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Abstract: Noise is regarded as an unavoidable component of digital image acquisition. Hence,
noise removal has been considered as one of the fundamental tasks in the field of image processing.
Accordingly, excellent results have been achieved by using second-order models. However, these
outcomes are affected by the staircase effect. To eliminate this anomaly and maintaining the balance of
removing noise and preserving edges, a fourth-order model is proposed. The existence and uniqueness
of the entropy solution for this model are established. Besides, to to verify the effectiveness of the
model in noise removal, we carried out numerical experiment and presented our results. Indeed, the
experimental results show that our model is superior to PM model and ROF model in terms of removing
noise and preserving edges.
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1. Introduction

Noise is the most difficult task in the field of image processing and computer vision. In this work,
we focus on removing additive Gaussian noise. The problem is formulated mathematically as: let
u(x, y) be a digital image and u0(x, y) be its observation with random noise η(x, y). For (x, y) ∈ Ω s.t.

u0(x, y) = u(x, y) + η(x, y). (1.1)

The noise level is approximately known

‖u − u0‖
2
L2(Ω) =

∫
Ω

(u − u0)2dx ≈ σ2. (1.2)
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The goal of denoising is to filter out high frequency signals, while preserving the important features of
the image such as edges. Therefore, we search for an image processing model which removes noise
and offers better handling of edges.

During the last two decades, the method of partial differential equations (PDEs) for image
processing has become a major research topic. A classical PDEs model named ROF (Rudin, Osher,
Fatemi) model which was based on the total variation (TV), was first introduced by Rudin et al. [18].
The idea in the ROF model is to minimize the the total variation of the image u,

TV = min
u∈BV(Ω)∩L2(Ω)

∫
Ω

|∇u|dx +
λ

2

∫
Ω

(u − u0)2dx. (1.3)

In fact, one of the main advantages of using ROF model for image restoration is that the discontinuities
are allowed. However, the main drawback of denoising models based on the TV is that they tend to
yield piecewise constant images, a phenomenon known as staircase effects. Strong [19], introduced an
adaptive TV functional (TVα)

TVα = min
u∈BV(Ω)∩L2(Ω)

∫
Ω

α(x)|∇u(x)|dx +
λ

2

∫
Ω

(u − u0)2dx, (1.4)

for spatially adaptive image restoration. The function α(x) is an edge detector to control the diffusion.
The main idea of edge detector is that edges of an image are associated with location of high gradient
in a slightly smooth version of the noisy image.

In the recent decades, to overcome the staircase effects that caused by second-order variational
model, fourth-order PDEs have been introduced in image restoration, [1–4, 9, 10, 12, 14, 16, 20, 22, 24–
28]. You-Kaveh [26] proposed the following functional∫

Ω

f (|4u|)dxdy, (1.5)

where 4 denote the Laplacian operator. Based on the gradient descent method, this second order
functional yields a fourth-order PDE

ut = −4(g((4u)2)4u), (1.6)

where g(s) = k2/(k2 + s2) and k is an image dependent parameter. This equation does avoid blocky
piecewise constant solution. However, it produces speckles in the processed image [16]. Many other
authors have considered image denoising models based on the minimizer of high-order functionals.
Laysaker et al. [16] proposed the LLT model∫

Ω

(|uxx| + |uyy|)dxdy, (1.7)

and ∫
Ω

√
|uxx|

2 + |uxy|
2 + |uyx|

2 + |uyy|
2dxdy, (1.8)

they try to minimize the TV of ∇u. Minimizing these two functionals is equivalent to solve the
following PDEs respectively

ut = −

(
uxx

| uxx |

)
xx
−

(
uyy

| uyy |

)
yy

(1.9)
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and

ut = −

(
uxx

| D2u |

)
xx
−

(
uxy

| D2u |

)
yx
−

(
uyx

| D2u |

)
xy
−

(
uyy

| D2u |

)
yy
, (1.10)

where | D2u |=
√
|uxx|

2 + |uxy|
2 + |uyx|

2 + |uyy|
2. These equations have proved to be the improved version

of (1.6).
The theoretical analysis showed that fourth-order equations have advantages over second-order

equations in some aspects. Fourth-order PDEs usually produce the smooth image of the observed
image. This is believed to be a better approximation in smooth region. Therefore, the staircase effect
is suggested to be reduced and the recovery image will look better. It is reasonable to conclude that
fourth-order diffusion performs better than the second-order models in the aspect of the recovery of
smooth regions.

In this paper, to address the problem of denoising images contaminated with additive noise, a
fourth-order model is suggested. Using the gradient module of the image to design a speed
controlling function. This function indicated where is the edge in the image, thus the new model can
preserve edge in this region. The motivation for proposing this model is to overcome certain
inconsistencies in second order models founded during the process of recovering smooth regions and
better preservation of the fine details. The model is based on solving a nonlinear fourth order
degenerate equation with the noisy image as its initial data. By use of Roth’s method, we proved the
existence and uniqueness of the entropy solution. Additionally, the numerical results demonstrate that
the proposed model is superior to PM (Perona, Malik) [17] and ROF models.

The rest of this article is organized as follows. In Section 2, we give some preliminaries that we
will use. Section 3 is devoted to the proposed model and the proofs of existence and uniqueness of its
solution. The difference schemes are presented in Section 4. Numerical experiments are presented in
Section 5 and the conclusion of this paper is given in Section 6.

