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1. Introduction and definitions
Let A denote the class of the normalized functions of the form
f@=z+ ) a, (1.1)
n=2

which are analytic in the open unit disk U = {z € C : |z] < 1}. Further, let 7 be a subclass of A
consisting of functions of the form,

f@=2=) lal?,  zeU. (1.2)
n=2

A function f € A is said to be in the class R7(A, B),r € C\{0}, -1 < B < A < 1, if it satisfies the
inequality

' f@)-1

(A—B)T—B[f’(z)—l]id’ cel
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This class was introduced by Dixit and Pal [13].

The theory of g-calculus operators are used in describing and solving various problems in applied
science such as ordinary fractional calculus, optimal control, g-difference and g-integral equations, as
well as geometric function theory of complex analysis. The application of g-calculus was initiated by
Jackson [23]. Recently, many researchers studied g-calculus such as Srivastava et al. [52], Muhammad
and Darus [31], Kanas and Rdducanu [28], Aldweby and Darus [2—4] and Muhammad and Sokol [30].
For details on g-calculus one can refer [1,5-7, 9, 20, 23, 25, 38, 39, 43, 44, 46, 48-51] and also the
reference cited therein.

For 0 < g < 1 the Jackson’s g-derivative of a function f € A is, by definition, given as follows [23]

f@) - f(g2)
—_ 0

qu<z>:{ =gz 7T *0 (13)
f(0) for z=0,

and
D; f(2) = Dy(Dyf(2)).

From (1.3), we have

Dyf(2) =1+ ) [nlya,d"”! (1.4)
n=2
where . .
_1—=q
il =T (15)

is sometimes called the basic number n. If ¢ — 1—,[n], — n.
For a function A(z) = 7", we obtain

1
Dyh(z) = Dy2" = ——2""" = [n],2"",

and
lim Dyh(z) = lim ([n],2"™") = n2"™" = 1'(2),
g—1- g—1-

where 4’ is the ordinary derivative.

Using the above defined g-calculus, several subclasses belonging to the class A have already been
investigated in geometric function theory. Ismail et al. [26] were the first who used the g-derivative
operator D, to study the g-calculus analogous of the class S* of starlike functions in U (see
Definition 1.1 below). However, a firm footing of the g-calculus in the context of geometric function
theory was presented mainly and basic (or g-) hypergeometric functions were first used in geometric
function theory in a book chapter by Srivastava (see, for details, ( [45], p.347 et seq.); see also [46]).

For 0 < g < 1, we define the class S;(a/) of g- starlike functions and the class C (@) of g- convex
functions of order (0 < a < 1) (see, [26,40,41]), as below:

Definition 1.1. A function f € A is said to be in the class S;(a) if it satisfies

R (Zqu(Z)

Q) ) > a, (z€U).
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Definition 1.2. A function f € A is said to be in the class C,(a) if it satisfies

" (Dq(quf (2)

D.f Q) ) >a, (z€U).

It is clear that lirP S, (@) = §*(a) and lir}l C,(@) = C(a), where S*(a) and C(«) are, respectively,
g—1- g—1-

well-known starlike and convex functions of order @ in U.
We now introduce a new subclass of analytic functions defined by g-derivative operator D,.

Definition 1.3. A function f € A is said to be in the class C,(4, ) if it satisfies

o[ E G + QU+ DEED Q)+ (Do f @)
A2(zD, f@)" +2(2Def (D))

>a, (z€U) (1.6)

where 0<a<1,0<A<1.
We write
TC A, a)=Cy(A,a) NT.

A variable X is said to be Pascal distribution if it takes the values 0, 1,2, 3, ... with probabilities
(1 o sm(l —s)" s?m(m+ 1)(1 —s)" s*m(m+ D(m +2)(1 — )"
-5 s

1! ’ 2! ’ 3!
m are called the parameters, and thus

,..., respectively, where s and

k+m-—1
P(X:k):( i

)sk(l 5" k=0,1,2,3,....
Very recently, El-Deeb et al. [15] (see also, [10,34]) introduced a power series whose coeflicients are
probabilities of Pascal distribution, that is

N (n+m-2
Yi(z) :=z+ Z( 4 )s”‘l(l -95)"7", z€ U,
n=2 m

where m > 1, 0 < s < 1, and we note that, by ratio test the radius of convergence of above series is
infinity. We also define the series

