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Abstract: Noise is regarded as an unavoidable component of digital image acquisition. Hence,
noise removal has been considered as one of the fundamental tasks in the field of image processing.
Accordingly, excellent results have been achieved by using second-order models. However, these
outcomes are affected by the staircase effect. To eliminate this anomaly and maintaining the balance of
removing noise and preserving edges, a fourth-order model is proposed. The existence and uniqueness
of the entropy solution for this model are established. Besides, to to verify the effectiveness of the
model in noise removal, we carried out numerical experiment and presented our results. Indeed, the
experimental results show that our model is superior to PM model and ROF model in terms of removing
noise and preserving edges.
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1. Introduction

Noise is the most difficult task in the field of image processing and computer vision. In this work,
we focus on removing additive Gaussian noise. The problem is formulated mathematically as: let
u(x,y) be a digital image and u((x, y) be its observation with random noise 7n(x, y). For (x,y) € Q s.t.

uo(x,y) = u(x,y) + n(x, y). (L.1)

The noise level is approximately known

llte = ol = f(u —up)’dx = 0. (1.2)
Q
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The goal of denoising is to filter out high frequency signals, while preserving the important features of
the image such as edges. Therefore, we search for an image processing model which removes noise
and offers better handling of edges.

During the last two decades, the method of partial differential equations (PDEs) for image
processing has become a major research topic. A classical PDEs model named ROF (Rudin, Osher,
Fatemi) model which was based on the total variation (TV), was first introduced by Rudin et al. [18].
The idea in the ROF model is to minimize the the total variation of the image u,

TV = min f [Vuldx + = f(u — up)*dx. (1.3)

ueBV(Q)NLA(Q)

In fact, one of the main advantages of using ROF model for image restoration is that the discontinuities
are allowed. However, the main drawback of denoising models based on the TV is that they tend to
yield piecewise constant images, a phenomenon known as staircase effects. Strong [19], introduced an
adaptive TV functional (TV,)

TV, = min fa/(x)IVu(x)Idx + il f(u — up)*dx, (1.4)
ueBVIOQNLAQ) Jo 2 Jo

for spatially adaptive image restoration. The function @(x) is an edge detector to control the diffusion.
The main idea of edge detector is that edges of an image are associated with location of high gradient
in a slightly smooth version of the noisy image.

In the recent decades, to overcome the staircase effects that caused by second-order variational
model, fourth-order PDEs have been introduced in image restoration, [1-4,9, 10,12, 14, 16,20,22,24—
28]. You-Kaveh [26] proposed the following functional

fQ f(aul)dxdy, (1.5)

where A denote the Laplacian operator. Based on the gradient descent method, this second order
functional yields a fourth-order PDE

u, = =Mg((bu)*)aw), (1.6)

where g(s) = k*/(k* + s?) and k is an image dependent parameter. This equation does avoid blocky
piecewise constant solution. However, it produces speckles in the processed image [16]. Many other
authors have considered image denoising models based on the minimizer of high-order functionals.
Laysaker et al. [16] proposed the LLT model

f (ol + luyy D xdy, (1.7)
Q
and

[ il iy Py, (1.8)

Q
they try to minimize the TV of Vu. Minimizing these two functionals is equivalent to solve the
following PDEs respectively
o Uyy
u,:—(” ) —( ”) (1.9)
L 1) \lupy 1/,

AIMS Mathematics Volume 6, Issue 4, 3974-3995.



3976

Usx Uy Uyx Uyy
| D*ul),, \IDul), \IDul]  \IDulj,

where | D*u |= \/ |t x? + |ty + uty> + |uyyl>. These equations have proved to be the improved version
of (1.6).

The theoretical analysis showed that fourth-order equations have advantages over second-order
equations in some aspects. Fourth-order PDEs usually produce the smooth image of the observed
image. This is believed to be a better approximation in smooth region. Therefore, the staircase effect
is suggested to be reduced and the recovery image will look better. It is reasonable to conclude that
fourth-order diffusion performs better than the second-order models in the aspect of the recovery of
smooth regions.

In this paper, to address the problem of denoising images contaminated with additive noise, a
fourth-order model is suggested. Using the gradient module of the image to design a speed
controlling function. This function indicated where is the edge in the image, thus the new model can
preserve edge in this region. The motivation for proposing this model is to overcome certain
inconsistencies in second order models founded during the process of recovering smooth regions and
better preservation of the fine details. The model is based on solving a nonlinear fourth order
degenerate equation with the noisy image as its initial data. By use of Roth’s method, we proved the
existence and uniqueness of the entropy solution. Additionally, the numerical results demonstrate that
the proposed model is superior to PM (Perona, Malik) [17] and ROF models.

