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1. Introduction and definitions

The function class H (E) is a collection of the function f which are holomorphic in the open unit
disc

E = {z : z ∈ C and |z| < 1} .
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Let Ap denote the class of all functions f which are analytic and p-valent in the open unit disk E and
has the Taylor series expansion of the form

f (z) = zp +

∞∑
n=p+1

anzn, (p ∈ N = {1, 2, ...}). (1.1)

For briefly, we write as:
A1 = A.

Moreover, S represents the subclass of A which is univalent in open unit disk E. Further in
area of Geometric Function Theory, numerous researchers offered their studies for the class of analytic
function and its subclasses as well. The role of geometric properties is remarkable in the study of
analytic functions, for instance convexity, starlikeness, close-to-convexity. A function f ∈ Ap is
known as p-valently starlike

(
S∗p

)
and convex

(
Kp

)
, whenever it satisfies the inequality

<

(
z f ′(z)
f (z)

)
> 0, (z ∈ E)

and

<

(
1 +

z f ′′(z)
f ′(z)

)
> 0, (z ∈ E).

Moreover, a function f (z) ∈ Ap, is said to be p-valently starlike function of order α, written as
f (z) ∈ S∗p (α) , if and only if

<

(
z f ′(z)
f (z)

)
> α, (z ∈ E).

Similarly, a function f (z) ∈ Ap, is said to be p-valently convex functions of order α, written as f (z) ∈
Kp(α), if and only if

<

(
1 +

z f ′′(z)
f ′(z)

)
> α, (z ∈ E),

for some 0 ≤ α < p. In particular, we have

S∗p (0) = S∗p

and
Kp(0) = Kp.

The convolution (Hadamard product) of f (z) and g(z) is defined as:

f (z) ∗ g(z) =

∞∑
n=0

anbnzn = g(z) ∗ f (z),

where

f (z) =

∞∑
n=0

anzn and g(z) =

∞∑
n=0

bnzn, (z ∈ E).
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Let P denote the well-known Carathéodory class of functions m, analytic in the open unit disk E of the
form

m(z) = 1 +

∞∑
n=1

cnzn, (1.2)

and satisfy
< (m(z)) > 0.

The quantum (or q-) calculus has a great important because of its applications in several fields of
mathematics, physics and some related areas. The importance of q-derivative operator (Dq) is pretty
recongnizable by its applications in the study of numerous subclasses of analytic functions. Initially in
1908, Jackson [14] defined the q-analogue of derivative and integral operator as well as provided some
of their applications. Further in [11] Ismail et al. gave the idea of q-extension of class of q-starlike
functions after that Srivastava [37] studied q-calculus in the context of univalent functions theory,
also numerous mathematician studied q-calculus in the context of geometric functions theory. Kanas
and Raducanu [17] introduced the q-analogue of Ruscheweyh differential operator and Arif et al. [3,4]
discussed some of its applications for multivalent functions while Zhang et al. in [50] studied q-starlike
functions related with generalized conic domain Ωk,α. By using the concept of convolution Srivastava
et al. [40] introduced q-Noor integral operator and studied some of its applications, also Srivastava
et al. published set of articles in which they concentrated class of q-starlike functions from different
aspects (see [24, 41, 42, 44, 46, 47]). Additionally, a recently published survey-cum-expository review
article by Srivastava [38] is potentially useful for researchers and scholars working on these topics. For
some more recent investigation about q-calculus we may refer to [1, 18–23, 25, 31–34, 38, 39, 45].

For better understanding of the article we recall some concept details and definitions of the q-
difference calculus. Throughout the article we presume that

0 < q < 1 and p ∈ N = {1, 2, 3...} .

Definition 1. ( [10]) The q-number [t]q for q ∈ (0, 1) is defined as:

[t]q =


1−qt

1−q , (t ∈ C),

n−1∑
k=0

qk , (t = n ∈ N).

Definition 2. The q-factorial [n]q! for q ∈ (0, 1) is defined as:

[n]q! =


1, (n = 0),

n∏
k=1

[k]q , (n ∈ N).

Definition 3. The q-generalized Pochhammer symbol [t]n,q, t ∈ C, is defined as:

[t]n,q =


1, (n = 0),

[t]q[t + 1]q[t + 2]q...[t + n − 1]q, (n ∈ N).
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And the q-Gamma function be defined as:

Γq(t + 1) = [t]qΓq(t) and Γq(1) = 1.

