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1. Introduction

Fractional derivatives and integrals are generalization of derivatives and integrals to arbitrary non-
integer orders. The theory of fractional calculus has been studied and applied to be valuable tools in the
investigation and explanation of many phenomena in various fields such as chemistry, physics [1, 2],
engineering [3], economics [4], control theory [5], epidemiology [6–8], etc (see [9–11]). Differential
equations involving time-fractional derivatives are more realistic to explain some phenomena than
those of integer order in time because it can describe the rate of change that depends on the past
state. Consequently, fractional derivatives have been investigated on qualitative and numerical aspects
[12, 13] for describing physical phenomena.

There are various definitions of fractional derivatives and integrals, which include
Riemann-Liouville, Caputo, Hilfer, Riesz, Erdelyi-Kober, Hadamard, etc [1, 9–11]. Among these
definitions, Caputo derivative and Riemann-Liouville are widely used by many researchers. In
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addition, they are derived from the corresponding fractional integral operators. The variation of
fractional calculus in many different forms of fractional derivative and integral operators arises from
various special functions. In one direction, the integral operators have been extended to include the
weight function ϕ as a definition of generalized Caputo fractional derivative by Almeida [14]. This
definition has the advantage in terms of accuracy in mathematical modeling if a function ϕ is
appropriately selected. Later, Jarad and Abdeljawad [15] constructed the Laplace transform and its
inverse operator which depends on another function ϕ for solving some fractional differential systems
in the notion of ϕ-Caputo fractional derivative.

Over the past years, there has been an essential development in fractional evolution equations since
many problems occurring in science, engineering and economy can be formulated by fractional
evolution equations. Evolution equations are generally used to interpret the changing and evolving
over time of the system. For instance, reaction-diffusion equations in chemical physics and
biology [16, 17], Schrödinger equations in quantum mechanics [18, 19], Navier-Stokes equation in
fluid mechanics [20], and Black-Scholes equation in finance [21] are common examples of fractional
evolution equations. The development in the theory of fractional evolution equations is an essential
branch of fractional calculus ranging from the study of existence, uniqueness, stability [22, 23],
numerical techniques [24] and mathematical modeling [25, 26]. In particular, the existence and
uniqueness theorems for fractional evolution equations have been extensively studied by means of
semigroup theory and fixed point theorems [24, 27–36].

Various types of fixed point theorems are extensively used as fundamental tools for proving the
existence and uniqueness of solutions for fractional evolution equations. However, some fixed point
theorems are non-constructive results. As we all know, the monotone iterative method [37] is a flexible
and efficient technique that provides both existence and constructive results for nonlinear differential
equations [38–43] in terms of the lower and upper solutions. Furthermore, it can contribute to several
comparison results which are applicable tools for the study. In this work, we emphasize on using the
monotone iterative method involving the construction of upper and lower solutions.

In 2020, Gou and Li [44] investigated the existence and uniqueness of mild solutions for impulsive
fractional evolution equations of Volterra and Fredholm types in an ordered Banach space E subject to
the periodic boundary condition by means of monotone iterative method for the problem

CDα
0 u(t)+Au(t) = f (t,u(t),Gu(t),Hu(t)), t ∈ J, t , tk

∆u|t=tk = Ik(u(tk)),k = 1,2, . . . ,m,

u(0) = u(ω)

where CDα
0 is the classical Caputo fractional derivative of order 0 < α < 1 with the lower limit zero,

A : D(A) ⊂ E → E is a closed linear operator and −A generates a C0−semigroup {T (t)}t≥0 in E;
f ∈C(J×E×E×E,E) is a function, Ik ∈C(E,E) is an impulsive function, k = 1,2, . . . ,m; J = [0,ω],
J′= J\{t1, t2, . . . , tm} , J0 = [0, t1], Jk = (tk, tk+1], the {tk} satisfy 0= t0 < t1 < t2 < · · ·< tm < tm+1 =ω,

m ∈ N; ∆u(tk) = u(t+k )− u(t−k ), u(t+k ) and u(t−k ) represent the right and left limits of u(t) at t = tk,
respectively. The operators G and H are Volterra integral operator and Fredholm integral operator,
respectively, which are defined by

Gu(t) =
∫ t

0
g(t,s)u(s)ds (1.1)
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where the integral kernel g ∈C(Ω,R+) and Ω = {(t,s) ∈ R2 |0≤ s≤ t ≤ T}, and

Hu(t) =
∫ T

0
h(t,s)u(s)ds (1.2)

with the integral kernel h ∈C(Ω,R+) and Ω = {(t,s) ∈ R2 |0≤ t,s≤ T}.
Recently, Derbazi et al. [45] studied the existence and uniqueness of extremal solutions for

fractional differential equations involving the ϕ−Caputo derivative subject to an initial condition:{
CDα;ϕ

a u(t) = f (t,u(t)), t ∈ [a,b]

u(a) = a∗

where CDα;ϕ
a is the ϕ−Caputo fractional derivative of order 0 < α < 1, f : [a,b]×R→ R is a given

continuous function and a∗ ∈ R.
Inspired by [44, 45], some monotone conditions and noncompactness measure conditions of

nonlinearity f , we use the monotone iterative technique to establish the existence of solutions of
fractional evolution equations in an order Banach space E given by{

CDα;ϕ
t0 u(t) = Au(t)+ f (t,u(t),Gu(t),Hu(t)), t > t0

u(t0) = u0
(1.3)

where 0 < α < 1, 0≤ t0 ≤ t ≤ T < ∞ and u0 ∈ E. Here A : D(A)⊂ E→ E is the infinitesimal generator
of an analytic semigroup of uniformly bounded linear operators {T (t)}t≥0 on E. The nonlinearity
f : [t0,T ]×E×E×E → E is a function involving the Volterra integral operator G and the Fredholm
integral operator H defined by

Gu(t) =
∫ t

t0
g(t,s)u(s)ds (1.4)

where the integral kernel g ∈C(Ω,R+) and Ω = {(t,s) ∈ R2 | t0 ≤ s≤ t ≤ T}, and

Hu(t) =
∫ T

t0
h(t,s)u(s)ds (1.5)

with the integral kernel h ∈C(Ω,R+) and Ω = {(t,s) ∈ R2 | t0 ≤ t,s≤ T}.
The motivation for this work is taken by Derbazi et al. [45] and we apply the same techniques used

in [45]. However, the generalization of this problem to our work involves evolution operator A. Hence,
in order to establish the existence of solutions, it is required to derive the form of fundamental solution
in terms of a semigroup induced by resolvent with respect to the weight function ϕ . Moreover, we
notice that our problem (1.3) can be reduced to the work of Derbazi et al. [45] when the evolution
operator A, and the operators G and H are taken to be zero operators on Banach space E = R.