2. Preliminaries

In this section, we recall some necessary definitions and notations, [11,13,14]. We begin with some
definitions of the space BV2, which consists of functions u ∈ W1,1(Ω) s.t ∇u ∈ BV(Ω), this space is also
denoted by BH(Ω). To know more about space of bounded Hessian, we refer the reader to [4, 5, 8].

Definition 2.1. Let Ω ⊆ Rn be a bounded open domain with Lipschitz boundary. Let u ∈ L1(Ω). Then
the BV2 semi-norm of u is characterized by

||D2u|| = sup
φ∈C2

0(Ω,Rn×n)


∫

Ω

n∑
i, j=1

u∂ j∂iφ
i jdx : |φ(x)| ≤ 1,∀x ∈ Ω

 < ∞, (2.1)

where C2
0(Ω, X) is the space of functions from Ω to X, 2-times continuously differentiable with compact

support and φ(x)is a vector valued function, with |φ(x)| =
√∑n

i, j=1(φi j)2. Here we remark that the space

BV2 equipped with ‖u‖BV2(Ω) = ||D2u|| + ‖u‖L1(Ω) is a Banach space.

Definition 2.2. Suppose that Ω ⊆ Rn be a bounded open domain with Lipschitz boundary, u ∈ L1(Ω),
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and α(x) ≥ 0 is continuous and real function. Then we define the weighted BV2 semi-norm of u as

||D2u||α = sup
φ∈C2

0(Ω,Rn×n)


∫

Ω

n∑
i, j=1

u∂ j∂iφ
i jdx : |φ(x)| ≤ α,∀x ∈ Ω

 < ∞ (2.2)

3. The proposed model

In this section, we propose a fourth-order image denoising model, with some guidance from
previous work [6, 14–16, 26, 27]. There are some benefits of fourth-order models. On the one hand, it
can remove high frequency oscillation more effectively than second-order models because the
evaluation of the second-order becomes weak in the high frequency area. One the other hand, for the
fourth-order model, there is flexibility in employing different functional behaviors in the formulation.

Consider the following boundary value problem

∂u
∂t

+ D2
i j

α(x) D2
i ju

|D2
i ju|

 = 0 (x, t) ∈ ΩT = (0,T ) ×Ω, (3.1)

u(x, t) = 0, (x, t) ∈ (0,T ) × ∂Ω, (3.2)
∂u

∂−→n
= 0, (x, t) ∈ (0,T ) × ∂Ω, (3.3)

u(x, 0) = u0(x), x ∈ Ω, (3.4)

where α(x) = 1√
1+|Gσ∗∇u0 |2

,Gσ(x) is the Gaussian filter with parameter σ, u0(x) is the original image, Ω

is bounded domain of R2 with appropriate smooth boundary, T > 0 is fixed, −→n denote the unit outward
normal of the boundary ∂Ω.

The term α(x) is used to enhance edges. In fact, it controls the speed of the diffusion: in the smooth
region where ∇u0 is small, the diffusion is strong. Near possible edges, however, where ∇u0 is large,
the diffusion spread is low. The convolution with Gσ should smooth away any large oscillations of
noise. Therefore, we can get the smooth image and further preserve the edges in a best way.

Definition 3.1. A measurable function u : ΩT → R is an entropy solution of (3.1)–(3.4) in ΩT if
u ∈ C([0,T ]; L2(Ω)) ∩ L∞(0,T ; BV2(Ω)), ∂u

∂t ∈ L2(ΩT ) and there exist z, such that αz ∈ L∞(ΩT ) with
‖ α z ‖L∞(ΩT )≤ 1, ut + Di jαzi j = 0 in D′(ΩT ) such that∫

Ω

(u(t) − v)utdx ≤
∫

Ω

αz(t) · D2vdx − ||D2u||α, (3.5)

for every v ∈ L∞(0,T ; W2,1
0 (Ω)).

Before investigating the existence and uniqueness of problem (3.1)–(3.4), let us consider the
following approximate evaluation problem: for 1 < p ≤ 2 and u0p ∈ W2,p(Ω), we construct the
following problem
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∂up

∂t
+ D2

i j

(
α(x)|D2

i jup|
p−2D2

i jup

)
= 0, (x, t) ∈ ΩT (3.6)

up(x, t) = 0, (x, t) ∈ (0,T ) × ∂Ω, (3.7)
∂up

∂−→n
= 0, (x, t) ∈ (0,T ) × ∂Ω, (3.8)

up(x, 0) = u0p(x), x ∈ Ω. (3.9)

Lemma 3.1. For any fixed p, 1 < p ≤ 2, the above problem (3.6)–(3.9) admits a weak solution
up ∈ L∞(0,T ; W2,p

0 (Ω)) ∩C([0,T ]; L2(Ω)) and ∂up

∂t ∈ L2(ΩT ) such that

lim
t→0+
‖ up(x, t) − u0p(x) ‖L2(Ω)= 0, (3.10)

and for any ϕ ∈ C∞0 (ΩT ) the following integral equality holds∫ T

0

∫
Ω

∂up

∂t
ϕ(x, t)dxdt +

∫ T

0

∫
Ω

α(x)| D2
i jup|

p−2 D2
i jup · D2

i jϕ(x, t)dxdt = 0, (3.11)

with

‖ up ‖L∞(0,T ;W2,p
0 (Ω)) + ‖ up ‖L∞(0,T ;L2(Ω)) +

∥∥∥∥∥∥∂up

∂t

∥∥∥∥∥∥
L2(ΩT )

≤ C, (3.12)

where C is a constant independent of p.