Definition 4. The q-integral of any function f (z) was defined be Jackson [15] as follows:∫
f (z)dqz = (1 − q) z

∞∑
n=0

f (qnz) qn

provided that the series on right hand side converges absolutely.

Definition 5. ( [14]) For given q ∈ (0, 1) , the q-derivative operator or q-difference operator of f is
defined by:

Dq f (z) =
f (z) − f (qz)

(1 − q)z
, z , 0, q , 1, (1.3)

= 1 +

∞∑
n=2

[n]qanzn−1.

Now we extend the idea of q-difference operator to a function f given by (1.1) from the class Ap

as:

Definition 6. For f ∈ Ap, let the q-derivative operator (or q-difference operator) be defined as:

Dq f (z) =
f (z) − f (qz)

(1 − q)z
, z , 0, q , 1,

=
[
p
]
q zp−1 +

∞∑
n=p+1

[n]qanzn−1. (1.4)

We can observe that for p = 1, and q→ 1− in (1.4) we have

lim
q→1−

Dq f (z) = f
′

(z).

Definition 7. An analytic function f (z) ∈ S∗p (α, q) of p-valent q-starlike functions of order α in E, if
f (z) ∈ Ap, satisfies the condition

<

(
zDq f (z)

f (z)

)
> α, (z ∈ E),

for some 0 ≤ α < p.

Definition 8. An analytic function f (z) ∈ Kp(α, q) of p-valent q-convex functions of order α in E, if
f (z) ∈ Ap, satisfies the condition

<

Dq

(
zDq f (z)

)
Dq f (z)

 > α, (z ∈ E),

for some 0 ≤ α < p.
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Remark 1. Let f (z) ∈ Ap, it follows that

f (z) ∈ Kp(α, q) if and only if
zDq f (z)[

p
]
q
∈ S∗p (α, q)

and

f (z) ∈ S∗p (α, q) if and only if

z∫
0

[
p
]
q f (ζ)

ζ
dqζ ∈ Kp(α, q).

Remark 2. By putting value of parameters α and p we can get some new subclasses of analytic
functions:

S∗p (q) = S∗p (0, q) , S∗ (α, q) = S∗1 (α, q) , Kp (q) = Kp(0, q) and K(α, q) = K1(α, q).

Remark 3. By taking q → 1−, then we obtain two known subclasses S∗p (α) and Kp(α) of p-valently
starlike and convex functions of order α, introduced by Hayami and Owa in [12].

Let n ∈ N0 and j ∈ N. The jth Hankel determinant was introduced and studied in [29]:

H j(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 . . . an+ j−1

an+1 an+2 . . . an+ j−2

. . . . . . . . .

. . . . . . . . .

an+ j−1 an+ j−2 . . . an+2 j−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where a1 = 1. The Hankel determinant H2(1) represents a Fekete-Szegö functional
∣∣∣a3 − a2

2

∣∣∣. This
functional has been further generalized as

∣∣∣a3 − µa2
2

∣∣∣ for some real or complex number µ and also the
functional

∣∣∣a2a4 − a2
3

∣∣∣ is equivalent to H2(2) (see [16]). Babalola [5] studied the Hankel determinant
H3(1) (see also [43]). The symmetric Toeplitz determinant T j(n) is defined as follows:

T j(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an an+1. . . an+ j−1

an+1 . . . . . .

. . . . . . . . .

. . . . . . . . .

an+ j−1 . . . an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (1.5)

so that

T2(2) =

∣∣∣∣∣∣ a2 a3

a3 a2

∣∣∣∣∣∣ , T2(3) =

∣∣∣∣∣∣ a3 a4

a4 a3

∣∣∣∣∣∣ , T3(2) =

∣∣∣∣∣∣∣∣∣
a2 a3 a4

a3 a2 a3

a4 a3 a2

∣∣∣∣∣∣∣∣∣
and so on. The problem of finding the best possible bounds for ||an+1| − |an|| has a long history (see [8]).
In particular, several authors [13, 44] have studied T j(n) for several classes.

For our simplicity, we replace n = n + p − 1, into (1.5), then the symmetric Toeplitz determinant
T j(n) can be written as:

T j(n + p − 1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an+p−1 an+p . . . an+p+ j−2

an+p . . . . . .

. . . . . . . . .