In this paper, we aim to derive a mild solution for the problem (1.3) in terms of semigroup depending
on a function ϕ from Caputo fractional derivative. In addition, we construct lower and upper solutions
to prove the existence and uniqueness results of mild solution for the problem (1.3) under the condition
that {T (t)}t≥0 do not require compactness by using the monotone iterative technique. Moreover, the
results obtained in this work are in the abstract form based on a more general definition of ϕ−Caputo
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fractional derivative so that it can be extended and generalized some results in the literature such as the
impulsive evolution equations [42, 44], the evolution equations with delay and nonlocal conditions.

This manuscript is organized as follows. In Section 2, we recall basic concepts for fractional
calculus and some known results used in the later. In section 3, we construct a mild solution of the
Cauchy problem (1.3) in the form of operator semigroup involving a function ϕ which is obtained
from the generalized Caputo derivative and then give the definitions of lower and upper solutions.
Next, we investigate the existence and uniqueness results of mild solutions for the Cauchy problem
(1.3) under the assumption that {T (t)}t≥0 does not require compactness by using the monotone
iterative method in Section 4. Moreover, we provide an example to illustrate the results obtained in
Section 5 and conclusion in Section 6.

2. Preliminaries

In this section, we recall some notations and definitions of fractional calculus and give auxiliary
results which will be used in the sequel.

We begin by introducing some properties of cones on real Banach spaces E.
In cone P , a partially ordered ≤ is defined which means if x≤ y if and only if y− x ∈P . If x≤ y

and x , y, then we denote x < y or y > x.

Definition 2.1. [46] The cone P is called

(N) normal if there exists a constant N > 0 such that ‖x1‖ ≤ N‖x2‖ if θ ≤ x1 ≤ x2, for all x1,x2 ∈ E.
The least positive number satisfying above is called the normal constant of P .

(R) regular if every increasing sequence which is bounded from above is convergent. That is, if {xn}n≥1
is a sequence such that

x1 ≤ x2 ≤ ·· · ≤ y

for some y ∈ E, then there is x ∈ E such that limn→∞ ‖xn− x‖= 0.

Lemma 2.2. [46, 47]

(i). Every regular cone is normal.

(ii). The cone P is regular if and only if every decreasing sequence which is bounded from below is
convergent.

Theorem 2.3. [48] Let E be a weakly complete Banach space and P a cone in E. Then, P is normal
if and only if P is regular.

Definition 2.4. An operator family S(t)(t ≥ 0) is said to be a positive operator in E if for any u ∈P
and t ≥ 0 such that S(t)u≥ θ .

Here, we assume that E is an ordered Banach space with the norm ‖ · ‖ and the partial order ≤,
whose positive cone P = {x ∈ E : x≥ θ} (θ is the zero element of E) is normal with normal constant
N > 0.

Let C([t0,T ],E) be the Banach space of all continuous maps from [t0,T ] to E with the norm
‖u‖C = supt∈[t0,T ] ‖u(t)‖. For x1,x2 ∈ C([t0,T ],E), x1 ≤ x2 if and only if x1(t) ≤ x2(t) for all
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t ∈ [t0,T ]. For v,w ∈C([t0,T ],E), denote the ordered interval [v,w] = {u ∈C([t0,T ],E) : v ≤ u ≤ w}
and [v(t),w(t)] = {u ∈ E : v(t)≤ u≤ w(t)} for all t ∈ [t0,T ].

Next, we briefly highlight the definition and some basic properties of the ϕ−Caputo fractional
derivative which are used throughout this paper.

Definition 2.5. (ϕ-Riemann-Liouville fractional integral, [14]) Let α > 0, u ∈ L1([a,b]) and ϕ ∈
C1([a,b]) be a function such that ϕ ′(t)> 0 for all t ∈ [a,b]. The ϕ-Riemann-Liouville fractional integral
of order α of a function u with respect to another function ϕ is defined by

(Iα;ϕ
a u)(t) =

1
Γ(α)

∫ t

a
(ϕ(t)−ϕ(s))α−1u(s)ϕ ′(s)ds. (2.1)

The above definition can be reduced to the classical Riemann-Liouville fractional integral when ϕ(t) =
t.

Definition 2.6. (ϕ-Riemann-Liouville fractional derivative, [14] ) Let α > 0, n ∈ N and
u,ϕ ∈ Cn([a,b]) be two functions such that ϕ ′(t) > 0, for all t ∈ [a,b]. The ϕ-Riemann-Liouville
fractional derivative of a function u of order α is defined by

(Dα;ϕ
a u)(t) =

(
1

ϕ ′(t)
d
dt

)n (
In−α;ϕ
a u

)
(t)

=
1

Γ(n−α)

(
1

ϕ ′(t)
d
dt

)n ∫ t

a
(ϕ(t)−ϕ(s)n−α−1u(s)ϕ ′(s)ds

where n = [α]+1.

Definition 2.7. (ϕ-Caputo fractional derivative, [14, 15]) Let α > 0, n ∈ N and u,ϕ ∈ Cn([a,b]) be
two functions such that ϕ ′(t) > 0 for all t ∈ [a,b]. The ϕ-Caputo fractional derivative of a function u
of order α is defined by(

CDα;ϕ
a u

)
(t) =

(
In−α;ϕ
a u[n]

)
(t)

=
1

Γ(n−α)

∫ t

a
(ϕ(t)−ϕ(s))n−α−1u[n](s)ϕ ′(s)ds

where n = [α]+1 and u[n](t) :=
(

1
ϕ ′(t)

d
dt

)n

u(t) on [a,b].

Lemma 2.8. [14] Let α > 0. If u ∈Cn([a,b]) then

Iα;ϕ
a

(
CDα;ϕ

a u(t)
)
= u(t)−

n−1

∑
k=0

u[k](a+)
k!

(ϕ(t)−ϕ(a))k .

In particular, given α ∈ (0,1), we have

Iα;ϕ
a

(
CDα;ϕ

a u(t)
)
= u(t)−u(a).
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Definition 2.9. [15] Let u and ϕ be real valued functions on [a,∞) such that ϕ(t) is continuous and
ϕ ′(t)> 0 on [a,∞). The generalized Laplace transform of u is defined by

Lϕ {u(t)}(s) =
∫

∞

a
e−s(ϕ(t)−ϕ(a))u(t)ϕ ′(t)dt

for all s.

Definition 2.10. [15] Let u and v be piecewise continuous functions on an interval [a,b] and of
exponential order. The generalized convolution of u and v is defined as

(
u∗ϕ v

)
(t) =

∫ t

a
u(τ)v

(
ϕ
−1 (ϕ(t)+ϕ(a)−ϕ(τ))

)
ϕ
′(τ)dτ.

Theorem 2.11. (Gronwall’s inequality, [49, 50]) Let ϕ ∈C1([a,b]) be a function such that ϕ ′(t) > 0
for all t ∈ [a,b]. Suppose that

(i) u and v are nonnegative and integrable functions;

(ii) w is nonnegative continuous and nondecreasing function on [a,b]

with

u(t)≤ v(t)+w(t)
∫ t

a
(ϕ(t)−ϕ(s))α−1 u(s)ϕ ′(s)ds.

