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1. Introduction

Let C be a nonempty closed subset of a CAT(0) space,M and T be a self map defined on C. Then
T is said to be:
(i) nonexpansive if d(T u,T v) ≤ d(u, v), ∀u, v ∈ C;
(ii) asymptotically nonexpansive if there exists a sequence {ζn} in [1,∞) with limn→∞ ζn = 1 such that
d(T nu,T nv) ≤ ζnd(u, v) ∀u, v ∈ C and ∀n ≥ 1;
(iii) uniformly L-Lipschitzian if there exists a constant L > 0 such that d(T nu,T nv) ≤ Ld(u, v)
∀u, v ∈ C and ∀n ≥ 1.

In 2006, Alber et al. [3] introduced a new generalized mapping named as total asymptotically
nonexpansive mapping, defined as follows:
Definition 1.1. A self mapping T on C is called ({ϑn}, {κn}, ϕ) total asymptotically nonexpansive
mapping if there exist nonnegative real sequences {ϑn} and {κn} with ϑn → 0, κn → 0 as n → ∞ and a
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continuous strictly increasing function ϕ : [0,∞)→ [0,∞) with ϕ(0) = 0 such that

d(T nu,T nv) ≤ d(u, v) + ϑnϕ(d(u, v)) + κn

∀u, v ∈ C and n ≥ 1.
They showed that this mapping generalizes several classes of mappings which are extensions of

asymptotically nonexpansive mappings and also approximated fixed points of the above mapping by
using modified Mann iteration process.

It can be directly seen by above definitions that, asymptotically nonexpansive mappings contain
nonexpansive mappings with {ζn = 1}, ∀n ≥ 1 and total asymptotically nonexpansive mappings contain
asymptotically nonexpansive mappings with {ϑn = ζn − 1}, {κn = 0}, ∀n ≥ 1 and ϕ(t) = t, t ≥ 0.
Furthermore, every asymptotically nonexpansive mapping is a uniformlyL-Lipschitzian mapping with
L = supn∈N{ζn}.

A mapping T is said to have a fixed point ρ if T ρ = ρ and a sequence {un} is said to be asymptotic
fixed point sequence if limn→∞ d(un,T un) = 0.

In the background of iteration processes, Mann [20], Ishikawa [10] and Halpern [8] are the three
basic iterations utilized to approximate the fixed points of nonexpansive mapping.

After these three basic iterative schemes, several researchers came up with the idea of generalized
iterative schemes to approximate the fixed points of nonlinear mappings. Here, we have few iterations
among the number of new itarative schemes, Noor iteration [21], Agarwal et al. iteration (S-iteration)
[2], Abbas and Nazir iteration [1], Thakur New iteration [28], Garodia and Uddin [12], Garodia et
al. [13] and so on.

In 2015, Cholamjiak [4] proposed a modified proximal point algorithm for solving minimization
problems in CAT(0) spaces.
In the same year, Thakur et al. [28] presented modified Picard-Mann hybrid iteration process {un}

to approximate the fixed points of total asymptotically nonexpansive mappings in the framework of
Hadamard spaces and the sequence {un} is defined as follows:

u1 ∈ C,

vn = (1 − ηn)un ⊕ ηnT
nun,

un+1 = T nvn, (1.1)

∀n ≥ 1, where {ηn} is an appropriate sequence in the interval (0, 1). They also proved its convergence
analysis under some certain conditions.
In 2017, Suparatulatorn et al. [26] proposed a modified proximal point algorithm using Halpern’s
iteration process for nonexpansive mappings in CAT(0) spaces and prove some convergence theorems.
For more details see ( [9, 14, 15]) and refences therein.

