(2)

f(@) € K,(a, g) if and only if
[r],

€S, (a,q)

and
Z

f(z) € S; (a, q) if and only if fwdqf € Ky(a, q).
0

Remark 2. By putting value of parameters @ and p we can get some new subclasses of analytic
functions:

S, (@) =S8,0.9), S (a.q) =S| (a.q9), K,(q) =%K,(0,q) and K(a. q) = Ki(a,q).
Remark 3. By taking ¢ — 1—, then we obtain two known subclasses S, (@) and K, (@) of p-valently

starlike and convex functions of order «, introduced by Hayami and Owa in [12].
Letn € Ny and j € N. The jth Hankel determinant was introduced and studied in [29]:

ay Apil -+ Apyj-1

Apyl Apy2 .- Apyj2
H](I’l): ,

Apij-1 Apij2...Api2j-2

where a; = 1. The Hankel determinant H,(1) represents a Fekete-Szego functional |a3 - a§|. This
functional has been further generalized as |a3 - ,ua§| for some real or complex number u and also the
functional |a2a4 - a§| is equivalent to H»(2) (see [16]). Babalola [5] studied the Hankel determinant
H3(1) (see also [43]). The symmetric Toeplitz determinant 7'j(n) is defined as follows:

ay  dpyl-.. Qpyj-]
A+l
Tin)=| ... cee e |, (1.5)
Apyj-1 a,
so that
ar as ay
ne=|0 U e U hOs|a e o

ay as ay
and so on. The problem of finding the best possible bounds for ||a,+;| — |a,|| has a long history (see [8]).
In particular, several authors [13,44] have studied T ;(n) for several classes.

For our simplicity, we replace n = n + p — 1, into (1.5), then the symmetric Toeplitz determinant
Tj(n) can be written as:

Aptp-1 pip - Apiptj-2
an+p . . RS
Tin+p-1)= ,
Aptp+j-2 cee Aptp-1
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so that

Tp+1) = | %ﬂ|,n@+m:
Api2 Ap+1

Ap+l Api2 ap+3
T3(P + 1) = apy2 apyl apy2
api3 apy2 ap+1

p+2 api3
ap.3 apy2

Hankel determinants generated by perturbed Gaussian, Laguerre and Jacobi weights play an important
role in Random Matrix Theory, since they represent the partition functions for the perturbed Gaussian,

Laguerre and Jacobi unitary ensembles, see for example [7,26-28,49].
2. A set of Lemmas

In order to discuss our problems, we need some lemmas.

Lemma 1. (see [8]). If a function m(z) = 1 + § c,Z" € P, then

n=1

lc,l <2, n>1.

The inequality is sharp for
+2Z

f@)=—
Lemma 2. If a function m(z) = [p], + i c,7" satisfies the following inequality
n=1

R (m(z)) > a

for some a, (0 < a < p), then
el <2([p), @), n2 1.

The result is sharp for

[p], +([p], - 22)2 =
e g2l

m(z) = — S 2l
Proof. Let
I(2) = ’E;(Z) 1+ Z

Noting that /(z) €  and using Lemma 1, we see that

which implies

O
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Remark 4. When ¢ — 1—, then Lemma 2, reduces to the lemma which was introduced by Hayami et
al. [12].

Lemma 3. ( [36]) If m is analytic in E and of the form (1.2), then
2¢; = ¢t + x(4 - ¢})

and
4y =] +2(4 = Dex — (4 — D + 24 — (1 - [¥)z,

for some x, z € C, with |zl < 1, and |x| < 1.
By virtue of Lemma 3, we have

Lemma 4. If m(z) = [p], + Z c,2" satisfy R(m(z) > a, for some a (0 < a < p), then

2(1ply - @)ex = ¢t + {4 (1wl - a) - i}

and

4([p]q - a)2 c; = c? + 2{4 ([p]q - a/)2 - cf} c1x— {4 ([p]q - a)2 - c%} X’ +

2(1pl, - ) {4 (11, - ) -t - [

for some x, z € C, with |z < 1, and |x| < 1.

and 1n Lemma 3,

[p] —a [p]
respectively, we 1mrned1ately have the relations of Lemma 4. O

Proof. Since I(z) = M =1+ Z [p ——7" € P, replacing ¢, and c3 by

Remark 5. When g — 1—, then Lemma 4, reduces to the lemma which was introduced by Hayami et
al. [12].

Lemma 5. ( [9]) Let the function m(z) given by (1.2) having positive real part in E. Also let u € C,
then
lc, — pcrcnil < 2max (1,2u—-1)), 1 <k <n-—-k.