The rest of this article is organized as follows. In Section 2, we give some preliminaries that we
will use. Section 3 is devoted to the proposed model and the proofs of existence and uniqueness of its
solution. The difference schemes are presented in Section 4. Numerical experiments are presented in
Section 5 and the conclusion of this paper is given in Section 6.

and

2. Preliminaries

In this section, we recall some necessary definitions and notations, [11,13,14]. We begin with some
definitions of the space BV?, which consists of functions u € W'(Q) s.t Vu € BV(Q), this space is also
denoted by BH(€2). To know more about space of bounded Hessian, we refer the reader to [4, 5, 8].

Definition 2.1. Let Q C R" be a bounded open domain with Lipschitz boundary. Let u € L'(Q). Then
the BV? semi-norm of u is characterized by

|ID?ul| = sup {f Z uﬁj(')i(pijdx e < 1,Vx € Q} < o0, 2.1
O -

PeCIQR™) ij=1

where CS(Q, X) is the space of functions from Q to X, 2-times continuously differentiable with compact

support and ¢(x)is a vector valued function, with |p(x)| = /2] = (¢'))2. Here we remark that the space
BV? equipped with [zl py2(r) = |D?ul| + lull,1 ) is a Banach space.

Definition 2.2. Suppose that Q C R" be a bounded open domain with Lipschitz boundary, u € L'(Q),
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and a(x) > 0 is continuous and real function. Then we define the weighted BV?* semi-norm of u as

ID*ull, =  sup { f Z ud;0;¢"dx : |p(x)| < a,¥x € Q} < o0 (2.2)
Q!

¢€CS(Q,R"X”) Q=1
3. The proposed model

In this section, we propose a fourth-order image denoising model, with some guidance from
previous work [6, 14—16,26,27]. There are some benefits of fourth-order models. On the one hand, it
can remove high frequency oscillation more effectively than second-order models because the
evaluation of the second-order becomes weak in the high frequency area. One the other hand, for the
fourth-order model, there is flexibility in employing different functional behaviors in the formulation.

Consider the following boundary value problem

ou , (@(x) Dju _ ~

E + i (W =0 (X, t) € QT = (O, T) X Q, (31)
u(x,t) =0, (x,0) €(0,T) x 0Q, (3.2)
j—_; =0, (x,1) € (0,T) x 092, 3.3)
u(x,0) = ug(x), x e Q, 3.4)

1

V1+Go#Vugl?

is bounded domain of R? with appropriate smooth boundary, T > 0 is fixed, 7 denote the unit outward
normal of the boundary 9Q.

The term a(x) is used to enhance edges. In fact, it controls the speed of the diffusion: in the smooth
region where Vu, is small, the diffusion is strong. Near possible edges, however, where Vi is large,
the diffusion spread is low. The convolution with G, should smooth away any large oscillations of
noise. Therefore, we can get the smooth image and further preserve the edges in a best way.

where a(x) = , G,(x) is the Gaussian filter with parameter o, uy(x) is the original image, Q2

Definition 3.1. A measurable function u : Qr — R is an entropy solution of (3.1)—(3.4) in Qr if

u € C([0,T]; L*(©)) N L=(0, T; BV*(Q)), 66—’; € L*(Qyr) and there exist z, such that az € L*(Qr) with

Il @z |lz=@)< 1, u + Dijazij = 0 in D'(Qr) such that
f (u(t) = V)udx < f az(t) - D*vdx — ||D?ul|,, (3.5)
Q Q

foreveryv e L*(0,T; Wé’] (Q)).

Before investigating the existence and uniqueness of problem (3.1)—(3.4), let us consider the
following approximate evaluation problem: for 1 < p < 2 and ug, € W*P(Q), we construct the
following problem
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ou

a—t" + D} (a()\D}u, "> Diu,) = 0, (x,1) € Qr (3.6)

up(x. 1) = 0, (x.1) € (0.T) x 02, (3.7)

9

a—i’j =0, (x.1) € (0.T) x 0Q, (3.8)
n

1,(x, 0) = 11, (x). xeQ. (3.9)

Lemma 3.1. For any fixed p, 1 < p <2, the above problem (3.6)—(3.9) admits a weak solution
up € L2(0, T; WP () N C([0, T1; LX(Q)) and %2 € L(Q) such that

tim || 1,5, 1) = 0, (1) [l = 0, (3.10)

and for any ¢ € C7(Qr) the following integral equality holds

! ou, ! 2 2 2 2
—(x, )dxdt + a(x)| Dijuplp Djup, - Dijgo(x, tdxdt = 0, 3.11)
0o Jo Ot 0o Ja
with 5
u
Il u, ||Loo(0 Wy T l'up llr=0.7:220)) + —= <C, (3.12)
me ot |20,

where C is a constant independent of p.