Recently, Kuman et al. [18] presented modified Picard-S hybrid iteration process {un} as follows:

u1 ∈ C,

wn = (1 − ηn)un ⊕ ηnT
nun,

vn = (1 − ςn)T nun ⊕ ςnT
nwn,

un+1 = T nvn, (1.2)
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∀n ≥ 1, where {ηn} and {ςn} are appropriate sequences in the interval (0, 1) and they established some
convergence theorems to approximate the fixed points of total asymptotically nonexpansive mapping
in the setting CAT(0) spaces.

Motivated by above work, we introduce a new iterative scheme, which is defined as follows:

u1 ∈ C,

wn = T n((1 − ηn)un ⊕ ηnT
nun),

vn = T n((1 − ςn)wn ⊕ ςnT
nwn),

un+1 = T nvn, (1.3)

for all n ≥ 1, where {ηn} and {ςn} are appropriate sequences in the interval (0, 1). We prove some
convergence theorems of the sequence generated by iterative scheme (1.3) to approximate the fixed
point of total asymptotically nonexpansive mapping in Hadamard space. We also provide a numerical
experiment to show the convergence rate of iterative scheme (1.3) and its fastness over the other
existing iterative processes.

2. Preliminaries

This section contains some well-known concepts and results which will be used frequently in the
paper.
Lemma 2.1.( [6]) LetM be a CAT(0) space, x, y ∈ M and t ∈ [0, 1]. Then

d(tu ⊕ (1 − t)v,w) ≤ td(u,w) + (1 − t)d(v,w).

Let {un} be a bounded sequence inM, complete CAT(0) spaces. For u ∈ M set:

r(u, {un}) = lim sup
n→∞

d(u, un).

The asymptotic radius r({un}) is given by

r({un}) = inf{r(u, un) : u ∈ M},

and the asymptotic centerA({un}) of {un} is defined as:

A({un}) = {u ∈ M : r(u, un) = r({un})}.

A({un}) consists of exactly one point in CAT(0) spaces see ( [5], Proposition 7).
A sequence {un} inM is said to ∆-converges to u ∈ M if u is the unique asymptotic center for every
subsequence {zn} of {un}. In this case we write ∆ − limn un = u and read as u is the ∆−limit of {un}.
Lemma 2.2.( [7]) Let M be a complete CAT(0) space and {un} be a bounded sequence in M. If
A({un}) = {ρ}, {zn} is a subsequence of {un} such thatA({zn}) = {z} and d(un, z) converges, then ρ = z.

Recalling the existence theorem for the fixed point and demiclosedness principle for the mappings
satisfy Definition 1.1 in CAT(0) spaces due to Karapinar et al. [11].
Lemma 2.3. ( [11]) Let a self map T defined on a convex closed nonempty and bounded set, C ofM,
a complete CAT(0) space. Let T be uniformly continuous and total asymptotically nonexpansive
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mapping. Then, T has a fixed point, and set of fixed points F (T ) is convex and closed.

Lemma 2.4. ( [11]) Let T be a self map defined on C, a nonempty closed, convex subset of M,
a complete CAT(0) space. Let T be a uniformly continuous and total asymptotically nonexpansive
mapping. For every bounded sequence {un} ∈ C such that, limn→∞ d(un,T un) = 0 and limn→∞ un = q
implies that T q = q.

The next lemma due to Schu [23] is useful in our subsequent discussion.
Lemma 2.5. ( [23]) LetM be a complete CAT (0) space and let u ∈ M. Suppose {tn} is a sequence
in [b, c] for some b, c ∈ (0, 1) and {un}, {vn} are sequences in M such that lim sup

n→∞
d(un, u) ≤ r ,

lim sup
n→∞

d(vn, u) ≤ r, and lim
n→∞

d((1 − tn)un ⊕ tnvn, u) = r for some r ≥ 0. Then

lim
n→∞

d(un, vn) = 0.