. . . . . . . . .

an+p+ j−2 . . . an+p−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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so that

T2(p + 1) =

∣∣∣∣∣∣ ap+1 ap+2

ap+2 ap+1

∣∣∣∣∣∣ , T2(p + 2) =

∣∣∣∣∣∣ ap+2 ap+3

ap+3 ap+2

∣∣∣∣∣∣ ,
T3(p + 1) =

∣∣∣∣∣∣∣∣∣
ap+1 ap+2 ap+3

ap+2 ap+1 ap+2

ap+3 ap+2 ap+1

∣∣∣∣∣∣∣∣∣ .
Hankel determinants generated by perturbed Gaussian, Laguerre and Jacobi weights play an important
role in Random Matrix Theory, since they represent the partition functions for the perturbed Gaussian,
Laguerre and Jacobi unitary ensembles, see for example [7, 26–28, 49].

2. A set of Lemmas

In order to discuss our problems, we need some lemmas.

Lemma 1. (see [8]). If a function m(z) = 1 +
∞∑

n=1
cnzn ∈ P, then

|cn| ≤ 2, n ≥ 1.

The inequality is sharp for

f (z) =
1 + z
1 − z

.

Lemma 2. If a function m(z) = [p]q +
∞∑

n=1
cnzn satisfies the following inequality

< (m(z)) ≥ α

for some α, (0 ≤ α < p), then
|cn| ≤ 2

([
p
]
q − α

)
, n ≥ 1.

The result is sharp for

m(z) =

[
p
]
q +

([
p
]
q − 2α

)
z

1 − z
=

[
p
]
q +

∞∑
n=1

2
([

p
]
q − α

)
zn.

Proof. Let

l(z) =
m(z) − α[
p
]
q − α

= 1 +

∞∑
n=1

cn[
p
]
q − α

zn.

Noting that l(z) ∈ P and using Lemma 1, we see that∣∣∣∣∣∣ cn[
p
]
q − α

∣∣∣∣∣∣ ≤ 2, n ≥ 1,

which implies
|cn| ≤ 2

([
p
]
q − α

)
, n ≥ 1.

�
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Remark 4. When q → 1− , then Lemma 2, reduces to the lemma which was introduced by Hayami et
al. [12].

Lemma 3. ( [36]) If m is analytic in E and of the form (1.2), then

2c2 = c2
1 + x(4 − c2

1)

and
4c3 = c3

1 + 2(4 − c2
1)c1x − (4 − c2

1)c1x2 + 2(4 − c2
1)(1 −

∣∣∣x2
∣∣∣)z,

for some x, z ∈ C, with |z| ≤ 1, and |x| ≤ 1.
By virtue of Lemma 3, we have

Lemma 4. If m(z) = [p]q +
∞∑

n=1
cnzn satisfy<(m(z) > α, for some α (0 ≤ α < p), then

2
(
[p]q − α

)
c2 = c2

1 +

{
4
(
[p]q − α

)2
− c2

1

}
x

and

4
(
[p]q − α

)2
c3 = c3

1 + 2
{
4
(
[p]q − α

)2
− c2

1

}
c1x −

{
4
(
[p]q − α

)2
− c2

1

}
c1x2 +

2
(
[p]q − α

) {
4
(
[p]q − α

)2
− c2

1

}
(1 −

∣∣∣x2
∣∣∣)z,

for some x, z ∈ C, with |z| ≤ 1, and |x| ≤ 1.

Proof. Since l(z) =
m(z)−α
[p]q−α

= 1 +
∞∑

n=1

cn
[p]q−α

zn ∈ P, replacing c2 and c3 by c2
[p]q−α

and c3
[p]q−α

in Lemma 3,

respectively, we immediately have the relations of Lemma 4. �

Remark 5. When q → 1− , then Lemma 4, reduces to the lemma which was introduced by Hayami et
al. [12].

Lemma 5. ( [9]) Let the function m(z) given by (1.2) having positive real part in E. Also let µ ∈ C,
then

|cn − µckcn−k| ≤ 2 max (1, |2µ − 1|) , 1 ≤ k ≤ n − k.