Proof. We apply Rothe’s method [23], to construct an approximate solution sequence. Divide the
interval [0, T'] into n equal segments and define h = % For any j: 1 < j < n, for any positive integer n
and a function u(x, t), denote

Wl (x) = up(x, jh), j=1,2,..,n.

For fixed j, define the following functional on Wé P(Q)
1 2 1 n,j—1y2
Ew)=— | ax)ID;wlPdx+ — | (w—u}’"")dx. (3.13)
P Jao / 2h Ja P

The idea here is to prove that if uZ’j ! is known and uZ’O = u,, then there is a minimizer for (3.13).
Letu,, € Wg P(Q)NL*(Q) be a minimizing sequence for E. Since « is bounded below, then the sequence
u,, is bounded in Wé’p (Q) and L*(Q) . Therefore, there exists a subsequence u,,of u,, and a function
Uy’ € WP (Q) N LA(Q) such that as i — oo,

Uy, — w7 weakly in W, 7 () and L*(Q). (3.14)
From this and the weak lower semicontinuity of the norms, we get

E@)’) < liminf E(u,,) = inf  E(w).
i=eo weW, P (@NLA(Q)
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Then uZ’j is the solution of the Euler equation corresponding to E(w)

. ) 1 ) )
D}, (a()IDu 1P D) + 20— =0, (3.15)
which implies
1 o . .
A f (! — up ™ Dn(x)dx + f @(\DLu P2 D2ull - DEp(x)dx = 0, (3.16)
Q Q

for any n(x) € C7(€2).
Let y™/(¢) be the indicator function of [A(j — 1), hj) and

2(p) = F-G-1, ifre [f.l(j— 1), hj),
0, otherwise.

We construct an approximation function as
W) = > Yo, with i (x,0) = u,(x)
=1
and .
WhCn D) = IO () + () (6) — 7 ().
=1

By (3.16), we have

ow"
fQ (a—tpﬂ(x) + a(x)IijuZ P2 iju; . lzj U(X)) dx = 0,

for every n(x) € C;(2) a.e. t € [0, T], which implies that

! BWZ 2 nmp-2n2.,n 2
A 790()" 1) + a(X)|D;;ul, [P~ Diul, - Dip(x, 1) | dxdt = 0, (3.17)

for every ¢ € C;(Qr).

Next, we obtain some estimates for u;(x, t) and w;(x, 1). Notice that, we choose n(x) € Wé’p () as the

test function in (3.16). Let n(x) = ug’j - u;’j_l, we have

1 j ) 2 ngip=2 V2 Mg V2 (i -1
A L(u;’,’f —uy’ ) dx + Qa(x)ID,-ju;’;flp Diu) - Diy(uly) —uy’)dx = 0,

1 . . . . . .
7 f (uZ’-’ - uZ’-’_l)zdx + f a/(x)lDizjuZ’-’ [Pdx = f a(x)|iju;’<’ |P=2 iju’;’-’ . D?juZ’f_ldx.
Q Q Q

Using Young’s inequality, we have

1 nj o onj—1y2 2 nj p-1 2 nj 1 2 nj-1
- f W) — =) dx + f a(x)|DEukiPdx < (D2 Pdx + — | a(x)|Dius " Pdx.
Q Q p Q P Ja
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That is

1 nj _ gt 1\2 1 2 n, 1 2 n,j—-1
Efg uy) — J dx+—fa(x)|DU pflpdx<;fa(x)|D” pj [Pdx.
1<

For any m with < n, summing (3.18) for j from 1 to m

f a(X)\Djul"Pdx < f a(x)|DFugpl"dx,
Q Q

which implies

2 nnpP
sup ||D7.u
0<t<pT” il W@ ~

C’

where C is a constant independent of p, n.
Summing (3.18) for j from 1 to n yield

1 & — 1
Y Z L(u;’/ —uy’ dx < ]—) La(x)lDizjuopl”dx =C
=1

By the definition of wZ(x, 1), we have

ow,,

— hwamM ),

Thus
aw; 2

ot

WZWWJ"“MW

L2(Qr)
By (3.19), we can obtain

sup f | D}wh|Pdx = sup Z () f (1 = (@) Diuly’™" + A™(2) Dy’ \Pdx
0<t<T JQ Q

0<t<T =1

< sup || Dju|l?