Proof. We apply Rothe’s method [23], to construct an approximate solution sequence. Divide the
interval [0,T ] into n equal segments and define h = T

n . For any j: 1 ≤ j ≤ n, for any positive integer n
and a function u(x, t), denote

un, j
p (x) = up(x, jh), j = 1, 2, ..., n.

For fixed j, define the following functional on W2,p
0 (Ω)

E(w) =
1
p

∫
Ω

α(x)|D2
i jw|

pdx +
1

2h

∫
Ω

(w − un, j−1
p )2dx. (3.13)

The idea here is to prove that if un, j−1
p is known and un,0

p = u0p, then there is a minimizer for (3.13).
Let um ∈ W2,p

0 (Ω)∩L2(Ω) be a minimizing sequence for E. Since α is bounded below, then the sequence
um is bounded in W2,p

0 (Ω) and L2(Ω) . Therefore, there exists a subsequence umiof um and a function
un, j

p ∈ W2,p
0 (Ω) ∩ L2(Ω) such that as i→ ∞,

umi → un, j
p weakly in W2,p

0 (Ω) and L2(Ω). (3.14)

From this and the weak lower semicontinuity of the norms, we get

E(un, j
p ) ≤ lim inf

i→∞
E(umi) = inf

w∈W2,p
0 (Ω)∩L2(Ω)

E(w).
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Then un, j
p is the solution of the Euler equation corresponding to E(w)

D2
i j

(
α(x)|D2

i ju
n. j
p |

p−2D2
i ju

n. j
p

)
+

1
h

(un. j
p − un, j−1

p ) = 0, (3.15)

which implies

1
h

∫
Ω

(un, j
p − un, j−1

p )η(x)dx +

∫
Ω

α(x)|D2
i ju

n, j
p |

p−2 D2
i ju

n, j
p · D

2
i jη(x)dx = 0, (3.16)

for any η(x) ∈ C∞0 (Ω).
Let χn, j(t) be the indicator function of [h( j − 1), h j) and

λn, j(t) =

 t
h − ( j − 1), if t ∈ [h( j − 1), h j),
0, otherwise.

We construct an approximation function as

un
p(x, t) =

n∑
j=1

χn, j(t)un, j
p , with un

p(x, 0) = u0p(x)

and

wn
p(x, t) =

n∑
j=1

χn, j(t)[un, j−1
p (x) + λn, j(t)(un, j

p (x) − un, j−1
p (x))].

By (3.16), we have ∫
Ω

(
∂wn

p

∂t
η(x) + α(x)|D2

i ju
n
p |

p−2 D2
i ju

n
p · D

2
i jη(x)

)
dx = 0,

for every η(x) ∈ C∞0 (Ω) a.e. t ∈ [0,T ], which implies that∫ T

0

∫
Ω

(
∂wn

p

∂t
ϕ(x, t) + α(x)|D2

i ju
n
p|

p−2D2
i ju

n
p · D

2
i jϕ(x, t)

)
dxdt = 0, (3.17)

for every ϕ ∈ C∞0 (ΩT ).
Next, we obtain some estimates for un

p(x, t) and wn
p(x, t). Notice that, we choose η(x) ∈ W2,p

0 (Ω) as the
test function in (3.16). Let η(x) = un, j

p − un, j−1
p , we have

1
h

∫
Ω

(un, j
p − un, j−1

p )2dx +

∫
Ω

α(x)|D2
i ju

n, j
p |

p−2 D2
i ju

n, j
p · D

2
i j(u

n, j
p − un, j−1

p )dx = 0,

1
h

∫
Ω

(un, j
p − un, j−1

p )2dx +

∫
Ω

α(x)|D2
i ju

n, j
p |

pdx =

∫
Ω

α(x)|D2
i ju

n, j
p |

p−2 D2
i ju

n, j
p · D

2
i ju

n, j−1
p dx.

Using Young’s inequality, we have

1
h

∫
Ω

(un, j
p − un, j−1

p )2dx +

∫
Ω

α(x)|D2
i ju

n, j
p |

pdx ≤
p − 1

p

∫
Ω

α(x)|D2
i ju

n, j
p |

pdx +
1
p

∫
Ω

α(x)|D2
i ju

n, j−1
p |pdx.

AIMS Mathematics Volume 6, Issue 4, 3974–3995.



3980

That is
1
h

∫
Ω

(un, j
p − un, j−1

p )2dx +
1
p

∫
Ω

α(x)|D2
i ju

n, j
p |

pdx ≤
1
p

∫
Ω

α(x)|D2
i ju

n, j−1
p |pdx. (3.18)

For any m with 1 ≤ m ≤ n, summing (3.18) for j from 1 to m∫
Ω

α(x)|D2
i ju

n,m
p |

pdx ≤
∫

Ω

α(x)|D2
i ju0p|

pdx,

which implies
sup

0<t<T
‖D2

i ju
n
p‖

p

W2,p
0 (Ω)

≤ C, (3.19)

where C is a constant independent of p, n.
Summing (3.18) for j from 1 to n yield

1
h

n∑
j=1

∫
Ω

(un, j
p − un, j−1

p )2dx ≤
1
p

∫
Ω

α(x)|D2
i ju0p|

pdx = C. (3.20)

By the definition of wn
p(x, t), we have

∂wn
p

∂t
=

1
h

n∑
j=1

χn, j(t)(un, j
p − un, j−1

p ).