3. Main results

Theorem 1. Let the function f given by (1.1) belong to the class S,(a, q), then

] 2(pl, — @
S 1], - el
lapes| < 2(lpl, - @ {1+ 2(lpl, - @ }
r = Ip+2l, - pl, [p+1],-[pl, )
2(lpl, — @
lapss| < W +3l, - 17, [1 +2([p], — A {P3 +2([p], - a)}] )

where A, is given by (3.6).
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Proof. Let f € S8*(a,q), then their exist a function P(z) = [pl, + > c,Z" such that R(m(z)) > @ and
n=1

Z(qu)(z) - (@)
o

which implies that
2(Def) @ = m@f ().

Therefore, we have
n—1

(In), = [p),) an = " ascu, 3.1

I=p

wheren > p+1l,a,=1,¢ = [p]q . From (3.1), we have

C1

q = — 3.2
T e, 1, G
SV S D — , (3.3)
[p+2],-[p], (lp+11,-[p,)

_ 1 3

api3 = [p n 3]q ~ [p]q {Cg + Ajcicp + AzCl} , (34)
where
A = Aops, (3.5)
1

Ay = , (3.6)

(lp+ 11, - [p),) ([P + 21, - [P],)
ps = [p+1],+[p+2],-2[p],. (3.7)
By using Lemma 2, we obtain the required result. m|

Theorem 2. Let an analytic function f given by (1.1) be in the class S,(a, q), then

2 ([P]q - CV) Qg

To((p+ 1) < As|Qu +4([p], - @) Qs+ O + Q|1 - 5 ,

where ( )

2 2 [P]q -a
As=4([pl,—a) [+ +Q)], Q = FESISTIR (3.8)

2 ([p]q B a)

Q —_ 3.9
T el -1, 59
% = 2([pl, - @) Az oy +2(Ip], ~ )} (3.10)

AIMS Mathematics Volume 6, Issue 6, 5421-5439.
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1
Qp = Qs = 2A3A5 — Aypy, (3.11)

(lp+11,-1p1,)"
4A,
Qs = — Aop3ps,
“ T (e, -te) Y

2
Q; = (3.12)

(Ip+21,-1p1,)"

Qg = pg=

1
(lp + 11, - Ip1,) (Ip + 31, - [P1,)

(3.13)

Proof. A detailed calculation of T5(p + 1) is in order.

2 2
Ti(p+1)= (ap+1 - ap+3) (ap+1 - 2ap+2 + ap+1ap+3) ,

where a,.1, a,+>, and a,.3 1is given by (3.2), (3.3) and (3.4).
Now if f € S8*(«a, g), then we have

IA

|ap+l| + |ap+3| ’

Q)+ (1 +Q,), (3.14)

|ap+1 - ap+3|

IA

where Q, Q,, Q3, is given by (3.9), (3.10) and (3.11).

We need to maximize |a[2)Jrl — Zaf”z + ap+1ap+3’ for f € S*(a, q), so by writing a,,1, dps2, dps3 in

terms of ¢y, ¢, c3, with the help of (3.2), (3.3) and (3.4), we get

2 2
|ap+l - 2ap+2 + al’+1a17+3|

< |Q4C% — §25C‘11 - .Q.6C%C2 - Q7C§ + Qgcicsl,
Qsc102
< Quct + Qsct + Ques + Qgey ez — o (3.15)
8

Finally applying Lemmas 2 and 5 along with (3.14) and (3.15), we obtained the required result. O

Forg — 1-, p = 1 and @ = 0, we have following known corollary.

Corollary 1. ( [2]). Let an analytic function f be in the class S*, then
T5(2) < 84.
Theorem 3. If an analytic function f given by (1.1) belongs to the class S, (a, q), then

4
([pl, - @)*(p +21, - [p])*

2
|aP+1aP+3 - ap+2| =
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Proof. Making use of (3.2), (3.3) and (3.4), we have

Ap+1Qp+3 — a;2;+2
= pacics + (Ayp3 — B) cier — D5 + (Aaps — AaAy) ¢,

where 1 n
Z) = 58 = 2

(p+2l,-1pl,)  P+2l-Ipl

By using Lemma 3 and we take Y = 4([p]q - a/)2 -ctand Z = (1 - |x|2) z. Without loss of

generality we assume that ¢ = ¢y, (0 <c<?2 ([p] - a)), so that

Aps1Qpi3 — af,+2 = Lt + LYAx = 30EP — 4023 + AsTeZ, (3.16)
where
1L = P4 . Aop3 — B D D (Arps — Ay \y)
| = _ _
4(pl, -  2(pl,—o 4(p],-@? 4(p], — @?
b o= P4 N Aop3 — B D
2 = - B
2([p),—@?*  2pl,-» 2(pl,-@?
D
o= —2 == pi

a(pl, - T AQpl, -0 7 2(pl, - @)

Taking the modulus on (3.16) and using triangle inequality, we find that

2
|ap+1ap+3 - ap+2|

IA

il e + 0] T x| + |43 T |l + 1] 2 [x + |4s] (1 = ) X

G(c, |xD).