3. Main results

Theorem 1. Let the function f given by (1.1) belong to the class S∗p(α, q), then∣∣∣ap+1

∣∣∣ ≤ 2(
[
p
]
q − α)[

p + 1
]
q −

[
p
]
q
,

∣∣∣ap+2

∣∣∣ ≤ 2(
[
p
]
q − α)[

p + 2
]
q −

[
p
]
q

1 +
2(

[
p
]
q − α)[

p + 1
]
q −

[
p
]
q

 ,
∣∣∣ap+3

∣∣∣ ≤ 2(
[
p
]
q − α)[

p + 3
]
q −

[
p
]
q

[
1 + 2(

[
p
]
q − α)Λ2

{
ρ3 + 2(

[
p
]
q − α)

}]
,

where Λ2 is given by (3.6).
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Proof. Let f ∈ S∗(α, q), then their exist a function P(z) = [p]q +
∞∑

n=1
cnzn such that<(m(z)) > α and

z
(
Dq f

)
(z)

f (z)
= m(z),

which implies that
z
(
Dq f

)
(z) = m(z) f (z).

Therefore, we have (
[n]q −

[
p
]
q

)
an =

n−1∑
l=p

alcn−l, (3.1)

where n ≥ p + 1, ap = 1, c0 =
[
p
]
q . From (3.1), we have

ap+1 =
c1[

p + 1
]
q −

[
p
]
q
, (3.2)

ap+2 =
1[

p + 2
]
q −

[
p
]
q

c2 +
c2

1([
p + 1

]
q −

[
p
]
q

)
 , (3.3)

ap+3 =
1[

p + 3
]
q −

[
p
]
q

{
c3 + Λ1c1c2 + Λ2c3

1

}
, (3.4)

where

Λ1 = Λ2ρ3, (3.5)

Λ2 =
1([

p + 1
]
q −

[
p
]
q

) ([
p + 2

]
q −

[
p
]
q

) , (3.6)

ρ3 =
[
p + 1

]
q +

[
p + 2

]
q − 2

[
p
]
q . (3.7)

By using Lemma 2, we obtain the required result. �

Theorem 2. Let an analytic function f given by (1.1) be in the class S∗p(α, q), then

T3((p + 1) ≤ Λ3

Ω4 + 4
([

p
]
q − α

)2
Ω5 + Ω7 + Ω8

∣∣∣∣∣∣∣∣1 −
2
([

p
]
q − α

)
Ω6

Ω8

∣∣∣∣∣∣∣∣
 ,

where

Λ3 = 4
([

p
]
q − α

)2
[Ω1 + Ω2 (1 + Ω3)] , Ω1 =

2
([

p
]
q − α

)[
p + 1

]
q −

[
p
]
q
, (3.8)

Ω2 =
2
([

p
]
q − α

)[
p + 3

]
q −

[
p
]
q
, (3.9)

Ω3 = 2
([

p
]
q − α

)
Λ2

{
ρ3 + 2

([
p
]
q − α

)}
, (3.10)
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Ω4 =
1([

p + 1
]
q −

[
p
]
q

)2 , Ω5 = 2Λ2Λ2 − Λ2ρ4, (3.11)

Ω6 =
4Λ2([

p + 2
]
q −

[
p
]
q

) − Λ2ρ3ρ4,

Ω7 =
2([

p + 2
]
q −

[
p
]
q

)2 , (3.12)

Ω8 = ρ4 =
1([

p + 1
]
q −

[
p
]
q

) ([
p + 3

]
q −

[
p
]
q

) . (3.13)

Proof. A detailed calculation of T3(p + 1) is in order.

T3(p + 1) =
(
ap+1 − ap+3

) (
a2

p+1 − 2a2
p+2 + ap+1ap+3

)
,

where ap+1, ap+2, and ap+3 is given by (3.2), (3.3) and (3.4).
Now if f ∈ S∗(α, q), then we have∣∣∣ap+1 − ap+3

∣∣∣ ≤ ∣∣∣ap+1

∣∣∣ +
∣∣∣ap+3

∣∣∣ ,
≤ Ω1 + Ω2 (1 + Ω3) , (3.14)

where Ω1, Ω2, Ω3, is given by (3.9), (3.10) and (3.11).
We need to maximize

∣∣∣∣a2
p+1 − 2a2

p+2 + ap+1ap+3

∣∣∣∣ for f ∈ S∗(α, q), so by writing ap+1, ap+2, ap+3 in
terms of c1, c2, c3, with the help of (3.2), (3.3) and (3.4), we get∣∣∣a2

p+1 − 2a2
p+2 + ap+1ap+3

∣∣∣
≤

∣∣∣Ω4c2
1 −Ω5c4

1 −Ω6c2
1c2 −Ω7c2

2 + Ω8c1c3

∣∣∣ ,
≤ Ω4c2

1 + Ω5c4
1 + Ω7c2

2 + Ω8c1

∣∣∣∣∣c3 −
Ω6c1c2

Ω8

∣∣∣∣∣ . (3.15)

Finally applying Lemmas 2 and 5 along with (3.14) and (3.15), we obtained the required result. �

For q→ 1−, p = 1 and α = 0, we have following known corollary.