Then

u(t)≤ v(t)+
∫ t

a

∞

∑
k=1

[w(t)Γ(α)]k

Γ(nα)
(ϕ(t)−ϕ(s))kα−1 v(s)ϕ ′(s)ds

for all t ∈ [a,b].

Definition 2.12. [51, 52] Let 0 < α < 1 and z ∈ C. The function φα defined by

φα(z) =
∞

∑
k=0

(−z)k

k!Γ(−αk+1−α)
=

1
π

∞

∑
k=0

(−z)k
Γ(α(k+1))sin(π(k+1)α)

k!

is called Wright type function.

Proposition 2.13. [51, 52] The Wright type function φα is an entire function and has the following
properties:

(i) φα(θ)≥ 0 for θ ≥ 0 and
∫

∞

0 φα(θ)dθ = 1;

(ii)
∫

∞

0 φα(θ)θ
rdθ =

Γ(1+ r)
Γ(1+αr)

for r >−1;

(iii)
∫

∞

0 φα(θ)e−zθ dθ = Eα(−z), z ∈ C;

(iv) α
∫

∞

0 θφα(θ)e−zθ dθ = Eα,α(−z), z ∈ C
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where Eα(z) = ∑
∞
k=0

zk

Γ(kα +1)
is the Mittag-Leffler function with z ∈ C and α > 0.

Now, we recall the definition and some properties of Kuratowski measure of noncompactness.

Definition 2.14. [53] Let B be a bounded set of Banach space E. The Kuratowski measure of
noncompactness µ(·) is defined by

µ(B) := inf{ε > 0 : B⊂ ∪n
i=1B j,diam(Bi)< ε}

where diam(Bi) = sup{|y− x| : x,y ∈ Bi} for i = 1,2, . . .n ∈ N.

Lemma 2.15. [54] Let C and D be bounded subsets of a Banach space E. The noncompactness
measure which satisfies the following properties:

(i) D is precompact if and only if µ(D) = 0;

(ii) µ(C∪D) = max{µ(C),µ(D)} ;

(iii) µ(C+D)≤ µ(C)+µ(D);

(iv) µ(λC) = |λ |µ(C) where λ ∈ R;

(v) Let X be another Banach space. If S : D(S)⊂ E → X satisfies Lipschitz continuity with constant
L, then

µ(S(B))≤ Lµ(B)

for any bounded subset B⊂ D(S).

Lemma 2.16. [54] If B ⊂C([t0,T ],E) is bounded and equicontinuity, then µ(B(t)) is continuous on
[t0,T ], and

µ(B) = sup
t∈[t0,T ]

µ(B(t))

where B(t) = {u(t) : u ∈ B} for all t ∈ [t0,T ].

Lemma 2.17. [55] If B⊂C([t0,T ],E) is bounded and equicontinuous, then µ(B(t)) is continuous on
[t0,T ], and

µ

({∫ T

t0
u(t)dt |u ∈ B

})
≤
∫ T

t0
µ (B(t))dt.

Lemma 2.18. [56] If B = {un}∞
n=1 ⊂ C([t0,T ],E) be a bounded and countable set, then µ(B(t)) is

Lebesgue integral on [t0,T ], and

µ

({∫ T

t0
un(t)dt | n ∈ N

})
≤ 2

∫ T

t0
µ (B(t))dt.

Throughout this work, A is assumed to be the infinitesimal generator of a strongly continuous
semigroup (i.e., C0-semigroup) of uniformly bounded linear operators {T (t)}t≥0 on E with

M = sup
t∈[0,∞)

‖T (t)‖ for some M ≥ 1.

AIMS Mathematics Volume 6, Issue 5, 4734–4757.



4741

3. A mild solution for ϕ−Caputo fractional evolution equations

In this section, we derive the mild solution of the Cauchy problem (1.3) based on the semigroup
theory and generalized Laplace transform.

Lemma 3.1. Assume v ∈C([t0,T ],E) and 0 < α < 1. The mild solution of the linear Cauchy problem{
CDα;ϕ

t0 u(t) = Au(t)+ v(t), t > t0
u(t0) = u0 ∈ E

(3.1)

is given by

u(t) = Sα;ϕ(t, t0)u0 +
∫ t

t0
(ϕ(t)−ϕ(s))α−1Tα;ϕ(t,s)v(s)ϕ ′(s)ds, t ∈ [t0,T ] (3.2)

where the operators Sα;ϕ(t,s) and Tα;ϕ(t,s) are defined by

Sα;ϕ(t,s)u =
∫

∞

0
φα(θ)T

(
(ϕ(t)−ϕ(s))α

θ
)

udθ (3.3)

and

Tα;ϕ(t,s)u = α

∫
∞

0
θφα(θ)T

(
(ϕ(t)−ϕ(s))α

θ
)

udθ (3.4)

for 0≤ s≤ t ≤ T and u ∈ E.

Proof. The proof follows similar ideas as in [57]. Firstly, we apply the Definition 2.7 and Lemma 2.8
into the Cauchy problem (3.1). It can be rewritten the Cauchy problem (3.1) in form of the integral
representation as

u(t) = u0 +
1

Γ(α)

∫ t

t0
(ϕ(t)−ϕ(τ))α−1 (Au(τ)+ v(τ))ϕ

′(τ)dτ. (3.5)

Taking the generalized Laplace transforms to both sides of (3.5), we get that for λ > 0,

U(λ ) = λ
α−1(λ α I−A)−1u0 +(λ α I−A)−1V (λ )

= λ
α−1

∫
∞

0
e−λ α sT (s)u0ds+

∫
∞

0
e−λ α sT (s)V (λ )ds

= α

∫
∞

0
(λη)α−1 e−(λη)α

T (ηα)u0dη +α

∫
∞

0
η

α−1e−(λη)α

T (ηα)V (λ )dη

=: J1 + J2

where

U(λ ) =
∫

∞

t0
e−λ (ϕ(τ)−ϕ(t0))u(τ)ϕ ′(τ)dτ

and

V (λ ) =
∫

∞

t0
e−λ (ϕ(τ)−ϕ(t0))v(τ)ϕ ′(τ)dτ.
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Substituting η = ϕ(t)−ϕ(t0) into J1 and J2 gives

J1 = α

∫
∞

t0
λ

α−1 (ϕ(t)−ϕ(t0))
α−1 e−(λ (ϕ(t)−ϕ(t0)))

α

T
(
(ϕ(t)−ϕ(t0))

α
)

u0ϕ
′(t)dt

=
∫

∞

t0
− 1

λ

d
dt

(
e−(λ (ϕ(t)−ϕ(t0)))

α
)

T
(
(ϕ(t)−ϕ(t0))

α
)

u0dt

and

J2 =
∫

∞

t0
α (ϕ(t)−ϕ(t0))

α−1 e−(λ (ϕ(t)−ϕ(t0)))
α

×T
(
(ϕ(t)−ϕ(t0))

α
)

V (λ )ϕ ′(t)dt

=
∫

∞

t0

∫
∞

t0
α (ϕ(t)−ϕ(t0))

α−1 e−(λ (ϕ(t)−ϕ(t0)))
α

×T
(
(ϕ(t)−ϕ(t0))

α
)

e−(λ (ϕ(s)−ϕ(t0)))v(s)ϕ ′(s)ϕ ′(t)dsdt.