Lemma 2.6.( [22]) Let {αn}, {βn} and {ξn} be the sequences of nonnegative numbers such that

αn+1 ≤ (1 + βn)αn + ξn,

for all n ≥ 1. If
∑∞

n=1 βn < ∞ and
∑∞

n=1 ξn < ∞, then lim
n→∞

αn exists. Whenever, if there exists a
subsequence {αnk} ⊆ {αn} such that αnk → 0 as k → ∞, then lim

n→∞
αn = 0.

3. Main results

Theorem 3.1. Let C be a closed bounded and convex subset ofM, a complete CAT(0) space and a self
map T defined on C is uniformly L-Lipschitzian and ({ϑn}, {κn}, ϕ)-total asymptotically nonexpansive
mapping. Assume that the following conditions hold:
(a)

∑∞
n=1 ϑn < ∞and

∑∞
n=1 κn < ∞;

(b) there exist constants m, n with 0 < m ≤ ηn ≤ n < 1 for each n ∈ N;
(c) there exist constants p, q with 0 < p ≤ ςn ≤ q < 1 for each n ∈ N;
(d) there exist a constant M1 such that ϕ(ω) ≤ M1ω for each ω ≥ 0.
Then the sequence {un} defined by (1.3) 4-converges to a point of F (T ).
Proof. By using Lemma 2.5, we have F (T ) , ∅. We start with proving that limn→∞ d(un, ρ) exists for
any ρ ∈ F (T ), where {un} is defined by (1.3).
Let ρ ∈ F (T ). Then we have

d(wn, ρ) = d(T n((1 − ςn)un ⊕ ςnT
nun), ρ)

≤ d((1 − ςn)un ⊕ ςnT
nun), ρ) + ϑnϕ(d((1 − ςn)un ⊕ ςnT

nun), ρ) + κn

≤ (1 + ϑnM1)d((1 − ςn)un ⊕ ςnT
nun), ρ) + κn

≤ (1 + ϑnM1)[(1 − ςn)d(un, ρ) + ςnT
nd(un, ρ)] + κn

≤ (1 + ϑnM1)[(1 − ςn)d(un, ρ) + ςn(d(un, ρ) + ϑnϕ(d(un, ρ)) + κn)] + κn

≤ (1 + ϑnM1)[(1 + ϑnM1)d(un, ρ) + κn] + κn

≤ (1 + ϑnM1)2d(un, ρ) + (2 + ϑnM1)κn,

(3.1)
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for each n ∈ N. Also we have

d(vn, ρ) = d(T n((1 − ηn)wn ⊕ ηnT
nwn, ρ))

≤ d((1 − ηn)wn ⊕ ηnT
nwn, ρ) + ϑnϕ(d((1 − ηn)wn ⊕ ηnT

nwn, ρ)) + κn

≤ (1 + ϑnM1)d((1 − ηn)wn ⊕ ηnT
nwn), ρ) + κn

≤ (1 + ϑnM1)((1 − ηn)d(wn, ρ) + ηnd(T nwn, ρ)) + κn

≤ (1 + ϑnM1)((1 − ηn)d(wn, ρ) + ηn(d(wn, ρ) + ϑnϕd(wn, ρ) + κn)) + κn

≤ (1 + ϑnM1)((1 + ϑnM1)d(wn, ρ) + κn) + κn

≤ (1 + ϑnM1)2d(wn, ρ) + (2 + ϑnM1)κn

≤ (1 + ϑnM1)2[(1 + ϑnM1)2d(un, ρ) + (2 + ϑnM1)κn] + (2 + ϑnM1)κn

≤ (1 + ϑnM1)4d(un, ρ) + (1 + ϑnM1)2(2 + ϑnM1)κn + (2 + ϑnM1)κn

≤ (1 + ϑnM1)4d(un, ρ) + (2 + ϑnM1)(1 + (1 + ϑnM1)2)κn

(3.2)