D7 (2) :ZZ—TT(Z)Zz—Z(n‘HﬁIz

)s"-1(1 —s)"7", z € U. (1.7)
n=2

Let consider the linear operator 77 : A — A defined by the convolution or Hadamard product

n+m-2

I{f(2):=¥Y/@* fz) =z + Z( )S"_l(l - s)"a,7", z €U,
n=2

m-—1

wherem > 1and 0 < s < 1.
Motivated by several earlier results on connections between various subclasses of analytic and
univalent functions, using hypergeometric functions (see for example, [8, 11, 21, 29, 42, 47]),
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generalized Bessel functions (see for example, [18, 22, 33, 36]), Struve functions (see for
example, [12, 24]), Poisson distribution series (see for example, [14, 16, 19, 32, 35, 37]) and Pascal
distribution series (see for example, [10, 15,17, 34]), in this paper we determine the necessary and
sufficient condition for @7 to be in the class 7 C,(4, a). Furthermore, we give sufficient condition for
I (R'(A,B)) € TC4(A, @) and finally, we give necessary and sufficient condition for the function f

such that its image by the integral operator G f(z) = foz wdt belongs to the class 7C,(4, a).
To establish our main results, we need the following Lemmas.

Lemma 1.4. A function f of the form (1.2) is in T C,(A, @) if and only if it satisfies

D lnlgn(n—a)(dn - A+ Dl < 1 - e, (1.8)

n=2

where 0 <a<1,0<A<1landzeU.
Lemma 1.4 can be proved using the same technique as in [27].

Lemma 1.5. [I3]If f € R°(A, B) is of the form (1.1) , then
Ll
la,| < (A—-B)—, neN\{l}.
n
The result is sharp.

2. Necessary and sufficient condition for 7' € 7C (4, @)

For convenience throughout in the sequel, we use the following identities that hold for m > 1 and

0<s<:
Zn+m—1sn: 1 ’ Zn+m—2sn: 1 ’
m-—1 (L-sy" &\ m-2 (O

n=0
> (n+m)\ 1 o (n+m+ 1), 1
HZ:(;( m )s (1= sy HZ:(;( m+1 )s (1 = sy

By simple calculations we derive the following relations:

> (n+m =2 L o n+m—1 1
-l "= ~1 2.1
Z( m—1 )S Z:(;( m—1 )s A—sm @D

n=2
> -2 > -
Z(n - 1)(n ;n_q ) )s”_l = smz (n :;lm) st = S—(1 (_ Sl)?nﬂ , (2.2)
n=2 n=0
00 m+1
-2 "
Z(” - 2)(n ;nj ) ) ¢l = 2s2$ (2.3)
n=3
= n+m-72 1 3 (Zﬁ)
Z;(n ~ D(n—2)n - 3)( o ) R R (24)
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and ;
o ) ﬁt
Z(n - D(n—-2)(n-3)n- 4)(n ;nj . ) s = 24S4$. (2.5)
n=5

Unless otherwise mentioned, we shall assume in this paperthat 0 <o <land0<A1<1,0<g< 1

and0 < s < 1.
Firstly, we obtain the necessary and sufficient conditions for @7 to be in the class 7 C,(4, ).

Theorem 2.1. Letm > 1 and q — 1 — .Then @7 € TC,(A, a) if and only if

(m+2) s3 (m+1)s2
m—1 m—1

()
241" 1619 — ) + 1)

2(44(2 - 7 -
(1- 9" (1 =gy A TG
(m’fl)s
(4/1(2 -—a)+7 - 3a)m
< l-a. (2.6)

Proof. Since @7 is defined by (1.7), in view of Lemma 1.4 it is sufficient to show that

P,:= nzz;[n]qn(n —a)(An—A+ 1)(n ;nz; 2)S"_l(l -)"<1-a.
Since [n], — n, when g — 1—, we get
P, = nzz;‘ n*(n—a)(An — A+ 1)(n ;nd 2)S"_l(l - "
= D[t + (1 -2-adn + a2~ D] (" e 2)s”_](1 _—
I m-—1
Writing
w=m-Dn-2)+3n-1)+1, (2.7)
wP=m-Dn-2)n-3)+6(n—Dn-2)+7(n-1)+1, (2.8)

= m=-1Dm-2)n- 3 (n—4)+10(n - 1)(n - 2)(n — 3)
+25(n—-1D)(n-2)+15n—-1)+1, (2.9)

and using (2.2)—(2.5), we have
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n+m-2

P, = i[/ln4+(l—/l—a/l)n3+a(/l—1)n2]( -
n=2

)Sn—l(l _ S)m

_ AZ(n — D -2)n-3)n—- 4)(” ;"_1 - 2)s”‘1(1 _ 5"

1

+AO9 —a) + 1) Z(n — D(n-2)n - 3)(” me . 2) S = sy
+(1(19 = 50) + 6 — a) Z(n ~Din-2)" ;"_’ I 2)s"-1(1 —5)"
+(412 - a) + 7 - 3a) Z(n - 1)(” me o 2) sH(1 = s)"

+(1- ) Z (" T 2) 11— sy
) ()

(s
— 5 T OO - @)+ DI 42442 - @) + 7 - 3a) _1s)2

(mml)s

but this last expression is upper bounded by 1 — « if and only if (2.6) holds. O

= 244

@12 -a)+7- 3)

s+ (-l =1 =9,

3. Sufficient condition for 1" (R"(A, B)) C 7 C,(4, @)

Making use of Lemma 1.5, we will study the action of the Pascal distribution series on the class
TCy(A, ).