Now, trivially we have
G (c|x) >0

on [0, 1], which shows that G(c, |x]) is an increasing function in an interval [0, 1], therefore maximum
value occurs at x = 1 and Max G(c, |1]) = G(c¢).

G, 1) = [l ¢ + 142 T + 143 T + || T

and
G(c) = || c* + o] T + | 43| T? + 4] T2

Hence, by putting T = 4 — ¢? and after some simplification, we have
G(©) = (1] = 1Al = 1] + D) ¢* + 4 (1] + 143] = 2| Aa) € + 16 |44].
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We consider G (¢) = 0, for optimum value of G(c), which implies that ¢ = 0. So G(c) has a maximum
value at ¢ = 0. Hence the maximum value of G(c) is given by

16 |A4]. (3.17)
Which occurs at ¢ = 0 or
2 _ 4 (|2 + 13| = 2|44
|41 = ] = |As] + [l

Hence, by putting 14 = ML_Q)Z and D = m in (3.17) and after some simplification, we
q sl P VI

obtained the desired result. O

Forg — 1—, p = 1 and a = 0, we have following known corollary.

Corollary 2. ( [16]). If an analytic function f belongs to the class S*, then
|a2a4 - a§| <1.

3.1. Fekete—Szego problem
Theorem 4. Let f be the function given by (1.1) belongs to the class S)(a, q), 0 < @ < p, then

2([‘”]4_0‘) B '
m{pl paH} ifu < ps,

2([‘D]q_a)
([p+21,-Lr1,)’

([r],<)
(Lo+11,-Le1,) (121, L1,

2 .
Qap+2 _luap+1| < l.fp5 < H < Pos

){pzu -pi}, if = pe,

where

o = [2(1n), - a)([p+1] [])+([p+11q—[p1q)2}’
P2 = 2([p]q_ )([

pPs =
(Ip+11, - p]q)( —a+(p+1],-pl,))
(Ipl, - @) ([p +2],-[pl,) '

Proof. From (3.2) and (3.3) and we can suppose that ¢; = ¢ (O <c <2(p] g a)), without loss of
generality we derive

Ps =

2
|ap+2 - :uap+l |

l7 ‘{pl Pt} + ([p+ 1], - [p]q)2 {4([p]q B a)2 ) Cz}p'
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= Ap),

where
pr=2(Ipl, - @) (Ip + 11, - [p1,) (Ip +21, - [],).

Applying the triangle inequality, we deduce

Alp) < p% ltor = o & + ([p + 1, - [p],) {4 (tp), ~ ) - Cz}

1

Lf2(1p1, - @) o1 — prat} @ + o], if p < ps,

L 2{(tpl, - @) (Ip + 21, - [P1,) = pro} & +po] if = ps,

where

pPs =
(
2

po = 4(Ipl,—a) (lp+11,-[p],) -
po = (lp+11,~[l){(p), ~ )+ (Ip + 11, - [p),)}.
( [r],)

P11 =

P13 =

2( [p]q—a)
([p+21,-[71,)

{p1 = pap}, if u < ps, 622([p]q—6¥),

2([”]0_“)

—_— if ps <u<pg, c=0,
([P+2]q—[l’]q) Ps =M1 =P8

IA

2([p]q_a)

L if ps < 4t < pg. € =0,
(Lr+21,101,) "

pisfoo = {2(Ipl, - @)pn + P4 )} ifu 2 pe, c=2([p], - a).

If ¢ = 1- in Theorem 4, we thus obtain the following known result.
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Corollary 3. ([12]). Let f be the function given by (1.1) belongs to the class S)(@), 0 < @ < p, then

(P-{2(p-a)+ 1} -4(p-a)y}, ifu < 3,
aper — p,| < (p-a, ify <p< i
P-@Bp-u-2@-a)+ 1)), ifuzrs

3.2. Applications of our main results

In this section, firstly we recall that the g-Bernardi integral operator for multivalent functions
L(f) = B] ; given in [35] as:

Let f € A,, then L:A, — A, is called the g-analogue of Benardi integral operator for multivalent
functions defined by L(f) = 8B , with 8 > —p, where, B] , is given by

[p+Bl, (7
Bl ) = 7 1 fo A f(td,t (3.18)
= Zp + Man+‘pzn+P’ z € E,

“—n+p+pl

= 7+ Z Brsplnsp?"F . (3.19)

n=1

The series given in (3.19) converges absolutely in E.
Remark 6. For ¢ — 1—, then the operator 8:143 reduces to the integral operator studied in [48].
Remark 7. For p = 1, we obtain the g-Bernardi integral operator introduced in [30].