The following one-sided stable probability density in [2] is considered by

ρα(θ) =
1
π

∞

∑
k=1

(−1)k−1
θ
−αk−1 Γ(αk+1)

k!
sin(kπα), θ ∈ (0,∞)

whose integration is given by∫
∞

0
e−λθ

ρα(θ)dθ = e−λ α

for 0 < α < 1. (3.6)

Applying (3.6) to J1 and J2, it follows that

J1 =
∫

∞

t0

∫
∞

0
θρα(θ)e−λ (ϕ(t)−ϕ(t0))θT

(
(ϕ(t)−ϕ(t0))

α
)

u0ϕ
′(t)dθdt

=
∫

∞

t0
e−λ (ϕ(t)−ϕ(t0))

(∫
∞

0
ρα(θ)T

(
(ϕ(t)−ϕ(t0))

α

θ α

)
u0dθ

)
ϕ
′(t)dt

and

J2 =
∫

∞

t0

∫
∞

t0

∫
∞

0
α (ϕ(t)−ϕ(t0))

α−1
ρα(θ)e−λ (ϕ(t)−ϕ(t0))θ

×T
(
(ϕ(t)−ϕ(t0))

α
)

e−λ (ϕ(s)−ϕ(t0))v(s)ϕ ′(s)ϕ ′(t)dθdsdt

=
∫

∞

t0

∫
∞

t0

∫
∞

0
αe−λ (ϕ(t)+ϕ(s)−2ϕ(t0)) (ϕ(t)−ϕ(t0))

α−1

θ α
ρα(θ)

×T

(
(ϕ(t)−ϕ(t0))

α

θ α

)
v(s)ϕ ′(s)ϕ ′(t)dθdsdt

=
∫

∞

t0

∫
∞

t

∫
∞

0
αe−λ (ϕ(τ)−ϕ(t0))ρα(θ)

(ϕ(t)−ϕ(t0))
α−1

θ α

×T

(
(ϕ(t)−ϕ(t0))

α

θ α

)
v(ϕ−1(ϕ(τ)−ϕ(t)+ϕ(t0)))ϕ ′(τ)ϕ ′(t)dθdτdt

AIMS Mathematics Volume 6, Issue 5, 4734–4757.



4743

=
∫

∞

t0

∫
τ

t0

∫
∞

0
αe−λ (ϕ(τ)−ϕ(t0))ρα(θ)

(ϕ(t)−ϕ(t0))
α−1

θ α

×T

(
(ϕ(t)−ϕ(t0))

α

θ α

)
v(ϕ−1(ϕ(τ)−ϕ(t)+ϕ(t0)))ϕ ′(τ)ϕ ′(t)dθdtdτ

=
∫

∞

t0
e−λ (ϕ(τ)−ϕ(t0))

×

(∫
τ

t0

∫
∞

0
αρα(θ)

(ϕ(τ)−ϕ(s))α−1

θ α
T

(
(ϕ(τ)−ϕ(s))α

θ α

)
v(s)ϕ ′(s)dθds

)
ϕ
′(τ)dτ.

It follows that

U(λ ) =
∫

∞

t0
e−λ (ϕ(t)−ϕ(t0))

(∫
∞

0
ρα(θ)T

(
(ϕ(t)−ϕ(t0))

α

θ α

)
u0dθ

)
ϕ
′(t)dt

+
∫

∞

t0
e−λ (ϕ(τ)−ϕ(t0))

×

(∫
τ

t0

∫
∞

0
αρα(θ)

(ϕ(τ)−ϕ(s))α−1

θ α
T

(
(ϕ(τ)−ϕ(s))α

θ α

)
v(s)ϕ ′(s)dθds

)
ϕ
′(τ)dτ.

Hence, we apply the inverse Laplace transform to get

u(t) =
∫

∞

0
ρα(θ)T

(
(ϕ(t)−ϕ(t0))

α

θ α

)
u0dθ

+
∫ t

t0

∫
∞

0
αρα(θ)

(ϕ(t)−ϕ(s))α−1

θ α
T

(
(ϕ(t)−ϕ(s))α

θ α

)
v(s)ϕ ′(s)dθds

=
∫

∞

0
φα(θ)T

(
(ϕ(t)−ϕ(t0))

α
θ
)

u0dθ

+
∫ t

t0
(ϕ(t)−ϕ(s))α−1

(∫
∞

0
αθφα(θ)T

(
(ϕ(t)−ϕ(t0))

α
θ
)

dθ

)
v(s)ϕ ′(s)ds

:= Sα;ϕ(t, t0)u0 +
∫ t

t0
(ϕ(t)−ϕ(s))α−1Tα;ϕ(t,s)v(s)ϕ ′(s)ds

where φα(θ) =
1
α

θ
−1− 1

α ρα(θ
− 1

α ) is the probability density function defined on (0,∞). �

Lemma 3.2. [57] The operators Sα;ϕ and Tα;ϕ have the following properties:

(i) For any fixed 0≤ s≤ t, Sα;ϕ(t,s) and Tα;ϕ(t,s) are bounded linear operators with

‖Sα;ϕ(t,s)(u)‖ ≤M‖u‖ and ‖Tα;ϕ(t,s)(u)‖ ≤
αM

Γ(1+α)
‖u‖= M

Γ(α)
‖u‖

for all u ∈ E.

(ii) The operators Sα;ϕ(t,s) and Tα;ϕ(t,s) are strongly continuous for all 0≤ s≤ t, that is, for every
u ∈ E and 0≤ s≤ t1 < t2 ≤ T we have

‖Sα;ϕ(t2,s)u−Sα;ϕ(t1,s)u‖→ 0 and ‖Tα;ϕ(t2,s)u−Tα;ϕ(t1,s)u‖→ 0

as t1→ t2.
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Definition 3.3. A function u ∈C([t0,T ],E) is called a mild solution of (1.3) if it satisfies

u(t) = Sα;ϕ(t, t0)u0 +
∫ t

t0
(ϕ(t)−ϕ(s))α−1Tα;ϕ(t,s) f (s,u(s),Gu(s),Hu(s))ϕ ′(s)ds

where the operators Sα;ϕ and Tα;ϕ are defined by (3.3) and (3.4), respectively.

From Definition 2.4, if T (t)(t ≥ 0) is a positive semigroup generated by −A, f and u0 are
nonnegaive, then the mild solution u ∈C([t0,T ],E) of Cauchy problem (1.3) satisfies u≥ θ .