Thus ∥∥∥∥∥∥∂wn
p

∂t

∥∥∥∥∥∥2

L2(ΩT )

=
1
h2

n∑
j=1

h‖(un, j
p − un, j−1

p )‖2L2(Ω) ≤ C. (3.21)

By (3.19), we can obtain

sup
0<t<T

∫
Ω

| D2
i jw

n
p|

pdx = sup
0<t<T

n∑
j=1

χn, j(t)
∫

Ω

|(1 − λn, j(t)) D2
i ju

n, j−1
p + λn, j(t) D2

i ju
n, j
p |

pdx

≤ sup
0<t<T

‖ D2
i ju

n
p‖

p

W2,p
0 (Ω)

≤ C.
(3.22)

Choosing η(x) = un, j
p in (3.16), we get

1
h

∫
Ω

(un, j
p − un, j−1

p )un, j
p dx +

∫
Ω

α(x)|D2
i ju

n, j
p |

p−2 D2
i ju

n, j
p · D

2
i ju

n, j
p dx = 0,

which implies
1
h

∫
Ω

(un, j
p − un, j−1

p )un, j
p dx +

∫
Ω

α(x)|D2
i ju

n, j
p |

pdx = 0.

By Young’s inequality, we have

h
∫

Ω

α(x)|D2
i ju

n, j
p |

pdx +
1
2

∫
Ω

|un, j
p |

2dx ≤
1
2

∫
Ω

|un, j−1
p |2dx. (3.23)

Thus ∫
Ω

|un, j
p |

2dx ≤
∫

Ω

|un, j−1
p |2dx. (3.24)
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This implies

sup
0<t<T

∫
Ω

|un
p|

2dx ≤
∫

Ω

|u0p|
2dx. (3.25)

Similar to the proof of (3.22), we also see

sup
0<t<T

∫
Ω

|wn
p|

2dx ≤
∫

Ω

|u0p|
2dx. (3.26)

Choosing η(x) = un, j−1
p in (3.16)∫

Ω

(un, j
p − un, j−1

p )un, j−1
p dx + h

∫
Ω

α(x)|D2
i ju

n, j
p |

p−2 D2
i ju

n, j
p · D

2
i ju

n, j−1
p dx = 0.

‘

Applying Hölder’s inequality and the estimate (3.19), we have∫
Ω

(un, j−1
p − un, j

p )un, j−1
p dx ≤ Ch.

By Young’s inequality again yields∫
Ω

|un, j−1
p |2dx ≤ Ch +

1
2

∫
Ω

|un, j−1
p |2dx +

1
2

∫
Ω

|un, j
p |

2dx.

Thus

−Ch ≤
∫

Ω

|un, j
p |

2dx −
∫

Ω

|un, j−1
p |2dx. (3.27)

Define B(un
p) = α(x)| D2

i ju
n
p|

p−2 D2
i ju

n
p. Combining (3.19), (3.21), (3.22), (3.25) and (3.26), we

conclude that there exist subsequences of un
p,w

n
p,

∂wn
p

∂t and B(un
p), denoted by themselves such that, as

n→ ∞

un
p
∗
⇀ up, in L∞(0,T ; W2,p

0 (Ω)),

wn
p
∗
⇀ wp, in L∞(0,T ; W2,p

0 (Ω)),
∂wn

p

∂t
⇀
∂wp

∂t
, in L2(ΩT ),

B(un
p)

∗
⇀ ζ, in L∞(0,T ; Lp′(Ω)),

(3.28)

holds for some up,wp, ζ. And we also have

∥∥∥wp

∥∥∥p

L∞(0,T ;W2,p
0 (Ω))

+

∥∥∥∥∥∥∂wp

∂t

∥∥∥∥∥∥2

L2(ΩT )

+ ‖up‖
p

L∞(0,T ;W2,p
0 (Ω))

≤ C. (3.29)

Then let n→ ∞ in (3.17),
∂wp

∂t
+ D2

i jζ = 0. (3.30)
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Next, we show that up = wp. By the definition of up and wp, we have

wn
p − un

p =

n∑
j=1

χn, j(t)(1 − λn, j(t))(un, j−1
p − un, j

p ),

which combined with (3.20), leads to

‖wn
p − un

p‖
2
L2(ΩT ) ≤

n∑
j=1

h‖un, j
p − un, j−1

p ‖2L2(ΩT ) ≤ Ch2 → 0, as h→ 0. (3.31)

Now, it remains to show that ζ = B(up). From (3.17) and the convergence sets (3.28), as n → ∞,
we can get ∫ T

0

∫
Ω

∂up

∂t
ϕ(x, t)dxdt +

∫ T

0

∫
Ω

ζ.D2
i jϕ(x, t)dxdt = 0. (3.32)

For any g ∈ Lp(0,T,W2,p(Ω)) and for j from 1 to n, we can obtain, by the monotonicity condition, the
inequality ∫

Ω

(B(un. j
p ) − B(g))(D2

i ju
n. j
p − D2

i jg)dx ≥ 0. (3.33)

Letting η = un. j
p in (3.16), we obtain

1
h

∫
Ω

(un, j
p − un, j−1

p )un, j
p dx +

∫
Ω

B(un, j
p ) · D2

i ju
n, j
p dx = 0. (3.34)

Applying Young’s inequality on the first term of (3.34) together with the inequality (3.33) and
integrating over (( j − 1)h, jh), we get

1
2

∫
Ω

[
|un, j

p |
2 − |un, j−1

p |2
]

dx+

∫ jh

( j−1)h

∫
Ω

B(un, j
p )·D2

i jgdxdt+
∫ jh

( j−1)h

∫
Ω

B(g)(D2
i ju

n. j
p −D2

i jg)dxdt ≤ 0. (3.35)