Corollary 1. ( [2]). Let an analytic function f be in the class S∗, then

T3(2) ≤ 84.

Theorem 3. If an analytic function f given by (1.1) belongs to the class S∗p(α, q), then

∣∣∣ap+1ap+3 − a2
p+2

∣∣∣ ≤ 4
(
[
p
]
q − α)2([p + 2]q −

[
p
]
q)2 .
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Proof. Making use of (3.2), (3.3) and (3.4), we have

ap+1ap+3 − a2
p+2

= ρ4c1c3 + (Λ2ρ3 −B) c2
1c2 −Dc2

2 + (Λ2ρ4 − Λ2Λ2) c4
1,

where
D =

1([
p + 2

]
q −

[
p
]
q

)2 , B =
2Λ2[

p + 2
]
q −

[
p
]
q
.

By using Lemma 3 and we take Υ = 4
([

p
]
q − α

)2
− c2

1 and Z =
(
1 − |x|2

)
z. Without loss of

generality we assume that c = c1,
(
0 ≤ c ≤ 2

([
p
]
q − α

))
, so that

ap+1ap+3 − a2
p+2 = λ1c4 + λ2Υc2x − λ3Υc2x2 − λ4Υ

2x2 + λ5ΥcZ, (3.16)

where

λ1 =
ρ4

4(
[
p
]
q − α)2 +

Λ2ρ3 −B

2(
[
p
]
q − α)

−
D

4(
[
p
]
q − α)2 −

D (Λ2ρ4 − Λ2Λ2)
4(

[
p
]
q − α)2 ,

λ2 =
ρ4

2(
[
p
]
q − α)2 +

Λ2ρ3 −B

2(
[
p
]
q − α)

−
D

2(
[
p
]
q − α)2 ,

λ3 =
ρ4

4(
[
p
]
q − α)2 , λ4 =

D

4(
[
p
]
q − α)2 , λ5 =

ρ4

2(
[
p
]
q − α)

.

Taking the modulus on (3.16) and using triangle inequality, we find that∣∣∣ap+1ap+3 − a2
p+2

∣∣∣
≤ |λ1| c4 + |λ2|Υc2 |x| + |λ3|Υc2 |x|2 + |λ4|Υ

2 |x|2 + |λ5|
(
1 − |x|2

)
cΥ

= G(c, |x|).

Now, trivially we have
G
′

(c, |x|) > 0

on [0, 1], which shows that G(c, |x|) is an increasing function in an interval [0, 1], therefore maximum
value occurs at x = 1 and Max G(c, |1|) = G(c).

G(c, |1|) = |λ1| c4 + |λ2|Υc2 + |λ3|Υc2 + |λ4|Υ
2

and
G(c) = |λ1| c4 + |λ2|Υc2 + |λ3|Υc2 + |λ4|Υ

2.

Hence, by putting Υ = 4 − c2
1 and after some simplification, we have

G(c) = (|λ1| − |λ2| − |λ3| + |λ4|) c4 + 4 (|λ2| + |λ3| − 2 |λ4|) c2 + 16 |λ4| .
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We consider G
′

(c) = 0, for optimum value of G(c), which implies that c = 0. So G(c) has a maximum
value at c = 0. Hence the maximum value of G(c) is given by

16 |λ4| . (3.17)

Which occurs at c = 0 or
c2 =

4 (|λ2| + |λ3| − 2 |λ4|)
|λ1| − |λ2| − |λ3| + |λ4|

.

Hence, by putting λ4 = D

4([p]q−α)2 and D = 1(
[p+2]q−[p]q

)2 in (3.17) and after some simplification, we

obtained the desired result. �

For q→ 1−, p = 1 and α = 0, we have following known corollary.