for each n ∈ N. From (1.3), (3.1) and (3.2),we get

d(un+1, ρ) = d(T nvn, ρ)
≤ d(vn, ρ) + ϑnϕd(vn, ρ) + κn

≤ (1 + ϑnM1)d(vn, ρ) + κn

≤ (1 + ϑnM1)[(1 + ϑnM1)4d(un, ρ) + (2 + ϑnM1)(1 + (1 + ϑnM1)2)κn] + κn

≤ (1 + ϑnM1)5d(un, ρ) + (1 + ϑnM1)(2 + ϑnM1)(1 + (1 + ϑnM1)2)κn + κn

≤ (1 + ϑnM1)5d(un, ρ) + [1 + (1 + ϑnM1)(2 + ϑnM1)(1 + (1 + ϑnM1)2)]κn

(3.3)

where
ξn := (1 + ϑnM1)5 and δn := 1 + (1 + ϑnM1)(2 + ϑnM1)(1 + (1 + ϑnM1)2).

By assumption (a), we have
∞∑

n=1

ξn < ∞ and
∞∑

n=1

δn < ∞ (3.4)

By assertion (3.3), (3.4) and Lemma 2.8, we obtain limn→∞ d(un, ρ) exists.

Next, we prove that limn→∞ d(un,T un) = 0.
Suppose

lim
n→∞

d(un, ρ) = ω ≥ 0. (3.5)

From (3.1), we have

lim
n→∞

sup d(wn, ρ) ≤ ω. (3.6)

Since T satisfies Definition 1.1

d(T nwn, ρ) ≤ d(wn, ρ) + ϑnϕd(wn, ρ) + κn

≤ (1 + ϑnM1)d(wn, ρ) + κn.
(3.7)

From (3.6) and (3.7),we have
lim
n→∞

sup d(T nwn, ρ) ≤ ω. (3.8)
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In the same way, we get
lim
n→∞

sup d(T nun, ρ) ≤ ω. (3.9)

Since

d(un+1, ρ) ≤ (1 + ϑnM1)5d(un, ρ) + [1 + (1 + ϑnM1)(2 + ϑnM1)(1 + (1 + ϑnM1)2)]κn.

By taking limit infimum both sides, we obtain,

ω ≤ lim
n→∞

inf d(wn, ρ). (3.10)

From (3.6) and (3.10), we obtain

ω = lim
n→∞

sup d(wn, ρ) = lim
n→∞

sup d(T n((1 − ηn)un ⊕ ηnT
nun), ρ)). (3.11)

d(T n((1 − ηn)un ⊕ ηnT
nun), ρ),≤ d((1 − ηn)un ⊕ ηnT

nun, ρ) + ϑnϕ[d((1 − ηn)un ⊕ ηnT
nun, ρ)] + κn,

d(T n((1 − ηn)un ⊕ ηnT
nun), ρ) ≤ [1 + ϑnM1]d((1 − ηn)un ⊕ ηnT

nun, ρ) + κn

lim
n→∞

sup d(T n((1 − ηn)un ⊕ ηnT
nun), ρ) ≤ lim

n→∞
sup d((1 − ηn)wn ⊕ ηnT

nun, ρ),

ω ≤ lim
n→∞

sup d((1 − ηn)un ⊕ ηnT
nun, ρ). (3.12)

By using (3.5) and (3.9), we have

d((1 − ηn)un ⊕ ηnT
nun, ρ) ≤ (1 − ηn)d(un, ρ) + ηnd(T nun, ρ)

lim
n→∞

sup d((1 − ηn)un ⊕ ηnT
nun, ρ) ≤ ω. (3.13)

Applying (3.12) and (3.13), we have,

lim
n→∞

sup d((1 − ηn)un ⊕ ηnT
nun, ρ) = ω. (3.14)

By using (3.5), (3.9), (3.14) and Lemma 2.5, we can conclude that

lim
n→∞

d(un,T
nun) = 0. (3.15)

We also have,
d(un+1, ρ) ≤ (1 + ϑnM1)d(vn, ρ) + κn.