Summing up (3.35) for j from 1 to n, we obtain

1
2

∫
Ω

[
|un

p(T )|2 − |u0p|
2
]

dx +

∫ T

0

∫
Ω

B(un
p) · D2

i jgdxdt +

∫ T

0

∫
Ω

B(g)(D2
i ju

n
p − D2

i jg)dxdt ≤ 0. (3.36)

Recalling the convergence sets (3.28) and letting n→ ∞, (3.36) yields

1
2

∫
Ω

[
|up(T )|2 − |u0p|

2
]

dx +

∫ T

0

∫
Ω

ζ · D2
i jgdxdt +

∫ T

0

∫
Ω

B(g)(D2
i jup − D2

i jg)dxdt ≤ 0. (3.37)

We can rewrite (3.37) in the form∫ T

0

∫
Ω

∂up

∂t
updxdt +

∫ T

0

∫
Ω

ζ · D2
i jgdxdt +

∫ T

0

∫
Ω

B(g)(D2
i jup − D2

i jg)dxdt ≤ 0. (3.38)

Letting ϕ = up in (3.32), we obtain∫ T

0

∫
Ω

∂up

∂t
updxdt +

∫ T

0

∫
Ω

ζ · D2
i jupdxdt = 0. (3.39)
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Then, substituting (3.39) into (3.38) leads to∫ T

0

∫
Ω

(ζ − B(g))(D2
i jup − D2

i jg)dxdt ≥ 0. (3.40)

Choose g = up − ks where k > 0 and D2
i js ∈ L∞(0,T ; W2,p(Ω)). We then have∫ T

0

∫
Ω

(ζ − B(up − ks))D2
i jsdxdt ≥ 0. (3.41)

Sending k → 0, we obtain∫ T

0

∫
Ω

(ζ − B(up))D2
i jsdxdt ≥ 0, ∀s ∈ L∞(0,T ; W2,p(Ω)). (3.42)

Since s is arbitrary, we see that ζ = B(up).
Now, we prove (3.10), we let ϕ = up(x, t) and ϕ = up(x, t1) in (3.32), for 0 ≤ t1 ≤ t ≤ t2 ≤ T , we

obtain ∫
Ω

(
u2

p(x, t2) − u2
p(x, t1)

)
dx = −2

∫ t2

t1

∫
Ω

α(x)| D2
i jup|

pdxdt,

and ∫
Ω

up(x, t2)up(x, t1)dx −
∫

Ω

u2
p(x, t1)dx = −

∫ t2

t1

∫
Ω

α(x)| D2
i jup|

p−2 D2
i jup.D2

i jup(x, t1)dxdt.

Then∫
Ω

|up(x, t2) − up(x, t1)|2dx =

∫
Ω

(
u2

p(x, t2) − u2
p(x, t1)

)
dx + 2

∫
Ω

(
u2

p(x, t1) − up(x, t2)up(x, t1)
)

dx,

= −2
∫ t2

t1

∫
Ω

α(x)| D2
i jup|

pdxdt + 2
∫ t2

t1

∫
Ω

α(x)| D2
i jup|

p−2 D2
i jup.D2

i jup(x, t1)dxdt.

From the above equation, we deduce that

lim
t→0+
‖ up(x, t) − u0p(x) ‖L2(Ω)= 0,

and the proof is completed. �

Theorem 3.1. If u0 ∈ BV2(Ω) and u0 = 0, ∂u
∂n = 0, x ∈ ∂Ω in the sense of trace then the problem

(3.1)–(3.4) admits one and only one entropy solution.

Proof. By Lemma 3.1, there exists up, which is a weak solution of the problem (3.6)–(3.9) and a
constant C such that

‖ up ‖L∞(0,T ;W2,p
0 (Ω)) + ‖ up ‖L∞(0,T ;L2(Ω)) +

∥∥∥∥∥∥∂up

∂t

∥∥∥∥∥∥
L2(ΩT )

≤ C. (3.43)

So, from (3.43), there exists a subsequence of up, denoted by itself and a function
u ∈ L∞(0,T ; BV2(Ω)) ∩C([0,T ]; L2(Ω)) with ∂u

∂t ∈ L2(ΩT ) such that, as p→ 1+,
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up → u, in W1,1(Ω), with ||D2u||α ≤ lim inf
p→1+

‖D2
i jup‖Lp(Ω), a.e. t ∈ (0,T )

and
∂up

∂t ⇀
∂u
∂t , weakly in L2(ΩT ).

We also have up → u strongly in L2(ΩT ) a.e. t ∈ (0,T ) and

lim
t→0+
‖u(x, t) − u0(x)‖L2(Ω) = 0.

Applying the method in [7], we next prove that α(x)|D2
i jup|

p−2 D2
i jup is weakly relatively compact in

L1(ΩT ). Employing (3.43) and Hölder’s inequality,∣∣∣∣∣∣
∫ T

0

∫
Ω

α(x)|D2
i jup|

p−2D2
i jupdxdt

∣∣∣∣∣∣ ≤
∫ T

0

∫
Ω

| α(x) || D2
i jup |

p−1 dxdt ≤ C
p−1

p meas(ΩT )
1
p ,

where C is independent of p. Thus,
{
α(x)|D2

i jup|
p−2D2

i jup

}
is bounded and equi-integrable in L1(ΩT )

and is therefore weakly relatively compact in L1(ΩT ). Thus we deduce that as p→ 1+,{
α(x)|D2

i jup|
p−2 D2

i jup

}
⇀ αz, weakly in L1(ΩT ).