Corollary 2. ( [16]). If an analytic function f belongs to the class S∗, then∣∣∣a2a4 − a2
3

∣∣∣ ≤ 1.

3.1. Fekete–Szegö problem

Theorem 4. Let f be the function given by (1.1) belongs to the class S∗p(α, q), 0 ≤ α < p, then

∣∣∣ap+2 − µa2
p+1

∣∣∣ ≤



2
(
[p]q−α

)
(
[p+2]q−[p]q

) {ρ1 − ρ2µ} , if µ ≤ ρ5,

2
(
[p]q−α

)
(
[p+2]q−[p]q

) , if ρ5 ≤ µ ≤ ρ6,

2
(
[p]q−α

)
(
[p+1]q−[p]q

)2(
[p+2]q−[p]q

) {ρ2µ − ρ1} , if µ ≥ ρ6,

where

ρ1 =

{
2
([

p
]
q − α

) ([
p + 1

]
q −

[
p
]
q

)
+

([
p + 1

]
q −

[
p
]
q

)2
}
,

ρ2 = 2
([

p
]
q − α

) ([
p + 2

]
q −

[
p
]
q

)
,

ρ5 =

([
p + 1

]
q −

[
p
]
q

) {
2
([

p
]
q − α

)
+

([
p + 1

]
q −

[
p
]
q

)}
− 1

2
([

p
]
q − α

) ([
p + 2

]
q −

[
p
]
q

) ,

ρ6 =

([
p + 1

]
q −

[
p
]
q

) ([
p
]
q − α +

([
p + 1

]
q −

[
p
]
q

))([
p
]
q − α

) ([
p + 2

]
q −

[
p
]
q

) .

Proof. From (3.2) and (3.3) and we can suppose that c1 = c
(
0 ≤ c ≤ 2(

[
p
]
q − α)

)
, without loss of

generality we derive∣∣∣ap+2 − µa2
p+1

∣∣∣ =
1
ρ7

∣∣∣∣∣{ρ1 − ρ2µ} c2 +
([

p + 1
]
q −

[
p
]
q

)2
{
4
([

p
]
q − α

)2
− c2

}
ρ

∣∣∣∣∣
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= A(ρ),

where
ρ7 = 2

([
p
]
q − α

) ([
p + 1

]
q −

[
p
]
q

)2 ([
p + 2

]
q −

[
p
]
q

)
.

Applying the triangle inequality, we deduce

A(ρ) ≤
1
ρ7
|{ρ1 − ρ2µ}| c2 +

([
p + 1

]
q −

[
p
]
q

)2
{
4
([

p
]
q − α

)2
− c2

}

=


1
ρ7

[{
2
([

p
]
q − α

)
{ρ11 − ρ12µ}

}
c2 + ρ9

]
, if µ ≤ ρ8,

1
ρ7

[
2
{([

p
]
q − α

) ([
p + 2

]
q −

[
p
]
q

)
µ − ρ10

}
c2 + ρ9

]
, if µ ≥ ρ8,

where

ρ8 =
2
([

p
]
q − α

) ([
p + 1

]
q −

[
p
]
q

)
+

([
p + 1

]
q −

[
p
]
q

)2

2
([

p
]
q − α

) ([
p + 2

]
q −

[
p
]
q

) ,

ρ9 = 4
([

p
]
q − α

)2 ([
p + 1

]
q −

[
p
]
q

)2
,

ρ10 =
([

p + 1
]
q −

[
p
]
q

) {([
p
]
q − α

)
+

([
p + 1

]
q −

[
p
]
q

)}
,

ρ11 =
([

p + 1
]
q −

[
p
]
q

)
, ρ12 =

([
p + 2

]
q −

[
p
]
q

)
,

ρ13 =
2
([

p
]
q − α

)
([

p + 1
]
q −

[
p
]
q

)2 ([
p + 2

]
q −

[
p
]
q

) .
∣∣∣ap+2 − µa2

p+1

∣∣∣

≤



2
(
[p]q−α

)
(
[p+2]q−[p]q

) {ρ1 − ρ2µ} , if µ ≤ ρ5, c = 2
([

p
]
q − α

)
,

2
(
[p]q−α

)
(
[p+2]q−[p]q

) , if ρ5 ≤ µ ≤ ρ8, c = 0,

2
(
[p]q−α

)
(
[p+2]q−[p]q

) , if ρ8 ≤ µ ≤ ρ6, c = 0,

ρ13

{
ρ2µ −

{
2
([

p
]
q − α

)
ρ11 + ρ2

11

}}
, if µ ≥ ρ6, c = 2

([
p
]
q − α

)
.