Definition 3.4. A function u ∈C([t0,T ],E) is called a lower solution of problem (1.3) and satisfies{
CDα;ϕ

t0 u(t)≤ Au(t)+ f (t,u(t),Gu(t),Hu(t)), t ∈ (t0,T ]

u(t0)≤ u0.
(3.7)

Analogously, a function u ∈C([t0,T ],E) is called a upper solution of problem (1.3) and satisfies{
CDα;ϕ

t0 u(t)≥ Au(t)+ f (t,u(t),Gu(t),Hu(t)), t ∈ (t0,T ]

u(t0)≥ u0.
(3.8)

4. Main results

Before stating and proving the main results, we introduce following assumptions:

(H1) There exists lower and upper solutions u0,u0 ∈C([t0,T ],E) of Cauchy problem (1.3) respectively,
such that u0 ≤ u0.

(H2) The nonlinear term f is a function in C([t0,T ]×E ×E ×E,E) and there exists a nonnegative
constant C such that

f (t,u2,v2,w2)− f (t,u1,v1,w2)≥−C(u2−u1),

for any t ∈ [t0,T ], u0(t)≤ u1 ≤ u2 ≤ u0(t), Gu0(t)≤ v1 ≤ v2 ≤ Gu0(t) and Hu0(t)≤ w1 ≤ w2 ≤
Hu0(t).

(H3) There exist nonnegative constants L1,L2,L3 such that for any bounded and countable sets
B1,B2,B3 ⊂ E

µ({ f (t,B1,B2,B3)})≤ L1µ(B1)+L2µ(B2)+L3µ(B3),

for t ∈ [t0,T ].

(H4) There are nonnegative constants S1,S2,S3 such that

f (t,u2,v2,w2)− f (t,u1,v1,w1)≤ S1(u2−u1)+S2(v2− v1)+S3(w2−w1),

for any t ∈ [t0,T ], u0(t)≤ u1 ≤ u2 ≤ u0(t), Gu0(t)≤ v1 ≤ v2 ≤ Gu0(t) and Hu0(t)≤ w1 ≤ w2 ≤
Hu0(t).
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For convenience, we write G∗ = max(t,s)∈Ω|g(t,s)|, and H∗ = max(t,s)∈Ω
|h(t,s)|.

Theorem 4.1. Let E be an ordered Banach space, whose positive cone P is normal with normal
constant N. Assume that (H1)-(H3) holds with T (t)(t ≥ 0) is positive and

R :=
2M(ϕ(T )−ϕ(t0))

α

Γ(α +1)

(
L1 +2G∗L2T +2H∗L3T +C

)
< 1.

Then, the Cauchy problem (1.3) has the minimal and maximal mild solutions between u0 and u0 which
can be iteratively constructed by monotone sequence starting from u0 and u0, respectively.

Proof. Let D = [u0,u0] = {v ∈ C([t0,T ],E) |u0 ≤ v ≤ u0} and we define an operator
Q : D→C([t0,T ],E) by

Qu(t) = Sα;ϕ(t, t0)u0

+
∫ t

t0
(ϕ(t)−ϕ(s))α−1Tα;ϕ(t,s) [ f (s,u(s),Gu(s),Hu(s))+Cu(s)]ϕ ′(s)ds.

First, we will verify that Q : D→ D is monotone increasing. For u1,u2 ∈ D and u1 ≤ u2, by the
positivity of operators Sα;ϕ(t,s) and Tα;ϕ(t,s) for t0 ≤ s≤ t ≤ T , and (H2), we have

Qu1(t) = Sα;ϕ(t, t0)u0 +
∫ t

t0
(ϕ(t)−ϕ(s))α−1

×Tα;ϕ(t,s) [ f (s,u1(s),Gu1(s),Hu1(s))+Cu1(s)]ϕ ′(s)ds

≤ Sα;ϕ(t, t0)u0 +
∫ t

t0
(ϕ(t)−ϕ(s))α−1

×Tα;ϕ(t,s) [ f (s,u2(s),Gu2(s),Hu2(s))+Cu2(s)]ϕ ′(s)ds

= Qu2(t)

which implies Qu1 ≤ Qu2. Let ρ(t) = CDα;ϕ
t0 u0(t)−Au0(t)+Cu0(t). By Definition 3.4, we obtain

ρ(t) ≤ f (t,u0(t),Gu0(t),Hu0(t)) +Cu0(t), for t ∈ [t0,T ]. From Lemma 3.1, and the positivity of
operators Sα;ϕ(t,s) and Tα;ϕ(t,s) for t0 ≤ s≤ t ≤ T, we have

u0(t) = Sα;ϕ(t, t0)u0 +
∫ t

t0
(ϕ(t)−ϕ(s))α−1Tα;ϕ(t,s)ρ(s)ϕ ′(s)ds

≤ Sα;ϕ(t, t0)u0 +
∫ t

t0
(ϕ(t)−ϕ(s))α−1

×Tα;ϕ(t,s) [ f (s,u0(s),Gu0(s),Hu0(s))+Cu0(s)]ϕ
′(s)ds

= Qu0(t) for t ∈ [t0,T ],

and hence u0 ≤Qu0. Similarly, we can show that Qu0 ≤ u0. This implies that for u ∈ D

u0 ≤Qu0 ≤Qu≤Qu0 ≤ u0.

Hence, Q is an increasing monotonic operator.
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Now, we define two sequences {un} and {un} in D by the iterative scheme

un = Qun−1 and un = Qun−1, n ∈ N. (4.1)

Then, by the monotonicity of Q, it follows that

u0 ≤ u1 ≤ ·· ·un ≤ ·· · ≤ un ≤ ·· · ≤ u1 ≤ u0. (4.2)

Next, we claim that {un} and {un} are uniformly convergent in [t0,T ]. Let B = {un | n ∈ N} and
B0 = {un−1 | n ∈ N}. Then B0 = B∪{u0} and hence µ (B(t)) = µ (B0(t)) for t ∈ [t0,T ].

In view of (4.2), since the positive cone P is normal, then B0 and B are bounded in C([t0,T ],E).
Now, we prove that Q(B) is equicontinuous. For any u ∈ D, by (H2), we have

f (t,u0,Gu0,Hu0)+Cu0 ≤ f (t,u,Gu,Hu)+Cu≤ f (t,u0,Gu0,Hu0)+Cu0.

By the normality of the positive cone P, there exists a constant K > 0 such that

‖ f (t,u,Gu,Hu)+Cu‖ ≤ K for u ∈ E.

