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Abstract: In this paper, we have used two different proof techniques to show the Hamilton-
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convex polytopes is not Hamilton-connected. By definition, we constructed two more infinite families
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Platonic solids according to their Hamilton-connectedness and Hamilton-laceability properties.
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1. Introduction

All graphs in this paper are simple, loopless, finite and connected. For undefined terminologies, we
refer to Section 2.
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Hamilton-connected graphs were introduced by Ore [20] in 1963. There is an extensive amount of
literature available on Hamiltoniancity and Hamilton-connectivity of graphs. Determining whether a
graph is Hamiltonian or Hamilton-connected are NP-complete problems [10]. Frucht [9] studied a
canonical representation of trivalent Hamiltonian graphs. Wei [32] showed some degree conditions
for vertices to possess a Hamiltonian path between them. He further showed that with these degree
restrictions if a graph is 3-connected, then it must be Hamilton-connected. Yang et al. [35] and Qiang
et al. [21] independently showed that the generalized honeycomb torus network is Hamiltonian.
Gordon et al. [11] studied the Hamiltonian properties of triangular grid graphs. Stewart [28] proved
sufficient conditions for multiswapped networks to be Hamiltonian. Recently, Yang et al. [34] found
forbidden subgraphs in super-Eulerian and Hamiltonian graphs.

Chartrand et al. [7] showed that the square of a block graph is Hamilton-connected. Thomasson
[29] studied Hamilton-connected tournaments in graphs. Chang et al. [6] studied panconnectivity,
fault-tolerant Hamiltonicity and Hamiltonian-connectivity in alternating group graphs by considering
them as interconnection networks. Kewen et al. [15] derived a sufficient condition for a graph to
be Hamilton-connected. Zhou & Wang [37] proved certain sufficient conditions for a graph to be
Hamilton-connected in terms of the edge number, the spectral radius and the signless Laplacian spectral
radius of the graph. Zhou et al. [39] calculated the Wiener and Harary indices of Hamilton-connected
graphs with large diameter. Wei et al. [33] derived some spectral analogues of Erdös’ theorems for
Hamilton-connected graphs. Hung et al. [13] studied Hamilton-connectivity of alphabet grid graphs.
Zhou et al. [38] extended a result of Fiedler and Nikiforov and derived signless Laplacian spectral
conditions for Hamilton-connected graphs with large minimum degree. Recently, Shabbir et al. [26]
studied Hamilton-connectivity in Teoplitz graphs.

By preserving the vertex-edge incidence relation in convex polytopes, their graphs are constructed.
Bača [2–4] was among the first researchers to consider these families of geometric graphs. In [4] (resp.
[3]), Bača studied the problem of magic (resp. graceful & anti-graceful) labelling of convex polytopes,
whereas, in [2], the problem of face anti-magic labeling of convex polytopes was studied. Imran
et al. [14] computed the constant metric dimension of various infinite families of convex polytopes.
The fault-tolerant metric dimension (resp. mixed metric dimension) of convex polytopes was studied
by Raza et al. [24] (resp. Raza et al. [25]). The binary locating-dominating number of convex polytopes
is studied by Simić et al. [27] and Raza et al. [23].

1.1. The detour index

The detour index has important applications in chemistry. Applications of this parameter in
quantitative structure activity and property relationship models were put forward by Lukovits [17].
Besides giving further applications of the detour index, Trinajstić et al. [31] conducted a comparative
analysis with the Wiener index in terms of applicability in correlating boiling points of hydrocarbons
or, in general, organic compounds. Moreover, its further applications in predicting the normal boiling
points of cyclic and acyclic alkanes were studied by Rücker & Rücker [22].

An algorithm of tracing the detour between two vertices in a graph was proposed by Lukovits &
Razinger [19]. They also applied their algorithm in detecting detours and computing the detour index
of graphs corresponding to fused bicyclic skeletons. Rücker and Rücker [22] and Trinajstić et al. [30]
proposed certain computer methods to trace out detours and thus calculation of the detour index of
graphs. It has already been shown in [12] that the problem of finding the detour index of a given graph
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is computationally NP-complete. Trinajstić et al. [30] also proposed a method of calculating the detour
matrix of reasonably small sizes. Note that the detour index is equal to the sum of all the entries of the
detour matrix dividing by two.

Recall that determining whether or not a graph is Hamilton-connected or computing its detour index
are NP-complete problems [10, 12]. In view of this, it is natural to study these problems for special
families of graphs. In this paper, we study the Hamilton-connectedness of certain infinite families
of convex polytopes. More precisely, we construct certain infinite families of Hamilton-connected
convex polytopes. We have used two different proof techniques to show our results. We also classify
the Platonic solids according to their Hamilton-connectedness and Hamilton-laceability properties. By
using Hamilton-connectedness of certain families of convex polytopes, we compute exact formulas of
their detour index.