�

If q→ 1− in Theorem 4, we thus obtain the following known result.
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Corollary 3. ( [12]). Let f be the function given by (1.1) belongs to the class S∗p(α), 0 ≤ α < p, then

∣∣∣ap+2 − µa2
p+1

∣∣∣ ≤


(p − α) {{2 (p − α) + 1} − 4 (p − α) µ} , if µ ≤ 1
2 ,

(p − α) , if 1
2 ≤ µ ≤

p−α+1
2(p−α) ,

(p − α) {4 (p − α) µ − {2 (p − α) + 1}} , if µ ≥ p−α+1
2(p−α) .

3.2. Applications of our main results

In this section, firstly we recall that the q-Bernardi integral operator for multivalent functions
L( f ) = B

q
p,β given in [35] as:

Let f ∈ Ap, then L:Ap → Ap is called the q-analogue of Benardi integral operator for multivalent
functions defined by L( f ) = B

q
q,β with β > −p, where, Bq

q,β is given by

B
q
p,β f (z) =

[
p + β

]
q

zβ

∫ z

0
tβ−1 f (t)dqt , (3.18)

= zp +

∞∑
n=1

[β + p]q

[n + β + p]q
an+pzn+p, z ∈ E,

= zp +

∞∑
n=1

Bn+pan+pzn+p. (3.19)

The series given in (3.19) converges absolutely in E.

Remark 6. For q→ 1−, then the operator Bq
p,β reduces to the integral operator studied in [48].

Remark 7. For p = 1, we obtain the q-Bernardi integral operator introduced in [30].

Remark 8. If q→ 1− and p = 1, we obtain the familiar Bernardi integral operator studied in [6].

Theorem 5. If f is of the form (1.1), belongs to the class S∗p(α, q), and

B
q
p,β f (z) = zp +

∞∑
n=1

Bn+pan+pzn+p,

where Bq
p,β is the integral operator given by (3.18), then

∣∣∣ap+1

∣∣∣ ≤ 2([p]q − α)([
p + 1

]
q − [p]q

)
Bp+1

,

∣∣∣ap+2

∣∣∣ ≤ 2([p]q − α)([
p + 2

]
q − [p]q

)
Bp+2

1 +
2([p]q − α)([

p + 1
]
q − [p]q

)
Bp+1

 ,
∣∣∣ap+3

∣∣∣ ≤ 2([p]q − α)([
p + 3

]
q − [p]q

)
Bp+3

[
1 +

2([p]q − α)ρ14

ρ15

]
,
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where

ρ14 =
{(([

p + 1
]
q − [p]q

)
Bp+1 +

([
p + 2

]
q − [p]q

)
Bp+2

)
+ 2([p]q − α)

}
,

ρ15 =
([

p + 1
]
q − [p]q

) ([
p + 2

]
q − [p]q

)
Bp+1Bp+2.

Proof. The proof follows easily by using (3.19) and Theorem 1. �

Theorem 6. Let an analytic function f given by (1.1) be in the class S∗p(α, q), in addition Bq
p,β is the

integral operator defined by (3.18) and is of the form (3.19), then

T3((p + 1) ≤ Υ3


Ω4
B2

p+1
+ 4

([
p
]
q − α

)2
Ω10 + Ω7

B2
p+2

+ Ω8
Bp+1Bp+3

∣∣∣∣∣∣1 − 2
(
[p]q−α

)
Bp+1Bp+3Ω11

Ω8

∣∣∣∣∣∣

 ,

where

Υ3 = 4
([

p
]
q − α

)2
[

Ω1

Bp+1
+

Ω2

Bp+3
(1 + Ω9)

]
,

Ω9 = Λp

(
ρ14

Bp+1Bp+2

)
,

Ω10 = Λ4 − Λ5, Ω11 = Λ6 − Λ7,

Λ4 =
2Λ2Λ2

B2
p+1B

2
p+2

, Λ5 =
Λ2ρ4

B2
p+1Bp+2Bp+3

,

Λ6 =
4Λ2([

p + 2
]
q −

[
p
]
q

)
Bp+1B

2
p+2

,

Λ7 =
Λ8Λ2ρ4

B2
p+1Bp+2Bp+3

,

Λ8 =
([

p + 1
]
q − [p]q

)
Bp+1 +

([
p + 2

]
q −

[
p
]
q

)
Bp+2.