For any un ∈ B and t0 ≤ t1 < t2 ≤ T, we have

‖(Qun)(t2)− (Qun)(t1)‖
≤ ‖Sα;ϕ(t2, t0)u0−Sα;ϕ(t1, t0)u0‖

+

∣∣∣∣∣
∣∣∣∣∣
∫ t2

t0
(ϕ(t2)−ϕ(s))α−1Tα;ϕ(t2,s) [ f (s,un(s),Gun(s),Hun(s))+Cun(s)]ϕ

′(s)ds

−
∫ t1

t0
(ϕ(t1)−ϕ(s))α−1Tα;ϕ(t1,s) [ f (s,un(s),Gun(s),Hun(s))+Cun(s)]ϕ

′(s)ds

∣∣∣∣∣
∣∣∣∣∣

= ‖Sα;ϕ(t2, t0)u0−Sα;ϕ(t1, t0)u0‖

+

∣∣∣∣∣
∣∣∣∣∣
∫ t1

t0
(ϕ(t2)−ϕ(s))α−1Tα;ϕ(t2,s) [ f (s,un(s),Gun(s),Hun(s))+Cun(s)]ϕ

′(s)ds

+
∫ t2

t1
(ϕ(t2)−ϕ(s))α−1Tα;ϕ(t2,s) [ f (s,un(s),Gun(s),Hun(s))+Cun(s)]ϕ

′(s)ds

+
∫ t1

t0
(ϕ(t1)−ϕ(s))α−1Tα;ϕ(t2,s) [ f (s,un(s),Gun(s),Hun(s))+Cun(s)]ϕ

′(s)ds

−
∫ t1

t0
(ϕ(t1)−ϕ(s))α−1Tα;ϕ(t2,s) [ f (s,un(s),Gun(s),Hun(s))+Cun(s)]ϕ

′(s)ds

−
∫ t1

t0
(ϕ(t1)−ϕ(s))α−1Tα;ϕ(t1,s) [ f (s,un(s),Gun(s),Hun(s))+Cun(s)]ϕ

′(s)ds

∣∣∣∣∣
∣∣∣∣∣

≤ ‖Sα;ϕ(t2, t0)u0−Sα;ϕ(t1, t0)u0‖

+

∣∣∣∣∣
∣∣∣∣∣
∫ t2

t1
(ϕ(t2)−ϕ(s))α−1Tα;ϕ(t2,s)( f (s,un(s),Gun(s),Hun(s))+Cun(s))ϕ

′(s)ds

∣∣∣∣∣
∣∣∣∣∣
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+

∣∣∣∣∣
∣∣∣∣∣
∫ t1

t0

[
(ϕ(t2)−ϕ(s))α−1− (ϕ(t1)−ϕ(s))α−1

]
×Tα;ϕ(t2,s) [ f (s,un(s),Gun(s),Hun(s))+Cun(s)]ϕ

′(s)ds

∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣
∣∣∣∣∣
∫ t1

t0
(ϕ(t1)−ϕ(s))α−1

×
[
Tα;ϕ(t2,s)−Tα;ϕ(t1,s)

]
( f (s,un(s),Gun(s),Hun(s))+Cun(s))ϕ

′(s)ds

∣∣∣∣∣
∣∣∣∣∣

=: J1 + J2 + J3 + J4.

By Lemma 3.2, it is clear that J1→ 0 as t1→ t2 and we obtain

J2 ≤
MK

Γ(α +1)
(ϕ(t2)−ϕ(t1))

α

and

J3 ≤
MK

Γ(α +1)

[
(ϕ(t2)−ϕ(t0))

α − (ϕ(t1)−ϕ(t0))
α − (ϕ(t2)−ϕ(t1))

α
]

and hence J2→ 0 and J3→ 0 as t2→ t1. For t1 = 0 and 0 < t2 ≤ T, it is easy to see that J4 = 0. Then,
for any ε ∈ (0, t1), we have

J4 ≤

∣∣∣∣∣
∣∣∣∣∣
∫ t1−ε

t0
(ϕ(t1)−ϕ(s))α−1

[
Tα;ϕ(t2,s)−Tα;ϕ(t1,s)

]
( f (s,un(s),Gun(s),Hun(s))+Cun(s))ϕ

′(s)ds

∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣
∣∣∣∣∣
∫ t1

t1−ε

(ϕ(t1)−ϕ(s))α−1
[
Tα;ϕ(t2,s)−Tα;ϕ(t1,s)

]
( f (s,un(s),Gun(s),Hun(s))+Cun(s))ϕ

′(s)ds

∣∣∣∣∣
∣∣∣∣∣

≤ K
α

[
(ϕ(t1)−ϕ(t0))

α − (ϕ(t1)−ϕ(t1− ε))α
]

sup
t0≤s<t1−ε

‖Tα;ϕ(t2,s)−Tα;ϕ(t1,s)‖

+
2MK

Γ(α +1)

[
(ϕ(t1)−ϕ(t1− ε))α

]
By Lemma 3.2, it follows that J4→ 0 as t2→ t1 and ε → 0. Thus, we obtain

‖(Qu)(t2)− (Qu)(t1)‖→ 0 independently of u ∈ D as t2→ t1.

which means that Q(B) is equicontinuous.
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For t ∈ [t0,T ], by Lemma 2.18 we have

µ(GB0(t)) = µ

({∫ t

t0
g(t,s)un−1(s)ds

}∞

n=1

)
≤ 2G∗T sup

t∈[t0,T ]
µ{B0(t)}

and

µ(HB0(t)) = µ

({∫ T

t0
h(t,s)un−1(s)ds

}∞

n=1

)
≤ 2H∗T sup

t∈[t0,T ]
µ{B0(t)}.

Since the sequence {un−1(t0)}∞
n=1 is convergent, we obtain µ

(
{un−1(t0)}∞

n=1
)
= 0. For any t ∈

[t0,T ], by (H3) and Lemma 2.17 and Lemma 2.18 we have

µ (B(t))

= µ (B0(t))

= µ

({
Sα;ϕ(t, t0)u0 +

∫ t

t0
(ϕ(t)−ϕ(s))α−1Tα;ϕ(t,s)

[ f (s,un−1(s),Gun−1(s),Hun−1(s))+Cun−1(s)]ϕ ′(s)ds

}∞

n=1

)
≤ µ

({
Sα;ϕ(t, t0)u0

})
+µ

({∫ t

t0
(ϕ(t)−ϕ(s))α−1Tα;ϕ(t,s)

[ f (s,un−1(s),Gun−1(s),Hun−1(s))+Cun−1(s)]ϕ ′(s)ds

}∞

n=1

)

≤ 2
∫ t

t0
µ

({
(ϕ(t)−ϕ(s))α−1

×Tα;ϕ(t,s) [ f (s,un−1(s),Gun−1(s),Hun−1(s))+Cun−1(s)]ϕ ′(s)
}∞

n=1

)
ds

≤ 2M
Γ(α)

∫ t

t0
(ϕ(t)−ϕ(s))α−1

×µ

({
[ f (s,un−1(s),Gun−1(s),Hun−1(s))+Cun−1(s)]

}∞

n=1

)
ϕ
′(s)ds

≤ 2M
Γ(α)

∫ t

t0
(ϕ(t)−ϕ(s))α−1

((
L1µ

({
un−1(s)

}∞

n=1

)
+L2µ

({
Gun−1(s)

}∞

n=1

))
+L3µ

({
Hun−1(s)

}∞

n=1

))
+µ

({
Cun−1(s)

}∞

n=1

))
ϕ
′(s)ds

≤ 2M
Γ(α)

(L1 +2G∗L2T +2H∗L3T +C) sup
t∈[t0,T ]

µ (B0(t))
∫ t

t0
(ϕ(t)−ϕ(s))α−1

ϕ
′(s)ds

≤ 2M(ϕ(T )−ϕ(t0))
α

Γ(α +1)

(
L1 +2G∗L2T +2H∗L3T +C

)
sup

t∈[t0,T ]
µ (B0(t))
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=: R sup
t∈[t0,T ]

µ (B0(t)) .