2. Preliminaries

A graph G is an ordered pair G =
(
V(G), E(G)

)
with V(G) as its vertex set (i.e., set of points called

vertices) and E(G) ⊆
(

V(G)
2

)
as its edge set (i.e., set of lines connecting points called edges). The

number of vertices, say n := |V(G)|, is called the order of G and the number of edges, say m := |E(G)|,
is called the size of G. For two vertices x, y ∈ V(G), we write x ∼ y if both x and y are adjacent
i.e., they are connected by an edge. For U ⊆ V(G) and x, y ∈ V(G), if U = {ui : 1 ≤ i ≤ p} then
x ∼ {ui : 1 ≤ i ≤ p} ∼ y means that x ∼ u1 and up ∼ y and adjacency in rest of ui’s (2 ≤ i ≤ p) stays the
same. For a positive integer ν ∈ Z+, we write ν | 2 (resp. ν - 2) if ν is even (resp. odd).

A cycle in a graph G is called Hamiltonian if it travels all the vertices of G once. Moreover, a path in
G is called Hamiltonian path if it travels all the vertices of G. Not every graph contains a Hamiltonian
cycle. For instance, any tree is an acyclic graph so it can not contain a Hamiltonian cycle. However, a
tress may still contain a Hamiltonian path. A graph G is called Hamiltonian if there exist a Hamiltonian
cycle in it. By definition, any cycle graph or a clique graph are Hamiltonian. Furthermore, G is called
traceable if it contains a Hamiltonian path. Of course all Hamiltonian graphs are traceable. However,
there exist graphs which are traceable but not Hamiltonian. The first non-trivial example which comes
in mind immediately is the so-called Petersen graph which is traceable but not Hamiltonian. A graph
which contains a Hamiltonian path between every two vertices of G is called Hamilton connected.

Let G be a graph. A subset S ⊆ V(G) (resp. T ⊆ E(G)) is said to be a vertex cut (resp. edge cut) if
G − S (resp. G − T ) results in a graph with more than one connected component. A vertex cut of size
1 corresponds to an articulation vertex. The vertex connectivity κ(G) (resp. edge connectivity λ(G)) is
the minimum cardinality of a vertex cut (resp. edge cut) in G. A graph with vertex connectivity (resp.
edge connectivity) greater than or equal to a fixed number say k, is said to be k-vertex connected (resp.
k-edge connected). In other words, a graph is k-vertex connected or simply k-connected if there exists
no vertex cut of cardinality k − 1 in G.

Let δ(G) be the minimum degree of G. Whitney [36] in 1932 showed the following result:

Theorem 2.1. [36] For any graph G, the following inequalities hold:

κ(G) ≤ λ(G) ≤ δ(G).

The following well-known Kužel-Xiong Theorem was shown by Kužel in his PhD Thesis [16].
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Theorem 2.2. [16] Every 4-connected line graph is Hamiltonian if and only if it is
Hamilton-connected.

Beineke [5] and Robertson independently gave the following characterization of line graphs.

Theorem 2.3. The following statement are equivalent for a graph G:

(i) G is the line graph of some graph.
(ii) The nine graphs in Figure 1 are forbidden in G, i.e., none of these graphs can be induced

subgraphs of G.

See page 47 of Harary’s book [12] for more information on this characterization.
For a graph G, let `(x, y) be the length of a longest path (i.e., detour) between vertices x and y of G.

The detour index [18] is defined to be the sum of detour between unordered pairs of vertices in G. The
detour index of a graph G is usually denoted by ω(G).

ω(G) =
∑

{x,y}⊂V(G)

`(x, y).

We end this section with an important and well-known result bounding the detour index in terms of
graph parameters.

Figure 1. The nine forbidden subgraphs for a line graph.

Theorem 2.4. [8] Let G be an n-vertex graph with n ≥ 3 and ω(G) be its detour index. Then

n(n − 1)2

2
≥ ω(G) ≥ (n − 1)2

with left equality holds if and only if G is Hamilton-connected, and right inequality holds if and only if
G � S n.
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3. Hamilton-connectedness and the detour index of Pn

In this section, we prove that the Hamilton-connectedness of the convex polytope Pn. We use its
Hamilton-connectedness to find an exact analytical formula for the detour index of the Pn.

The vertex set of Pn is {ui, vi,wi, xi, yi, zi : 1 ≤ i ≤ n} and the edge set is defined as follows:

E(Pn) = {uiui+1, uiwi, uiwi+1, viwi+1,wizi, vizi, vizi+1, viyi, ziyi, yixi, yixi+1, xixi+1 : 1 ≤ i ≤ n},

where the subscripts are considered modulo n. Figure 2 shows the drawing of Pn with proper labeling
of vertices. For our purpose, let us call the rows comprising vertices ui and wi the layer 1 and layer 2,
respectively. In a similar manner, the rows with vertices vi and zi form a single layer called layer 3 of
Pn. The remaining rows containing vertices yi and xi are called layer 4 and layer 5, respectively.