Proof. The proof follows easily by using (3.19) and Theorem 2. �

Theorem 7. If an analytic function f given by (1.1) belongs to the class S∗p(α, q), in addition Bq
p,β is

the integral operator is defined by (3.18) and is of the form (3.19), then

∣∣∣ap+1ap+3 − a2
p+2

∣∣∣ ≤ 4

(
[
p
]
q − α)2

(
[p + 2]q −

[
p
]
q

)2
B2

p+2

.
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Theorem 8. Let f be the function given by (1.1) belongs to the class S∗p(α, q), in addition Bq
p,β is the

integral operator defined by (3.18) and is of the form (3.19), then

∣∣∣ap+2 − µa2
p+1

∣∣∣ ≤



2
(
[p]q−α

)
(
[p+2]q−[p]q

)
Bp+2

{
ρ16 − ρ2Bp+2µ

}
, if µ ≤ ρ17,

2
(
[p]q−α

)
(
[p+2]q−[p]q

)
Bp+2

, if ρ17 ≤ µ ≤ ρ18,

2Λ2

(
[p]q−α

)
(
[p+1]q−[p]q

)
B2

p+1Bp+2

{
ρ2Bp+2µ − ρ16

}
, if µ ≥ ρ18,

where

ρ16 =

{
2
([

p
]
q − α

) ([
p + 1

]
q −

[
p
]
q

)
Bp+1 +

([
p + 1

]
q −

[
p
]
q

)2
B2

p+1

}
,

ρ17 =

([
p + 1

]
q −

[
p
]
q

)
Bp+1

{
2
([

p
]
q − α

)
+

([
p + 1

]
q −

[
p
]
q

)
Bp+1

}
− 1

2
([

p
]
q − α

) ([
p + 2

]
q −

[
p
]
q

)
Bp+2

,

ρ18 =

([
p + 1

]
q −

[
p
]
q

)
Bp+1

([
p
]
q − α +

([
p + 1

]
q −

[
p
]
q

)
Bp+1

)([
p
]
q − α

) ([
p + 2

]
q −

[
p
]
q

)
Bp+2

,

and Λ2 is given by (3.6).

4. Conclusions

Motivated by a number of recent works, we have made use of the quantum (or q-) calculus to define
and investigate new subclass of multivalent q-starlike functions in open unit disk E. We have studied
about Hankel determinant, Toeplitz matrices, Fekete–Szegö inequalities. Furthermore we discussed
applications of our main results by using q-Bernardi integral operator for multivalent functions. All
the results that have discussed in this paper can easily investigate for the subclass of meromorphic
q-convex functions (Kp(α, q)) of order α in E, respectively.

Basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric
functions and basic (or q-) hypergeometric polynomials, are applicable particularly in several diverse
areas (see [38], p328). Moreover, in this recently-published survey-cum expository review article by
Srivastava [38], the so called (p, q)-calculus was exposed to be a rather trivial and inconsequential
variation of the classical q-calculus (see for details [38], p340).

By this observation of Srivastava in [38], we can make clear link between the q-analysis and (p, q)-
analysis and the results for q-analogues which we have included in this paper for 0 < q < 1, can be
easily transformed into the related results for the (p, q)-analogues with (0 < q < p ≤ 1).
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inequality for classes of (p, q)-starlike and (p, q)-convex functions, Rev. Real Acad. Cienc. Exactas
Fis. Natur. Ser. A Mat. (RACSAM), 113 (2019), 3563–3584.

AIMS Mathematics Volume 6, Issue 6, 5421–5439.



5439

46. H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of q-starlike
functions associated with the Janowski functions, Symmetry, 11 (2019), 1–14.

47. H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general families of q-starlike
functions associated with the Janowski functions, Filomat, 33 (2019), 2613–2626.

48. Z. G. Wang, M. Raza, M. Ayaz, M. Arif, On certain multivalent functions involving the
generalized Srivastava-Attiya operator, J. Nonlinear Sci. Appl., 9 (2016), 6067–6076.

49. X. B. Wu, S. X. Xu, Y. Q. Zhao, Gaussian unitary ensemble with boundary spectrum singularity
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