ij P
0<t<T

Wol(©@)
Choosing n(x) = uZ’j in (3.16), we get
ij%p ity Hijtp

1 e
; f W) — Nl dx + f a(X)\Djuly 1P DRy’ - DYl dx = 0,
Q Q

which implies
1 4 . .
Ef(u;” —u;’J_l)uZ’de+ fa(x)IDlzj Zflpdx =
Q

By Young’s inequality, we have

1 . 1 .
2 .n, n,ji2 n,j—1,2
fg;a(x)lDl] pf|de+2fQ|upf| dxszj;lup’ Pdx.
f uy/Pdx < f luly/ " Pdx.
Q Q

Thus

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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This implies
sup f juyPdx < f lugp | dx. (3.25)
0<t<T JQ Q

Similar to the proof of (3.22), we also see
sup f WhlPdx < f lugp *dx. (3.26)
0<t<T JQ Q

Choosing 7(x) = u’™" in (3.16)

f Wy — w7l dx + h f a(x)|D; |~ Diy’ - Dl dx = 0.
le) Q

ijp ij"p ij"p

[3

Applying Holder’s inequality and the estimate (3.19), we have
f(u;’j_l - uZ’j)uZ’j_la’x < Ch.
Q

By Young’s inequality again yields
f |u"’j‘1|2dx<Ch+l f Iu”’j_llzdx+l f |l > d x
Q b B 2 Q b 2 Q b .

—-Ch < f luly/|dx — f /! Pdx. (3.27)
Q Q
Define B(u}) = a(x)| Diu|P~2 Diu. Combining (3.19), (3.21), (3.22), (3.25) and (3.26), we

ij"p ij*p
. o
conclude that there exist subsequences of u;’,, w;’,, % and B(u;’,), denoted by themselves such that, as
n—o oo

Thus

=y, in L0, T; Wo(Q),

wh = w,,in L0, T5 Wy (Q),
w9 (3.28)
—L-=L in @)

B@") = ¢, in L¥(0,T; L7 (),

u

holds for some u,,, w,, {. And we also have

2

ow
”WI’”iW(O T-W2~”(Q)) + . + ”up”p 2.p < (329)
T:Wo ot @) L=(0,T; Wy ()
Then let n — oo in (3.17),
ow,,
—L + D¢ =0. 3.30
o+ Did (3.30)
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Next, we show that u, = w,. By the definition of u, and w,, we have

wh =ity = XU = A - ),

j=1
which combined with (3.20), leads to

n
J 1
Rl — |2

j=1

<Ch*—>0,ash — 0. (3.31)

||W —u || LZ(Q ) -

L2Qr )

Now, it remains to show that { = B(u,). From (3.17) and the convergence sets (3.28), as n — oo,

we can get
f f—(p(x tdxdt +f ngU(,o(x Hdxdt = 0. (3.32)

For any g € LP(0, T, W>?(Q)) and for j from 1 to n, we can obtain, by the monotonicity condition, the
inequality

f (B(uy!) = B@)(Djuy’ = Dijg)dx 2 0. (3.33)
Q
Letting 7 = u” in (3.16), we obtain

1 n,j n,j—1\, n,j n, 2 n

7 L(up] —uy uyldx + fQB(u 7y . D;; pjdx =0. (3.34)

Applying Young’s inequality on the first term of (3.34) together with the inequality (3.33) and
integrating over ((j — 1)h, jh), we get

Jjh
f [lu’”l |u"f1 dx+ f f B(u)’)-D} gdxdr+ f f B(g)(Djuy'—D7g)dxdr < 0. (3.35)
(Jj=Dh (j Q

—1h

Summing up (3.35) for j from 1 to n, we obtain

T T
% fg (1T = luo, 1] dx + fo f B(}) - D} gdxdt + fo j; B(g)(DXu", — Dig)dxdr < 0. (3.36)

Recalling the convergence sets (3.28) and letting n — oo, (3.36) yields

f |1, (TP = lug, | dx + f f { - DZgdxdr + f f B(g)(D}u, — D} g)dxdt < 0. (3.37)

We can rewrite (3.37) in the form

T T
f f —Lu,dxdt + f f { - D}gdxdt + f f B(g)(Dju, — D;g)dxdt < 0. (3.38)
0 Q 0 Q