Since {Qun}∞
n=0 is equicontinuous on [t0,T ] and by Lemma 2.16, we get

µ (B)≤ Rµ (B) .

Since R< 1, we obtain µ (B)= 0. Hence the set B is relatively compact in E and so there is a convergent
subsequence of {un} in E. Combining this with the monotonicity (4.2), we can prove that {un} itself is
convergent, i.e., limn→∞ un(t) = u(t), t ∈ [t0,T ]. Similarly, we can prove that limn→∞ un(t) = u(t), t ∈
[t0,T ].

For any t ∈ [t0,T ], we see that

un(t) = Qun−1(t)

= Sα;ϕ(t, t0)u0 +
∫ t

t0
(ϕ(t)−ϕ(s))α−1

×Tα;ϕ(t,s)
[

f (s,un−1(s),Gun−1(s),Hun−1(s))+Cun−1(s)
]

ϕ
′(s)ds.

Taking n→ ∞ in the above equality, by the Lebesgue dominated convergence theorem, we obtain

u = Qu and u ∈C([t0,T ],E).

Similarly, we can prove that there exists u ∈C([t0,T ],E) such that u = Qu.
Combining this fact with monotonicity (4.2) we notice that

u0 ≤ u≤ u≤ u≤ u0.

Now, we will claim that u and u are the minimal and maximal fixed points of Q on [u0,u0],
respectively. For any u ∈ D and u is a fixed point of Q, we have

u1 = Qu0 ≤Qu = u≤Qu0 = u1.

By induction, we obtain un ≤ u ≤ un for all n ∈ N. From (4.2) and taking the limit as n→ ∞, we
conclude that

u≤ u≤ u.

Thus, u and u are minimal and maximal mild solutions of the Cauchy problem (1.3) on [u0,u0],
respectively, and u, u can be obtained by the iterative scheme (4.1) starting from u0 and u0,
respectively. �

Corollary 4.2. Let E be an ordered Banach space, whose positive cone P is regular and (H1)-(H3)
hold with T (t)(t ≥ 0) is positive. Then, the Cauchy problem (1.3) has the minimal and maximal mild
solutions between u0 and u0 which can be iteratively constructed by monotone sequence starting from
u0 and u0, respectively.
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Proof. As (H2) and (H3) are satisfied, we have that the sequences {un} and {un} defined by (4.1)
satisfies (4.2). Since the positive cone P is regular, we obtain that any monotonic and ordered-bounded
sequence is convergent, and hence there are u∗,u∗ ∈C([t0,T ],E) such that

lim
n→∞

un = u∗ and lim
n→∞

un = u∗.

It follows from the proof of Theorem 4.1 that the statement of this theorem is satisfied. �

Corollary 4.3. Suppose E is a partially ordered and weakly sequentially complete Banach space with
normal positive cone P. Assume that (H1)-(H2) hold with T (t)(t ≥ 0) is positive. Then, the Cauchy
problem (1.3) has extremal mild solutions in [u0,u0].

Proof. Since E is an ordered and weakly sequentially complete Banach space, the cone P is regular
by Theorem 2.3. By the proof of Theorem 4.1, we have that the sequences {un} and {un} defined by
(4.1) satisfies (4.2).

Let {un} be an increasing or a decreasing sequence with {un} ⊂ [u0(t),u0(t)] . Then by the
condition (H2), the sequence { f (t,un,Gun,Hun)+Cun} is a monotonic and order-bounded sequence,
so µ{ f (t,un,Gun,Hun)+Cun} = 0. Thus, by the properties of the measure of noncompactness, we
obtain

µ{ f (t,un,Gun,Hun)} ≤ µ{ f (t,un,Gun,Hun)+Cun}+µ{Cun}= 0.

Hence, the condition (H3) holds.
By the proof of Theorem 4.1, we obtain that the sequences are uniformly convergent. Let u(t) =

limn→∞ un(t) and u(t) = limn→∞ un(t), for t ∈ [t0,T ]. By Lebesgue dominated convergence theorem,
we obtain

u = Qu and u = Qu

with u,u ∈C([t0,T ],E). Hence u and u are a mild solutions for (1.3). If u ∈ D and u = Qu, then

u1 = Qu0 ≤ u = Qu≤Qu0 = u1.

From the process of induction, un ≤ u ≤ un and u0 ≤ u ≤ u ≤ u ≤ u0 as n→ ∞. This means u is the
minimal and u is the maximal mild solution for (1.3). �

Next, we will prove the uniqueness of solution of the Cauchy problem (1.3) by using monotone
technique. To this end, we replace (H3) by (H4) .

Theorem 4.4. Let E be an ordered Banach space, whose positive cone P is normal with normal
constant N. Assume that T (t)(t ≥ 0) is positive and the assumption (H1)-(H2) and (H4) hold. If

R̃ :=
2M(ϕ(T )−ϕ(t0))

α

Γ(α +1)

(
NS1 +NC+2G∗NS2T +2H∗NS3T +2C

)
< 1,

then the Cauchy problem (1.3) has the unique mild solution between between u0 and u0 which can be
iteratively constructed by monotone sequence starting from u0 and u0, respectively.
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Proof. For t ∈ [t0,T ], let {un} ⊂ [u0,u0], {vn} ⊂ [Gu0,Gu0] and {wn} ⊂ [Hu0,Hu0] be an increasing
sequence. For m,n = 1,2, . . . with m > n, by (H2) and (H4), we have

θ ≤ f (t,um,vm,wm)− f (t,un,vn,Hwn)+C(um−un)

≤ (S1 +C)(um−un)+S2(vm− vn)+S3(wm−wn).

By the normality of cone P it follows that

‖ f (t,um,vm,wm)− f (t,un,vn,wn)‖
≤ (NS1 +NC+C)‖um−un‖+NS2‖vm− vn‖+NS3‖wm−wn‖.

From the definition of the measure of noncompactness, we have

µ( f (t,un,Gun,Hun)≤ (NS1 +NC+C)µ(un)+NS2µ(vn)+NS3µ(wn)

:= L1µ(un)+L2µ(vn)+L3µ(wn)

where L1 = NS1 +NC +C, L2 = NS2 and L3 = NS3. Hence, (H3) holds. Therefore, by Theorem
4.1, the Cauchy problem (1.3) has the minimal mild solution u and the maximal mild solution u on
D = [u0,u0]. In view of the proof of Theorem 4.1, we show that u = u. For t ∈ [t0,T ], by the positivity
of operator Tα;ϕ , we have

θ ≤ u−u

= Qu−Qu

=
∫ t

t0
(ϕ(t)−ϕ(s))α−1Tα;ϕ(t,s)

[
f (s,u(s),Gu(s),Hu(s))

− f (s,u(s),Gu(s),Hu(s))+C (u(s)−u(s))
]
ϕ
′(s)ds

≤
∫ t

t0
(ϕ(t)−ϕ(s))α−1Tα;ϕ(t,s)

[
S1 (u(s)−u(s))+S2 (Gu(s)−Gu(s))

+S3 (Hu(s)−Hu(s))+C (u(s)−u(s))
]
ϕ
′(s)ds.