By taking limit infimum both sides, we obtain

ω ≤ lim
n→∞

inf d(vn, ρ). (3.16)
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By (3.2), we have

d(vn, ρ) ≤ (1 + ϑnM1)4d(un, ρ) + (2 + ϑnM1)(1 + (1 + ϑnM1)2)κn

By taking limit suprimum both sides, we obtain

lim
n→∞

sup d(vn, ρ) ≤ ω. (3.17)

By using (3.16) and (3.17), we get

ω = lim
n→∞

sup d(vn, ρ) = lim
n→∞

sup(T n((1 − ςn)wn ⊕ ςnT
nwn), ρ). (3.18)

d(T n((1 − ςn)wn ⊕ ςnT
nwn), ρ) ≤ d((1 − ςn)wn ⊕ ςnT

nwn, ρ) + ϑnϕ[d((1 − ςn)wn ⊕ ςnT
nwn, ρ)] + κn,

d(T n((1 − ςn)wn ⊕ ςnT
nwn), ρ) ≤ [1 + ϑnM1]d((1 − ςn)wn ⊕ ςnT

nwn, ρ) + κn,

lim
n→∞

sup d(T n((1 − ςn)wn ⊕ ςnT
nwn), ρ) ≤ lim

n→∞
sup d((1 − ςn)wn ⊕ ςnT

nwn, ρ),

ω ≤ lim
n→∞

inf d((1 − ςn)wn ⊕ ςnT
nwn, ρ). (3.19)

Also we have
d((1 − ςn)wn ⊕ ςnT

nwn, ρ) ≤ (1 − ςn)d(wn, ρ) + ςnd(T nwn, ρ)

lim
n→∞

sup d((1 − ςn)wn ⊕ ςnT
nwn, ρ) ≤ ω. (3.20)

By using (3.8), (3.11), (3.20) and Lemma 2.5, we can conclude that

lim
n→∞

d(wn,T
nwn) = 0. (3.21)

Since T is ({ϑn}, {κn}, ϕ)-total asymptotically nonexpansive mapping.

d(T nwn,T
nun) ≤ d(wn, un) + ϑnϕd(wn, un) + κn

≤ (1 + ϑnM1)d(wn, un) + κn

≤ (1 + ϑnM1)d(T n((1 − ηn)un ⊕ ηnT
nun), un) + κn

≤ (1 + ϑnM1)d(T n((1 − ηn)un ⊕ ηnT
nun),T nun) + (1 + ϑnM1)d(T nun, un) + κn

≤ (1 + ϑnM1)[d((1 − ηn)un ⊕ ηnT
nun), un) + ϑnM1d((1 − ηn)un ⊕ ηnT

nun), un)+
κn] + (1 + ϑnM1)d(T nun, un) + κn

≤ (1 + ϑnM1)2[ηnd(T nun, un)] + (1 + ϑnM1)d(T nun, un) + (2 + ϑnM1)κn. ∀n ∈ N.

By taking limit n→ ∞ and using (3.15), we get

lim
n→∞

d(T nwn,T
nun) = 0. (3.22)
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We have

d(T nvn,T
nwn) ≤ d(vn,wn) + ϑnϕd(vn,wn) + κn

≤ (1 + ϑnM1)d(vn,wn) + κn

≤ (1 + ϑnM1)d(T n((1 − ηn)wn ⊕ ηnT
nwn),wn) + κn

≤ (1 + ϑnM1)d(T n((1 − ηn)wn ⊕ ηnT
nwn),T nwn) + (1 + ϑnM1)d(T nwn,wn) + κn

≤ (1 + ϑnM1)[d((1 − ηn)wn ⊕ ηnT
nwn),wn) + ϑnM1d((1 − ηn)wn ⊕ ηnT

nwn),wn)+
κn] + (1 + ϑnM1)d(T nwn,wn) + κn

≤ (1 + ϑnM1)2[ηnd(T nwn,wn)] + (1 + ϑnM1)d(T nwn,wn) + (2 + ϑnM1)κn. ∀n ∈ N.