Letting ¢ = u, in (3.32), we obtain

T aup T
f f = pdxdi + f f { - Diupdxdt = 0. (3.39)
0 Q 0 Q
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Then, substituting (3.39) into (3.38) leads to

T
f f (¢ — B(®))(D}u, — D};g)dxdt > 0. (3.40)
0 Ja
Choose g = u, — ks where k > 0 and D};s € L™(0, T; W>?(Q2)). We then have
T
f f (¢ — B(u, — ks))D};sdxdt > 0. (3.41)
0 Ja
Sending k£ — 0, we obtain
T
f f ({ — B(u,))Dj;sdxdt > 0, Vs € L*(0,T; W*(Q)). (3.42)
0 Ja

Since s is arbitrary, we see that { = B(u,,).
Now, we prove (3.10), we let ¢ = u,(x,1) and ¢ = u,(x,t;)in (3.32), for0 <, <t <1, < T, we

obtain .
2
fg (12 (x, 1) — 13 (x, 1)) dx = =2 j; fg @(x)| Dlu,lPdxd,

and

5]
f up(x, )up(x, 1)dx — f 1y (x, 1)dx = — f f @(x)| Dup|P™* D}y Dy (x, ty)dxdL.
Q Q

n Q

Then
f Jup(x, 12) = u,(x, 11)Pdx = f (w2(x. 12) = 12, 11)) dx + 2 f (e (x.11) = wp(x, ) (x, 1) ) i,
Q Q Q

15 5]
=-2 f fg a(x)| D}u,|Pdxdt +2 f fg @(x)| D" Dy Dy (x, 1)doxdt.
I3l 1

From the above equation, we deduce that
i | 1,5, 1) = w0, (3 llze= 0,

and the proof is completed. O

Theorem 3.1. If uy € BV*(Q) and uy = 0, g—z = 0,x € 90Q in the sense of trace then the problem
(3.1)—(3.4) admits one and only one entropy solution.

Proof. By Lemma 3.1, there exists u,, which is a weak solution of the problem (3.6)—(3.9) and a
constant C such that

Oup <C (3.43)
ot - '

” up ”L""(O,T;Wg’p(Q)) + ” up ||L°°(0,T;L2(Q)) +
L2(Qr)

So, from (3.43), there exists a subsequence of u,, denoted by itself and a function
u € L>(0,T; BV*(Q)) N C([0, T]; L*(Q)) with ‘3—’; € L*(Qr) such that, as p — 17,
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. 1,1 . 2 . . 2
u, = u,in W-(Q), with [[D7ul|, < l1;r_1>{1+1f||Dijup||Lp(g), ae. t€(0,T)

and

ou ou .
Sk — 2 weakly in L*(Qy).

We also have u, — u strongly in L*(Qr) ae.te(0,T)and

tlifg} lee(x, ) — uo(X)l|r2 ) = 0.

Applying the method in [7], we next prove that a(x)lDizjul,,ll"2 Dl.zjup is weakly relatively compact in
L'(Q7). Employing (3.43) and Hélder’s inequality,

T
fo fQ @(x)| D} u, "> D} updxdt

where C is independent of p. Thus, {a(x)lijuplp‘szjup} is bounded and equi-integrable in L'(Q7)

T —
< f f | @) || DX, ' dxdi < C'7 meas(Qq)7,
0 Q

and is therefore weakly relatively compact in L!(Q7). Thus we deduce that as p — 17,
{(x)| D2, |77 D2u,} — az, weakly in L'(Qyp).

J J
Ou _ Ou: 2
So we get by Lemma 3.1 and the fact that 5 — % in L*(Qr),

T 6 T
f f ol Ddxdt + f f az - DY p(x, ndxdi = 0, (3.44)
0 Q 0 Q

for every ¢(x,1) € C7(Qr) and u, + Djjaz;; = 01in D'(Qr) .
Now, it remains to prove that || @z ||z~ < 1.
For any k > 0, setting

Apr ={(x,1) € Qp 1| Dl.zjup |> k}, we have that

forevery p > 1,k > 0.