Theorem 3.1. Letm > 1 and g — 1 - .If f € R"(A, B) and the inequality

m+2 m+1
(A — B)|7]|645° (’"‘1) +265 - a) + 1)s? ( )
(1-ys)° —s)?

(mn—il)s

+(2/l(2—a)+3—a)1_s +(1—0z)(1—(1—s)m)}

< l-a (3.1)
is satisfied then 1" f € T C,(4, ).

Proof. According to Lemma 1.4 it is sufficient to show that

Q,:= ) [nlgn(n—a)(dn - 1+ 1)(” ;"_1 I 2)s"“(l — )" lay < 1~ a. (3.2)
n=2
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Since f € R'(A, B), using Lemma 1.5 we have

|Ms@%?ﬂnGMUL

therefore

IA

O (A-B)lt|

D nn—a)n— A+ 1)(” " ; 2) SN~ s)’"}

n=2

(A-B)l|

| + (- a-adw? + o~ 1 (” ;”_1 I 2)s"—‘(1 - s)m} .
n=2

Writing n?, n? as given in (2.7) and (2.8), n = n — 1 + 1, and making use of (2.2)—(2.5), we get

0 < A-B) /l;(n — D -2)n- 3)(” o | Z)Sn_l(l e
+AG —a) + 1) Z(n ~ n - 2)(” me " 2) SN = )"

A2 —a)+3 - CL’)Z(!’Z— 1)(’”’" 2) $N(1 = sy"

1
n+m-=2\,, m
+(1—cx)z s
n=2

(m+2)
m—1

61s°
(1

— 2045 - ) + 1)52(1 -

(m’fl)s

+(2/1(2—a/)+3—a)1_s +(1—a)(1—(1—s)m)].

= (A-B)

—5)

but this last expression is upper bounded by 1 — « if and only if (3.1) holds. m|

4. Integral operator

Theorem 4.1. Let m > 1 and q — 1 — If the integral operator G is given by

©OY(1)
W@=f‘tcme, @.1)
0

then G € T Cy(A, a) if and only

61s

() (ne)
3 m _ 2 mn
—(1 oy +2(A5 —a)+ 1)s —(1 o

+(2A(2 - a)+3-— a)%
< 1-a 4.2)
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Proof. According to (1.7) it follows that

Gl()=z- Z (n ;ni B 2) s - s)’”%, z€U.

n=2 1
Using Lemma 1.4, the function GJ/(z) belongs to 7 C,(4, ) if and only if

R, := g[n]qn(n —a)An—-A1+1)x %(n ;n_z I 2)5"_1(1 -9)"<1-aq,
Now, N
R = Z_; [0 + (1 = 2= 2w’ + a(d — D] (" ;"_1 | 2)5"‘1(1 — 5"
By a similar proof like those of Theorem 3.1 we get that G7' f € 7 C,(4, ) if and only if (4.2) holds.

]
5. Corollaries and consequences

Corollary 5.1. Letm > 1 and g — 1 — .Then ® € TC,(0, @), if and only if

m+2\ 3 m+1\ 2 m
s s s
6(’”;)“2(7—3@(’”;)2”7—301)(""—1)1 <l-a
(1 _ S)m+ (1 _ S)m+ (1 — s)m+
Corollary 5.2. Letm > 1 and q —» 1 — . If f € R (A, B) and the inequality
(ner)s” ()5
(A-B)t]|2 s+(B-a) +(1-a)(-(1-9<1-0a.
(1-1y) l—s

is satisfied then I'! f € T C,(0, @).
Corollary 5.3. Let m > 1 and q — 1 — . If the integral operator G is given by (4.1), then G €
7 C,(0, @) if and only
m+1 m
92 (m—l) (m—l)s

m+(3—0)m31—a.

6. Conclusions

In this paper, we find the necessary and sufficient conditions and inclusion relations for Pascal
distribution series to be in a subclass of analytic functions defined by g-derivative operator. Basic
(or g-) series and basic (or g-) polynomials, especially the basic (or g-) hypergeometric functions and
basic (or g-) hypergeometric polynomials, are applicable particularly in several diverse areas (see,
for example, [ [45], pp.350-351] and [ [44], p.328]). Moreover, in this recently-published survey-
cum-expository review article by Srivastava [44], the so-called (p, g)-calculus was exposed to be a
rather trivial and inconsequential variation of the classical g-calculus, the additional parameter p being
redundant (see, for details, [ [44], p.340]). This observation by Srivastava [44] will indeed apply also
to any attempt to produce the rather straightforward (p, g)-variations of the results which we have
presented in this paper.
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