By taking limit as n→ ∞ and using (3.21), we obtain

lim
n→∞

d(T nvn,T
nwn) = 0. (3.23)

From (3.15), (3.22) and (3.23), we get

d(un, un+1) = d(un,T
nvn),

≤ d(un,T
nun) + d(T nun,T

nwn) + d(T nwn,T
nvn),

→ 0 as n→ ∞.

Since T satisfies Definition 1.1 and uniformly L-Lipshitzian, we obtain

d(un,T un) = d(un, un+1) + d(un+1,T
n+1un+1) + d(T n+1un+1,T

n+1xn) + d(T n+1xn,T xn),
≤ d(un, un+1) + d(un+1,T

n+1un+1) +Ld(un+1, xn) +Ld(T nxn, xn),
→ 0 as n→ ∞.

Let x ∈ W∆(un). Then, there exists a subsequence {zn} of {un} such that A({zn}) = {x}. By using
Lemma 2.3, there exists a subsequence {yn} of {zn} such that {yn} ∆-converges to y ∈ C. By Lemma
2.4, y ∈ F (T ). Since {d(zn, y)} converges, by Lemma 2.2, x=y. This implies that W∆(un) ⊆ F (T ).
Next we will prove that W∆(un) consists of exactly one point. Let {zn} be a subsequence of {un} with
A({zn}) = {x} and A({un}) = {u}. We have seen that x = y and y ∈ F (T ). Finally, since {d(un, y)}
converges, by Lemma 2.2, we have u = y ∈ F (T ). This shows that W∆(un) = {u}.

Theorem 3.2. LetM, T , C, (a), (b), (c), (d), {ηn}, {ςn} same as in Theorem 3.1. Then, the sequence
{un}, defined by (1.3) strongly converges to a fixed point of T iff

lim inf
n→∞

d(un,F (T )) = 0,

where d(x,F (T )) = inf{d(x, ρ) : ρ ∈ F (T )}.
Senter and Dotson [24] introduced a mapping satisying condition (I) as follows:

A mapping T defined on C is said to satisfy the Condition (I) ( [24]) if there exists a nondecreasing
function f : [0,∞) → [0,∞) with f (0) = 0 and f (ω) > 0 for all ω ∈ (0,∞) such that ‖u − T u‖ ≥
f (d(u,F (T ))) for all u ∈ C, where d(u,F (T )) = inf{‖u − ρ‖ : ρ ∈ F (T )}.
By using the similar technique as in the proof of Theorem 3.3 by Thakur et. al [28], we get the
following result:
Theorem 3.3. Let M, T , C, (a), (b), (c), (d), {ηn}, {ςn} be same as in Theorem 3.1 with T satisfies
Condition (I). Then, {un}, defined by (1.3) converges to a point of F (T ).
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Recalling the definition of semi-compact mapping;
A map T defined on C is said to be semi-compact [27] if for a sequence {un} in Cwith lim

n→∞
d(un,T un) =

0, there exists a subsequence {un j} of {un} such that un j → ρ ∈ C.
By using the same steps used by Karapinar et al. [11] in the proof of Theorem 22, we get the next
result.
Theorem 3.4. LetM, T , C, (a), (b), (c), (d), {ηn}, {ςn} be same as in Theorem 3.1. Let T be semi-
compact. Then the sequence {un} defined by (1.3) converges to a point of F (T ).

4. Numerical example

Example 4.1. LetM = R with usual metric and C = [1, 10]. Let a self map T on C as follows:

T u =
3
√

(u2 + 4)

for all u ∈ C.

It can be clearly seen that T is a continuous uniformly L-Lipschitzian mapping with F (T ) = {2}.
Next, we will show that T satisfies Definition 1.1 on [1,10].