C
meas(A, ) < T

As above, there exists a function g, € L'(Qr) such that

a(x)IDl.zjuplp‘2 Dl.zju,,)(Ap’k — gr,as p — 17 weakly in L'(Q7),
where x4, 1s the indicator function of A, ;. Now for any ¢ € L*(Qr) with
l¢llz=@,) < 1, by the definition of x4, , we see that

<

¢
-

T
\fOV La(-x)lDizjuplp_z D,‘Zjup‘ﬁXApvkdXdl

Letting p — 17, we have
T
C
f f | 8¢ | dxdt < . for every k > 0. (3.45)
0 Q

Since we have that

< k"7, for any p > 1,

T
2 -2 N2
[ [ atointur? Dupxa, n,
0 Q
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letting p — 1%, we obtain that a/(x) | Dl.zjup |P=2 Df/.up)mT /a,, Weakly converges in L'(Qr) to some
function f, € L'(Q7) with I fell=,y < 1. Since, for any k > 0, we may write @z = f; + g; with

I fell=;) < 1 and gy satisfies (3.45), it is easily follows that ||az|;~@,) < 1.
Next, we verify the solution definition inequality (3.5). For any v, € Cy(€r) and taking ¢ =
(up, —v,)E() in (3.11), we have

T ou, T N, )
fo fg E(up —v)é()dxdt = —j(; La/(x)IDijup| D}u, - DX(u, — vy)E)dxd.

Letting p — 1%,

T (91/[ T T
f f — (u(t) — v)E)dxdt < f f az(t)~Di2jvn§(t)dxdt— f | Dl £(t)dt.
0 Jo Ot 0 Ja 0

Then for any v € L*(0, T'; Wé’l(Q)), letting n — oo,

T au T T
f f —(u(t) — v)E@)dxdt < f f az(1) - D}vé(tydxdt — f | D?ul|,£(F)dk.
0o Jo 0t 0o Ja 0

Since &() is arbitrary, we have
ou ) )
—(u(t) —v)dx < az(t) - D;vdx — ||D7ull,,
o Ot Q !
for every v € L*(0, T} Wé’](Q)) and a.e. on [0, T].

Finally, we prove the uniqueness of the entropy solution. Let u;, u, both be entropy solution with
data u, ur9. Then there exists az;, @z, € L*(Qr) such that

0
f S = v)dx < f az, - Divdx — [D?uylla, (3.46)
o Ot Q
and
6—(u2 —v)dx < azy - Dl-jvdx = ID"us||q, (3.47)
o Ot Q

for every v € L*(0,T; Wg’l(Q)) and a.e. on [0,T]. Let uy,,u,, € L0, T, Wé’p (Q)) be approximates
functions, respectively, for u; and u,, such that

. 2 2 .
lim (IDFu1llz1 @ = 1D lle) = 0, lim |, =t lli20)= O,

and
. 2 2 .
lim (D7 u2llz1 @ ~ 1D*ualle) = 0, lim | 2, = 2 ll20= O,

a.e. on[0, T']. Taking v = u,, in (3.46) and v = u,, in (3.47), adding the two equations and rearranging
the result, we obtain

al/h (?Ltz auz 8”1
jg;(ul - up) (E - E)dx + L(“l - uln)de + L(uz - Mzn)g

2 2 2 2
< fozzl - Diuandx = [|D7u || + faZz » Diunndx — [|D usll-
Q Q
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So integrating from O to 7 and letting n — oo, we get

f(ul — up)dx < f(um — uy)’dx.
Q Q

The proof is completed . O
4. Difference schemes

In this section, assuming 7 to be the time step size and & the space grid size, we discretize time and
space as follows:

t = nt, n=0,1,2,---,
x = ih, i=0,1,2,---,1,
y:.jh’ j:0’192""9~]7

where Ih X Jh is the size of the original image. Let u}; denote approximations of u(nr, ih, jh). We
define the discrete approximation:

n_ul+1]—2u +u11]
Axui’j —_ h2 s
. _u11+1—2u +ulj |
Ayl j = 2 ;
n no_ . n _n
p Mg U T U T Uy
Axyul‘,j - h2 .

The discrete explicit scheme of the problem can be written as

n n
Aty A u”,] Ayl
Ay Q’l‘jﬁ + Ay Q,]W + Axy Qijﬁ s
AU ijle Ay ijle A/} ijle
1

116, - Vo,
uo(ih, jh), 0<i<I,0<j<,

uw. =u . -7

’ |.|E:|.|+€’ €>0’

S
II

n _— — n n — n n — n
wo = Uy, ”0,1 = Uy Upj=upyj Uig=Uij-1s

n n — n no _
uio=0, uy; =0, u;;=0, wu,=0.

Here the MATLAB function “conv2” is used to represent the two-dimensional discrete Convolution
Transform of the matrix u; ;.