So we get by Lemma 3.1 and the fact that ∂up

∂t ⇀
∂u
∂t in L2(ΩT ),∫ T

0

∫
Ω

∂u
∂t
ϕ(x, t)dxdt +

∫ T

0

∫
Ω

αz · D2
i jϕ(x, t)dxdt = 0, (3.44)

for every ϕ(x, t) ∈ C∞0 (ΩT ) and ut + Di jαzi j = 0 in D′(ΩT ) .
Now, it remains to prove that ‖ αz ‖L∞(ΩT )≤ 1.

For any k > 0, setting
Ap,k = {(x, t) ∈ ΩT :| D2

i jup |> k}, we have that

meas(Ap,k) ≤
C
kp , for every p > 1, k > 0.

As above, there exists a function gk ∈ L1(ΩT ) such that
α(x)|D2

i jup|
p−2 D2

i jupχAp,k ⇀ gk, as p→ 1+ weakly in L1(ΩT ),
where χAp,k is the indicator function of Ap,k. Now for any φ ∈ L∞(ΩT ) with
‖φ‖L∞(ΩT ) ≤ 1, by the definition of χAp,k , we see that∣∣∣∣∣∣

∫ T

0

∫
Ω

α(x)|D2
i jup|

p−2 D2
i jupφχAp,kdxdt

∣∣∣∣∣∣ ≤ C
k
.

Letting p→ 1+, we have ∫ T

0

∫
Ω

| gk | dxdt ≤
C
k
, for every k > 0. (3.45)

Since we have that ∣∣∣∣∣∣
∫ T

0

∫
Ω

α(x)|D2
i jup|

p−2 D2
i jupχΩT /Ap,k

∣∣∣∣∣∣ ≤ kp−1, for any p > 1,
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letting p → 1+, we obtain that α(x) | D2
i jup |

p−2 D2
i jupχΩT /Ap,k weakly converges in L1(ΩT ) to some

function fk ∈ L1(ΩT ) with ‖ fk‖L∞(ΩT ) ≤ 1. Since, for any k > 0, we may write αz = fk + gk with
‖ fk‖L∞(ΩT ) ≤ 1 and gk satisfies (3.45), it is easily follows that ‖αz‖L∞(ΩT ) ≤ 1.

Next, we verify the solution definition inequality (3.5). For any vn ∈ C∞0 (ΩT ) and taking ϕ =

(up − vn)ξ(t) in (3.11), we have∫ T

0

∫
Ω

∂up

∂t
(up − vn)ξ(t)dxdt = −

∫ T

0

∫
Ω

α(x)|D2
i jup|

p−2 D2
i jup · D2

i j((up − vn)ξ(t))dxdt.

Letting p→ 1+,∫ T

0

∫
Ω

∂u
∂t

(u(t) − vn)ξ(t)dxdt ≤
∫ T

0

∫
Ω

αz(t) · D2
i jvnξ(t)dxdt −

∫ T

0
||D2u||αξ(t)dt.

Then for any v ∈ L∞(0,T ; W2,1
0 (Ω)), letting n→ ∞,∫ T

0

∫
Ω

∂u
∂t

(u(t) − v)ξ(t)dxdt ≤
∫ T

0

∫
Ω

αz(t) · D2
i jvξ(t)dxdt −

∫ T

0
||D2u||αξ(t)dt.

Since ξ(t) is arbitrary, we have∫
Ω

∂u
∂t

(u(t) − v)dx ≤
∫

Ω

αz(t) · D2
i jvdx − ||D2u||α,

for every v ∈ L∞(0,T ; W2,1
0 (Ω)) and a.e. on [0,T ].

Finally, we prove the uniqueness of the entropy solution. Let u1, u2 both be entropy solution with
data u10, u20. Then there exists αz1, αz2 ∈ L∞(ΩT ) such that∫

Ω

∂u1

∂t
(u1 − v)dx ≤

∫
Ω

αz1 · D2
i jvdx − ||D2u1||α, (3.46)

and ∫
Ω

∂u2

∂t
(u2 − v)dx ≤

∫
Ω

αz2 · D2
i jvdx − ||D2u2||α, (3.47)

for every v ∈ L∞(0,T ; W2,1
0 (Ω)) and a.e. on [0,T ]. Let u1n, u2n ∈ L∞(0,T ; W2,p

0 (Ω)) be approximates
functions, respectively, for u1 and u2, such that

lim
n→∞

(
‖D2

i ju1n‖L1(Ω) − ||D2u1||α

)
= 0, lim

n→∞
‖ u1n − u1 ‖L2(Ω)= 0,

and
lim
n→∞

(
‖D2

i ju2n‖L1(Ω) − ||D2u2||α

)
= 0, lim

n→∞
‖ u2n − u2 ‖L2(Ω)= 0,

a.e. on[0,T ]. Taking v = u2n in (3.46) and v = u1n in (3.47), adding the two equations and rearranging
the result, we obtain∫

Ω

(u1 − u2)
(
∂u1

∂t
−
∂u2

∂t

)
dx +

∫
Ω

(u1 − u1n)
∂u2

∂t
dx +

∫
Ω

(u2 − u2n)
∂u1

∂t

≤

∫
Ω

αz1 · D2
i ju2ndx − ||D2u1||α +

∫
Ω

αz2 · D2
i ju1ndx − ||D2u2||α.
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So integrating from 0 to t and letting n→ ∞, we get∫
Ω

(u1 − u2)2dx ≤
∫

Ω

(u10 − u20)2dx.