We notice that the function g(u) =
3
√

(u2 + 4) − u, ∀u ∈ [1, 10] has the derivative

g′(u) =
1
3

( 1
(u2 + 4)2/3

)
(2u) − 1,

for all u ∈ [1, 10]. Since u ≥ 1, we have g′(u) = 1
3

(
1

(u2+4)2/3

)
(2u) ≤ 1 and hence

g′(u) ≤ 0,

for all u ∈ [1, 10] which shows that the above function is decreasing on [1, 10]. Let u, v ∈ [1, 10] with
u ≤ v shows that

g(v) ≤ g(u)

we get

3√
v2 + 4 − v ≤

3√
u2 + 4 − u,

3√
v2 + 4 −

3√
u2 + 4 ≤ v − u,

|
3√
v2 + 4 −

3√
u2 + 4| ≤ |v − u|,

|
3√
u2 + 4 −

3√
v2 + 4| ≤ |u − v|.

Hence, we get
‖T u − T v‖ ≤ ‖u − v‖.

This shows that T satisfies Definition 1.1 as it is nonexpansive mapping.
By using the initial value u1 = 0.5 and setting the stopping criteria ‖un − 2‖ ≤ 10−15, reckoning the
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iterative values of (1.1), (1.2) and (1.3) for two choices, Choice 1: ηn = 1− n
2√

n2+1
, ςn = n

n+1 and Choice
2: ηn = 1 − n

3n+1 , ςn = n
16n+1 , as shown in Tables 1 and 2 respectively.

Figures 1 and 2 clearly shows the fastness of sequence (1.3) over the other existing iterative
schemes with different control conditions.

Table 1. Comparative Sequences for the Choice 1: ηn = 1 − n
2√

n2+1
, ςn = n

n+1 .

Iteration No. Picard-Mann Picard-S Proposed iteration

- CPU Time (.9051 sec) CPU Time (1.0945 sec) CPU Time (1.4011 sec)

1 0.500000000000000 0.500000000000000 0.500000000000000
2 1.673351078473488 1.911305694206785 2.013019344428651
3 1.968319842982687 1.999118643774929 1.999987398484048
4 1.998888729762473 1.999998910601895 2.000000000563505
5 1.999986686957856 1.999999999843751 1.999999999999999
6 1.999999946273438 1.999999999999998 2.000000000000000
7 1.999999999927302 2.000000000000000 2.000000000000000
8 1.999999999999967 2.000000000000000 2.000000000000000
9 2.000000000000000 2.000000000000000 2.000000000000000
10 2.000000000000000 2.000000000000000 2.000000000000000

Figure 1. Convergence of the sequences for the Choice 1.
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Table 2. Comparative Sequences for the Choice 2: ηn = 1 − n
3n+1 and ςn = n

16n+1 .

Iteration No. Picard-Mann Picard-S Proposed iteration

- CPU Time (.9319 sec) CPU Time (1.0828 sec) CPU Time (1.3286 sec)

1 0.500000000000000 0.500000000000000 0.500000000000000
2 1.796207021392586 1.930011948409510 1.991766910503178
3 1.991846068832765 1.999653199729716 1.999999320143441
4 1.999901610410224 1.999999825321212 1.999999999998919
5 1.999999615870039 1.999999999990460 2.000000000000000
6 1.999999999501533 2.000000000000000 2.000000000000000
7 1.999999999999784 2.000000000000000 2.000000000000000
8 2.000000000000000 2.000000000000000 2.000000000000000
9 2.000000000000000 2.000000000000000 2.000000000000000
10 2.000000000000000 2.000000000000000 2.000000000000000

Figure 2. Convergence of sequences for the Choice 2.

5. Conclusions

In this article, we have presented a new type of iteration procedure for total asymptotically
nonexpansive mapping under some new conditions in CAT(0) spaces. We showed that our new type
of iteration are more efficient than some of the existing iteration. Also, we have provided the reader
with a numerical experiment to support our claim.
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