5. Numerical experiments

In this section, we demonstrate the performance of our model in denoising images involving
Gaussian white noise. We applied difference equations discussed in section 4 and compared the
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results with the results of ROF model [18] and PM model [17]. We used step size 7 = 0.02 , gride size
h=1and A =0.

At the end of the denoising process, the peak signal to noise ratio (PSNR), mean
absolute-deviation error (MAE) and structure similarity index measure (SSIM) values were recorded
to measure the denoising performance. The values are given by the following formulas:

IJ| max uy — min ug|?

PSNR(u, u) = 10 log,, 5 dB
i — ol
and
lloe — wollp
MAE(u, = —
(1, up) 77

where |[max 1, — min uy| gives the gray-scale range of the original image, u, and u denote, respectively,
the original image and the denoised image, / X J is the dimension of image.

SSIM, designed by Wang et al. [21], is a quality used to measure the similarity between any two
images. Given any two images u and uy, SSIM is given by the formula

SSIM(u, ug) = L(u, up) - C(u, up) - R(u, up).

2/1,,;4[,0+k1 . . . .
L(u,uy) = e compares the two images’ mean luminance u, and ,,. The maximal value of

20, Tuy +ky

L(u,up) = 1, if p,, = pyy, C(u, up) = measures the closeness of contrast of the two images u

oi+02 +hky
u Llo
and uy. Contrast is determined in terms of standard deviation, o. Contrast comparison measure

C(u, up) = 1 maximally if and only if o, = 0 ,; that is, when the images have equal contrast.

R(u, uy) = :U_‘)—Jrf,;, is a structure comparison measure which determines the correlation between
the images u and (I)/to, where o, 1s covariance between u and uy. It attains maximal value of 1 if,
structurally, the two images coincide, but its value is equal to zero when there is absolutely no structural
coincidence. The quantities k;, k, and k3 are small positive perturbations that avert the possibility of
having zero denominators.

Two test images of “Cameraman” and “Peppers” are corrupted by white Gaussian noise with
standard deviation (SD) of 30, (Figures 1 and 2). Tables 1 and 2, present the numerical results of
restoration of Cameraman image, (Figure 1), and those of the Peppers image, (Figure 2). The
comparisons are based on PSNR, MAE and SSIM. The proposed method shows the best performance
with respect to PSNR, MAE and SSIM.

Our first example is Cameraman image, which is displayed in Figure 1(a) and 1(b) is its degraded
version. Furthermore, Figure 1(c), 1(d) and 1(e), are portions of the recovered images with the
proposed model, ROF model and PM model, respectively. It is clear that our method can overcome
the staircase effect that caused by the second order method.

The second example is Peppers image, which is displayed in Figure 2(a), its degraded version is
showed in Figure 2(b). Basically, Figure 2(c), 2(d) and 2(e), are portions of the recovered images by
the proposed model, ROF model and PM model, respectively. It is evident that, our method yields good
results in restoring image since it avoids the staircase effect that caused by the second order method
while, at the same time, handle edges in a best way.
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(a) (b) (©)

(d) ©
Figure 1. Cameraman image, a portion of the results achieved with different models, (251 x

251). (a) Original image. (b) Noisy image corrupted by Gaussian noise for o = 30. (c¢) Our
method. (d) ROF model. (¢) PM model.

(@) (e)

Figure 2. Peppers image, a portion of the results achieved with different models, (251 x251).
(a) Original image. (b) Noisy image corrupted by Gaussian noise for o = 30. (¢) Our method.
(d) ROF model. (¢) PM model.
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Table 1. Numerical results for Peppers image (251 x 251) experiment, Figure 2.

Algorithm o PSNR MAE SSIM
PM model 30 2798 7.06 0.8345
ROF model 30 28.26 6.80 0.8359
Our Method 30 28.66 6.44 0.8537

Table 2. Numerical results for Cameraman image (251 x 251) experiment, Figure 3.

Algorithm o PSNR MAE SSIM
PM model 20 2889 5.83 0.8386
ROF model 20 28.76 5.85 0.8397
Our Method 20 29.04 5.62 0.8450

Similarly, the two test images are corrupted by white Gaussian noise with SD of 20, (Figures 3
and 4). Tables 3 and 4, present the numerical results of restoration of Cameraman image, (Figure 3),
and those of the Peppers image, (Figure 4). The comparisons are based on PSNR, MAE and SSIM.
Here again, the proposed method shows the best performance with respect to PSNR, MAE and SSIM.
In Figure 3(a) and 3(b) we display Cameraman image and the noisy version. Figure 3(c), 3(d) and 3(e),
are portions of the recovered images with the proposed model, ROF model and PM model, respectively.
We display Peppers image and the degraded version in Figure 4(a) and 4(b). Figure 4(c), 4(d) and 4(e),
are portions of the recovered images with the proposed model, ROF model and PM model, respectively.
Here also, the proposed model yields better results in denoising image while handling edges in a
best way.