Remark 8. 1f ¢ — 1— and p = 1, we obtain the familiar Bernardi integral operator studied in [6].

Theorem 5. If f is of the form (1.1), belongs to the class S)(a, q), and
qu,”gf(z) =z’ + Z Bn+pan+pzn+p,
n=1

where B?%ﬁ is the integral operator given by (3.18), then

o] < 2pl =)
(lp + 11, = [P1y) By

o] < 2Pl {1 L2l }
(lp+2,- 1)) Bpa | ([P + 11, — [Ply) Bpus

layes] 2([ply — @) [1 N 2([ply - a)pm] ’
(lp +31, - [ply) Bpea P15
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where
pe = {((lp+ 11, = [p)g) Bpr + ([P + 21, — [Ply) Bpea) + 2(1p], - @)},
pis = ([p+1],— 1) ([P + 21, = [P)g) Bpr1Bpea-
Proof. The proof follows easily by using (3.19) and Theorem 1. O

Theorem 6. Let an analytic function f given by (1.1) be in the class S)(«, q), in addition Bz.ﬁ is the
integral operator defined by (3.18) and is of the form (3.19), then

2
5+ 4([p),— @) Qo+ 5

p+l p+2
T((p+ 1) <73 ,

Qs 2([P]q—0)3p+18p+3911
Bp+18p+3 - Qg
where
2 Q] Qz
T; = 4 -a + 1 +Q)],
3 ([P]q ) [Bp+l Bp+3( 9)
P14
Q = A|—],
’ g (Bp+18p+2)
Qi = As—As, Qi =As— A,
A 2MA, _ Aopy
YT e g T B 8,8,
p+1="p+2 p+12p+22p+3
A 4N,
6 = ’
([p + 2]q - [p]q) Bp+lB§,+2
AgArp4
M= B g g
p+12p+22p+3
As = ([p+1],~ply) By +([p + 2], ~ [P],) Bpa.
Proof. The proof follows easily by using (3.19) and Theorem 2. O

Theorem 7. If an analytic function f given by (1.1) belongs to the class S,(a, q), in addition BZ,;; is
the integral operator is defined by (3.18) and is of the form (3.19), then

4
(Ipl, - @2 (Ip+21,~[p),) B,

2
|ap+lap+3 - ap+2| <
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Theorem 8. Let f be the function given by (1.1) belongs 1o the class S, (a, q), in addition Bgﬁ is the
integral operator defined by (3.18) and is of the form (3.19), then

2([p]q_a)

ol P8l ifuspn

2([p]q—a)

P — i SH P18,
([p+2]q_[p]q)817+2 if p17 S < pig

2
Api2 _:uap+l| B

ZAZ([p]q—a)

(Lp+11,-1r), )82, 802

{PzBp+2ﬂ - ,016} , if u = pis,

where
Pie = {2 ([P]q - CY) ([P + 1]q - [P]q) B + ([p + l]q - [p]q)2 Bfm} ’

e (Ip+ 11, = [p1,) Bper {2([p), — @) + ([p + 11, = [P],) By} - 1
: 2(1p), - @) (Ip +21, - [p1,) Bz ’

o = (Ip+ 11, = [p1,) Bpe1 (P, = @ + ([p + 11, - [P],) Bp1)
§ (7], - @) (1p+ 21, - [71,) Bpeo ’

and N\, is given by (3.6).
4. Conclusions

Motivated by a number of recent works, we have made use of the quantum (or g-) calculus to define
and investigate new subclass of multivalent g-starlike functions in open unit disk £. We have studied
about Hankel determinant, Toeplitz matrices, Fekete—Szego inequalities. Furthermore we discussed
applications of our main results by using g-Bernardi integral operator for multivalent functions. All
the results that have discussed in this paper can easily investigate for the subclass of meromorphic
g-convex functions (K,(a, q)) of order « in E, respectively.

Basic (or g-) series and basic (or g-) polynomials, especially the basic (or g-) hypergeometric
functions and basic (or g-) hypergeometric polynomials, are applicable particularly in several diverse
areas (see [38], p328). Moreover, in this recently-published survey-cum expository review article by
Srivastava [38], the so called (p, g)-calculus was exposed to be a rather trivial and inconsequential
variation of the classical g-calculus (see for details [38], p340).

By this observation of Srivastava in [38], we can make clear link between the g-analysis and (p, q)-
analysis and the results for g-analogues which we have included in this paper for 0 < g < 1, can be
easily transformed into the related results for the (p, g)-analogues with (0 < g < p < 1).
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