Since the positive cone P is normal, we obtain

‖u−u‖

≤ N

∣∣∣∣∣
∣∣∣∣∣
∫ t

t0
(ϕ(t)−ϕ(s))α−1Tα;ϕ(t,s)

[
S1 (u(s)−u(s))+S2 (Gu(s)−Gu(s))

+S3 (Hu(s)−Hu(s))+C (u(s)−u(s))
]
ϕ
′(s)ds

∣∣∣∣∣
∣∣∣∣∣

≤ NM (S1 +S2G∗+S3H∗)
∫ t

t0
(ϕ(t)−ϕ(s))α−1‖u(s)−u(s)‖ϕ ′(s)ds.

By Theorem 2.11, we get u = u on [t0,T ]. Hence, u = u is the the unique mild solution of the Cauchy
problem (1.3) on D. By the proof of Theorem 4.1, the solution can be obtained by a monotone iterative
procedure starting from u0 or u0. �
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Similar to Corollary 4.2 and Corollary 4.3, we obtain the following result.

Corollary 4.5. Assume that T (t)(t ≥ 0) is positive and the assumption (H1)-(H2) and (H4) hold. One
of the following conditions is satisfied:

(i) E is an ordered Banach space, whose positive cone P is regular;

(ii) E is an ordered and weakly sequentially complete Banach space, whose positive cone P is
normal with normal constant N,

then the Cauchy problem (1.3) has the unique mild solution between u0 or u0, which can be obtained
which can be iteratively constructed by monotone sequence starting from u0 and u0, respectively.

5. Example

We consider the following initial-boundary value problem of time-fractional parabolic partial
differential equation with nonlinear source term:

CDα;ϕ
0 u(x, t)−∆u(x, t) =

sin(πt)
2(1+ et)

u(x, t)+
cos2(t)(ϕ(t)−ϕ(0))α

3Γ(1−α)

+ 1
50
∫ t

0(t− s)u(x,s)ds+ e−4t

34
∫ 1

0 e−|t−s|u(x,s)ds, x ∈ [0,π], t ∈ (0,1],
u(0, t) = u(π, t) = 0 t ∈ [0,1],
u(x,0) = u0(x), x ∈ (0,π),

(5.1)

where α ∈ (0,1) and u0 ≥ 0.
Let E = L2([0,π]) and P = {y ∈ E | y≥ θ} . Then P is normal cone in Banach space E with

normal constant N = 1. Define the operator A : D(A)⊂ E→ E as follows:

Au = ∆u

with the domain

D(A) =
{

v ∈ E | v, ∂v
∂x

are absolutely continuous,
∂ 2v
∂x2 ∈ E,v(0) = v(π) = 0

}
.

It is well known that A generates an analytic semigroup of uniformly bounded analytic semigroup
{T (t)}t≥0 in E with T (t) is positive and ‖T (t)‖ ≤ 1 for t ≥ 0.

Further, for any t ∈ [0,1], we define

u(t) = u(·, t), g(t,s) = t− s for 0≤ s, t ≤ 1,

h(t,s) = e−|t−s| for 0≤ s≤ t ≤ 1,

Gu(t) =
∫ t

0
g(t,s)u(·,s)ds, Hu(t) =

∫ 1

0
h(t,s)u(·,s)ds,
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and

f (t,u(t),Gu(t),Hu(t)) =
sin(πt)

2(1+ et)
u(t)+

cos2(t)(ϕ(t)−ϕ(0))α

3Γ(1−α)
+

1
50

Gu(t)+
e−4t

34
Hu(t)

Then the problem (5.1) can be reformulated as the Cauchy problem (1.3) in E.
Let u0(x, t) = 0 for (x, t) ∈ [0,π]× [0,1]. Then

f (t,u(x, t),Gu(x, t),Hu(x, t))≥ 0, for (x, t) ∈ [0,π]× [0,1].

Let u0 = v be the positive solution of the following problem:

CDα;ϕ
0 v(x, t)−∆v(x, t) =

1
2(1+ et)

v(x, t)+
(ϕ(t)−ϕ(0))α

3Γ(1−α)

+ 1
50
∫ t

0(t− s)v(x,s)ds+ 1
34
∫ 1

0 e−|t−s|v(x,s)ds, x ∈ [0,π], t ∈ (0,1],
v(0, t) = v(π, t) = 0 t ∈ [0,1],
v(x,0) = u0(x) x ∈ (0,π)

which can be obtained by modifying the proof of Theorem 5.1 in [57]. It is clearly seen that u and u
are lower and upper solutions, respectively and u0 ≤ u0.

Suppose that {un} ⊂ [u0,u0] is a monotone increasing sequence. Then, we have that for each n≤m

0≤ f (t,um,Gum,Hum)− f (t,un,Gun,Hun)

≤ 1
4
(um−un)+

1
50

(Gum−Gun)+
1

34
(Hum−Hun).

By normality of P, we have

‖ f (t,um,Gum,Hum)− f (t,un,Gun,Hun)‖

≤ 1
4
‖um−un‖+

1
50
‖Gum−Gun‖+

1
34
‖Hum−Hun‖

and hence by Lemma 2.15

µ( f (t,un,Gun,Hun))≤
1
4

µ(un)+
1
50

µ(Gun)+
1

34
µ(Hun).

This implies that the conditions (H2) - (H3) are satisfies with L1 =
1
4
,L2 =

1
50

and L3 =
1

34
.

For example α = 3
7 and ϕ(t) = 2t . Then, upon computation, we get

R :=
2M

Γ(α +1)
(L1 +2G∗L2T +2H∗L3T +C)(ϕ(T )−ϕ(0))α ≈ 0.7873 < 1.

where G∗ = H∗ = T = 1 and C = 0. Therefore, by Theorem 4.1, we obtain that the minimal and
maximal mild solutions for the Cauchy problem (5.1) are between the lower solution u0 and upper
solution u0.

Moreover, the condition (H4) is satisfied with S1 =
1
4

, S2 =
1

50
and S3 =

1
34

. Then, the Cauchy
problem (5.1) has a unique mild solution between the lower and upper solutions by Theorem 4.4.

AIMS Mathematics Volume 6, Issue 5, 4734–4757.



4754

6. Conclusions

This paper investigates the existence and uniqueness results of mild solutions for ϕ−Caputo
fractional integro-differential evolution equations. The method is inspired by using the monotone
iterative technique involving lower and upper solutions, some existence and uniqueness result of mild
solutions for ϕ−Caputo fractional integro-differential evolution equations has been proved. Here, the
compactness condition of C0-semigroup {T (t)}t≥0 does not require.
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manuscript.
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