The proof is completed . �

4. Difference schemes

In this section, assuming τ to be the time step size and h the space grid size, we discretize time and
space as follows:

t = nτ, n = 0, 1, 2, · · · ,
x = ih, i = 0, 1, 2, · · · , I,
y = jh, j = 0, 1, 2, · · · , J,

where Ih × Jh is the size of the original image. Let un
i, j denote approximations of u(nτ, ih, jh). We

define the discrete approximation:

4xun
i, j =

un
i+1, j − 2un

i, j + un
i−1, j

h2 ,

4yun
i, j =

un
i, j+1 − 2un

i, j + un
i, j−1

h2 ,

4xyun
i, j =

un
i+1, j+1 + un

i, j − un
i, j+1 − un

i+1, j

h2 .

The discrete explicit scheme of the problem can be written as

un+1
i, j = un

i, j − τ

4x

αi j

4xun
i, j

|4xun
i, j|ε

 + 4y

αi j

4yun
i, j

|4yun
i, j|ε

 + 4xy

αi j

4xyun
i, j

|4xyun
i, j|ε

 ,
αi, j =

1√
1 + |Gσ ∗ ∇u0(x)|2i, j

, | · |ε = | · | + ε, ε > 0,

u0
i, j = u0(ih, jh), 0 ≤ i ≤ I, 0 ≤ j ≤ J,

un
i,0 = un

i,1, un
0, j = un

1, j, un
I, j = un

I−1, j, un
i,J = un

i,J−1,

un
i,0 = 0, un

0, j = 0, un
I, j = 0, un

i,J = 0.

Here the MATLAB function “conv2” is used to represent the two-dimensional discrete Convolution
Transform of the matrix ui, j.

5. Numerical experiments

In this section, we demonstrate the performance of our model in denoising images involving
Gaussian white noise. We applied difference equations discussed in section 4 and compared the
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results with the results of ROF model [18] and PM model [17]. We used step size τ = 0.02 , gride size
h = 1 and λ = 0.

At the end of the denoising process, the peak signal to noise ratio (PSNR), mean
absolute-deviation error (MAE) and structure similarity index measure (SSIM) values were recorded
to measure the denoising performance. The values are given by the following formulas:

PSNR(u, u0) = 10 log10
IJ|max u0 −min u0|

2

‖u − u0‖
2
L2

dB

and

MAE(u, u0) =
‖u − u0‖L1

IJ
,

where |max u0 −min u0| gives the gray-scale range of the original image, u0 and u denote, respectively,
the original image and the denoised image, I × J is the dimension of image.

SSIM, designed by Wang et al. [21], is a quality used to measure the similarity between any two
images. Given any two images u and u0, SSIM is given by the formula

SSIM(u, u0) = L(u, u0) · C(u, u0) · R(u, u0).

L(u, u0) =
2µuµu0 +k1

µ2
u+µ2

u0 +k1
, compares the two images’ mean luminance µu and µu0 . The maximal value of

L(u, u0) = 1, if µu = µu0 , C(u, u0) =
2σuσu0 +k2

σ2
u+σ2

u0 +k2
, measures the closeness of contrast of the two images u

and u0. Contrast is determined in terms of standard deviation, σ. Contrast comparison measure
C(u, u0) = 1 maximally if and only if σu = σu0; that is, when the images have equal contrast.

R(u, u0) =
σuu0 +k3

σuσu0 +k3
, is a structure comparison measure which determines the correlation between

the images u and u0, where σuu0 is covariance between u and u0. It attains maximal value of 1 if,
structurally, the two images coincide, but its value is equal to zero when there is absolutely no structural
coincidence. The quantities k1, k2 and k3 are small positive perturbations that avert the possibility of
having zero denominators.

Two test images of “Cameraman” and “Peppers” are corrupted by white Gaussian noise with
standard deviation (SD) of 30, (Figures 1 and 2). Tables 1 and 2, present the numerical results of
restoration of Cameraman image, (Figure 1), and those of the Peppers image, (Figure 2). The
comparisons are based on PSNR, MAE and SSIM. The proposed method shows the best performance
with respect to PSNR, MAE and SSIM.

Our first example is Cameraman image, which is displayed in Figure 1(a) and 1(b) is its degraded
version. Furthermore, Figure 1(c), 1(d) and 1(e), are portions of the recovered images with the
proposed model, ROF model and PM model, respectively. It is clear that our method can overcome
the staircase effect that caused by the second order method.

The second example is Peppers image, which is displayed in Figure 2(a), its degraded version is
showed in Figure 2(b). Basically, Figure 2(c), 2(d) and 2(e), are portions of the recovered images by
the proposed model, ROF model and PM model, respectively. It is evident that, our method yields good
results in restoring image since it avoids the staircase effect that caused by the second order method
while, at the same time, handle edges in a best way.
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(a) (b) (c)

(d) (e)

Figure 1. Cameraman image, a portion of the results achieved with different models, (251 ×
251). (a) Original image. (b) Noisy image corrupted by Gaussian noise for σ = 30. (c) Our
method. (d) ROF model. (e) PM model.

(a) (b) (c)

(d) (e)

Figure 2. Peppers image, a portion of the results achieved with different models, (251×251).
(a) Original image. (b) Noisy image corrupted by Gaussian noise forσ = 30. (c) Our method.
(d) ROF model. (e) PM model.
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Table 1. Numerical results for Peppers image (251 × 251) experiment, Figure 2.