Table 3. Numerical results for Peppers image (251 x 251) experiment, Figure 4.

Algorithm o PSNR MAE SSIM
PM model 20 29.86 5.70 0.8727
ROF model 20 29.90 5.64 0.8741
Our Method 20 30.48 5.18 0.8795
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Table 4. Numerical results of Barbara and Lena images.

Image Algorithm o PSNR MAE SSIM
YK 30 26.08 8.62 0.7275

LLT 30 27.10 8&.11 0.7554

Lena Ours 30 2746 7.11 0.8078
YK 20 27.73 6.97 0.8082

LLT 20 29.18 6.39 0.8211

Ours 20 29.20 5.89 0.8421

YK 30 2580 931 0.7053

LLT 30 26.83 8.69 0.7258

Barbara Ours 30 27.07 8.00 0.7520
YK 20 27.13 798 0.7584

LLT 20 2828 7.29 0.77%94

Ours 20 28.46 6.79 0.7945

(a) (b) ©)

(d) (e)

Figure 3. Cameraman image, a portion of the results achieved with different models, (251 x
251). (a) Original image. (b) Noisy image corrupted by Gaussian noise for o = 20. (c¢) Our
method. (d) ROF model. (¢) PM model.
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(d) (e

Figure 4. Peppers image, a portion of the results achieved with different models, (251 x251).
(a) Original image. (b) Noisy image corrupted by Gaussian noise for o = 20. (¢) Our method.
(d) ROF model. (¢) PM model.

Not surprisingly, although the edges are preserved, the staircase effect is visible for the second
order models, and there are some speckles in the processed images, with an example given in Figure 2.
Comparing the images processed by our model and the original images, we can observed that, the
differences are insignificant. The edges are preserved and no speckles appear in the processed images.

Finally, to illustrate the superiority of the proposed model over other related fourth-order models,
we compared our results with YK model [26] and LLT model [16]. Barbara and Lena images have
been corrupted by white Gaussian noise with SD of 30 (Figures 5 and 6) and SD of 20 (Figures 7
and 8). Numerical results for the images are tabulated in Table 4. Besides getting better outcomes, as
evident from the results (see Figures 5 and 6), the model tackles the speckles caused by YK model at
the same time.

In Figures 6 and 8, the results of Lena Image have been displayed. In Figure 6, the test image Lena
and its noisy version degraded by Gaussian noise with SD of 30 are shown in the sections (a) and (b),
sections (c) to (e) are the results of the YK model, LLT model and the proposed one. Similarly, in
Figure 8, the test image Lena and its noisy version degraded by Gaussian noise with SD of 20 are
shown with the same order described above. The last image in section (e) of Figures 6 and 8 are the
results of our suggested filter in which the extent of the denoising performance is noticeably better than
competitor filter.
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(a) (b) (©)

(d) ©)

Figure 5. Barbara image, a portion of the results achieved with different models, (251 x251).
(a) Original image. (b) Noisy image corrupted by Gaussian noise for o = 30. (¢) YK model.
(d) LLT model. (e¢) Our method.

(d) (e)

Figure 6. Lena image, a portion of the results achieved with different models, (251 x 251).
(a) Original image. (b) Noisy image corrupted by Gaussian noise for o = 30. (c) YK model.
(d) LLT model. (¢) Our method.
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(a) (b) (©)

(d) ©)

Figure 7. Barbara image, a portion of the results achieved with different models, (251 x251).
(a) Original image. (b) Noisy image corrupted by Gaussian noise for o = 20. (¢) YK model.
(d) LLT model. (e¢) Our method.

(d) (e)

Figure 8. Lena image, a portion of the results achieved with different models, (251 x 251).
(a) Original image. (b) Noisy image corrupted by Gaussian noise for oo = 20. (c) YK model.
(d) LLT model. (¢) Our method.
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6. Conclusions

In this article, we proposed a fourth-order image denoising model. The model was based on solving
a fourth order partial differential equation by defining its corresponding functional. We proved, by use
of Rothe’s method, the existence and uniqueness of the entropy solution of the equation. Compared
with the well known ROF and PM models, numerical results showed that our model perform better
image recovery and can overcome staircase effects.
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