Algorithm σ PSNR MAE SSIM
PM model 30 27.98 7.06 0.8345
ROF model 30 28.26 6.80 0.8359
Our Method 30 28.66 6.44 0.8537

Table 2. Numerical results for Cameraman image (251 × 251) experiment, Figure 3.

Algorithm σ PSNR MAE SSIM
PM model 20 28.89 5.83 0.8386
ROF model 20 28.76 5.85 0.8397
Our Method 20 29.04 5.62 0.8450

Similarly, the two test images are corrupted by white Gaussian noise with SD of 20, (Figures 3
and 4). Tables 3 and 4, present the numerical results of restoration of Cameraman image, (Figure 3),
and those of the Peppers image, (Figure 4). The comparisons are based on PSNR, MAE and SSIM.
Here again, the proposed method shows the best performance with respect to PSNR, MAE and SSIM.
In Figure 3(a) and 3(b) we display Cameraman image and the noisy version. Figure 3(c), 3(d) and 3(e),
are portions of the recovered images with the proposed model, ROF model and PM model, respectively.
We display Peppers image and the degraded version in Figure 4(a) and 4(b). Figure 4(c), 4(d) and 4(e),
are portions of the recovered images with the proposed model, ROF model and PM model, respectively.
Here also, the proposed model yields better results in denoising image while handling edges in a
best way.

Table 3. Numerical results for Peppers image (251 × 251) experiment, Figure 4.

Algorithm σ PSNR MAE SSIM
PM model 20 29.86 5.70 0.8727
ROF model 20 29.90 5.64 0.8741
Our Method 20 30.48 5.18 0.8795
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Table 4. Numerical results of Barbara and Lena images.

Image Algorithm σ PSNR MAE SSIM
YK 30 26.08 8.62 0.7275

LLT 30 27.10 8.11 0.7554
Lena Ours 30 27.46 7.11 0.8078

YK 20 27.73 6.97 0.8082
LLT 20 29.18 6.39 0.8211
Ours 20 29.20 5.89 0.8421
YK 30 25.80 9.31 0.7053

LLT 30 26.83 8.69 0.7258
Barbara Ours 30 27.07 8.00 0.7520

YK 20 27.13 7.98 0.7584
LLT 20 28.28 7.29 0.7794
Ours 20 28.46 6.79 0.7945

(a) (b) (c)

(d) (e)

Figure 3. Cameraman image, a portion of the results achieved with different models, (251 ×
251). (a) Original image. (b) Noisy image corrupted by Gaussian noise for σ = 20. (c) Our
method. (d) ROF model. (e) PM model.
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(a) (b) (c)

(d) (e)

Figure 4. Peppers image, a portion of the results achieved with different models, (251×251).
(a) Original image. (b) Noisy image corrupted by Gaussian noise forσ = 20. (c) Our method.
(d) ROF model. (e) PM model.

Not surprisingly, although the edges are preserved, the staircase effect is visible for the second
order models, and there are some speckles in the processed images, with an example given in Figure 2.
Comparing the images processed by our model and the original images, we can observed that, the
differences are insignificant. The edges are preserved and no speckles appear in the processed images.

Finally, to illustrate the superiority of the proposed model over other related fourth-order models,
we compared our results with YK model [26] and LLT model [16]. Barbara and Lena images have
been corrupted by white Gaussian noise with SD of 30 (Figures 5 and 6) and SD of 20 (Figures 7
and 8). Numerical results for the images are tabulated in Table 4. Besides getting better outcomes, as
evident from the results (see Figures 5 and 6), the model tackles the speckles caused by YK model at
the same time.

In Figures 6 and 8, the results of Lena Image have been displayed. In Figure 6, the test image Lena
and its noisy version degraded by Gaussian noise with SD of 30 are shown in the sections (a) and (b),
sections (c) to (e) are the results of the YK model, LLT model and the proposed one. Similarly, in
Figure 8, the test image Lena and its noisy version degraded by Gaussian noise with SD of 20 are
shown with the same order described above. The last image in section (e) of Figures 6 and 8 are the
results of our suggested filter in which the extent of the denoising performance is noticeably better than
competitor filter.
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(a) (b) (c)

(d) (e)

Figure 5. Barbara image, a portion of the results achieved with different models, (251×251).
(a) Original image. (b) Noisy image corrupted by Gaussian noise for σ = 30. (c) YK model.
(d) LLT model. (e) Our method.

(a) (b) (c)

(d) (e)

Figure 6. Lena image, a portion of the results achieved with different models, (251 × 251).
(a) Original image. (b) Noisy image corrupted by Gaussian noise for σ = 30. (c) YK model.
(d) LLT model. (e) Our method.
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(a) (b) (c)

(d) (e)

Figure 7. Barbara image, a portion of the results achieved with different models, (251×251).
(a) Original image. (b) Noisy image corrupted by Gaussian noise for σ = 20. (c) YK model.
(d) LLT model. (e) Our method.

(a) (b) (c)

(d) (e)

Figure 8. Lena image, a portion of the results achieved with different models, (251 × 251).
(a) Original image. (b) Noisy image corrupted by Gaussian noise for σ = 20. (c) YK model.
(d) LLT model. (e) Our method.
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6. Conclusions

In this article, we proposed a fourth-order image denoising model. The model was based on solving
a fourth order partial differential equation by defining its corresponding functional. We proved, by use
of Rothe’s method, the existence and uniqueness of the entropy solution of the equation. Compared
with the well known ROF and PM models, numerical results showed that our model perform better
image recovery and can overcome staircase effects.
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