Figure 2. The convex polytope Pn.

Next, we show the main result of this section.

Theorem 3.1. The n-dimensional convex polytope Pn, with n ≥ 5, is Hamilton-connected.

Proof. Let G be the n-dimensional convex polytope Pn. We divide the proof into a number of claims.
Claim 1: G is a line graph.

Note that G does not contain any of the nine forbidden subgraphs Figure 1. So by Theorem 2.3, G
is a line graph. Moreover, it can easily be seen that Pn is the line graph of Dn which is also a family of
convex polytopes, see Section 1.
Claim 2: For n ≥ 5, G is a 4-connected i.e. κ(G) = 4.

Note that G is 4-regular graph. For v ∈ V(G), let S = NG(v) = {v1, v2, v3, v4} the neighborhood of v
in G. Note that V \G is disconnected having v as an isolated connected component. This implies that
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κ(G) ≤ 4. In order to show κ(G) ≥ 4, we let S = {a, b, c} to be a subset of V(G), where a, b and c are
arbitrary vertices and show that deletion of S in G leaves the graph connected.

Here we divide our discussion into a number of cases.
Case 1: All three vertices of S lie either on layer 1, 3 or 5 of G.

On layers 1, 3 or 5, the vertices a, b and c are either consecutive vertices or two adjacent and one
non-adjacent or all three non-adjacent to each other. In each case, if a, b and c are on layer 1 (resp.
layer 5), then their neighbors are on layers 1 & 2 (resp. layers 4 & 5). Similar If a, b and c are on layer
3, their neighboring vertices belong to layers 2, 3 & 4. In every case, these neighboring vertices have
degrees either two or three in G − S . This implies that S is not a vertex cut set of G as G − S stays
connected.
Case 2: All three vertices of S lie either on layer 2 or layer 4 of G.

On layer 2 or layer 4, the vertices a, b and c are either consecutive or non-consecutive. In each case,
the neighboring vertices are on layer 1 & 3 if they belong to layer 2 and on layer 3 & 5 if they belong
to layer 4. And all of these neighboring vertices on layer 1, 3 or 5 have degrees either 2 or 3 in G − S .
By following the structure of G from Figure 2, S is not a vertex cut set of G as G − S stays connected.
Case 3: Two vertices of S lie on one of layers 1, 3 or 5 and one vertex belongs to either layer 2 or 4.

If all three vertices of S are adjacent to each other i.e., they form a triangle, then the neighbors of
a, b and c belong to layer 1, 3 or 5 or layer 2 & 4 of G having degrees either 2 or 3 in G−S . Moreover,
if the two vertices of layer 1, 3 or 5 are adjacent and the vertex of the layer 2 or 4 are non-adjacent to
the other two vertices of S . Then the neighbors of a, b and c also belong to either layer 1, 3 & 5 or
layer 2 & 4 having degrees either 2 or 3 in G − S . The last possibility is that if the two vertices on the
layer 1, 3 or 5 are also non-adjacent, then the number of neighbors of a, b and c increases having the
degrees either 2 or 3 in G − S . Thus, Figure 2 implies that S is not a vertex cut set in this case as well,
as G − S stays connected.
Case 4: Two vertices of S lie on layers 2 or 4 and one belongs to one of layers 1, 3 or 5.

This case is rather simple as the two vertices on the layer 2 or layer 4 are never adjacent. Thus, all
the neighbors of a, b and c belong to layers 1, 3 & 5 and layer 2 & 4 regardless of whether the one
vertex belongs to the layer-1, 3 or 5. All of the neighbors have degrees at least 2, which implies that S
is not a vertex cut set of G while G − S staying connected.
Case 5: Every vertex of S lie on the different layer in G.

By following the same reasoning as in previous cases, we find that G − S stays connected in this
case as well.

Combining our discussion in Cases 1–5, we conclude that any set of three vertices in G is never a
vertex cut set of G. This shows that κ(G) ≥ 4 and combining it with κ(G) ≤ 4 finishes the proof to
Claim 2.
Claim 3: G is a Hamiltonian.

The following is the Hamiltonian cycle in G.

u = x1 ◦ {yn− jxn− j : 0 ≤ j ≤ n − 3} ◦ y2 ◦ {z jv j : 2 ≤ j ≤ n}◦

w1u1 ◦ {un− jwn− j : 0 ≤ j ≤ n − 2} ◦ v1z1y1x2x1 = u

Claims 1, 2 & 3 show that G is a family of Hamiltonian, 4-connected line graphs. By using Theorem
2.2, G is Hamilton-connected. �
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Using Theorems 2.4 & 3.1, the following proposition computes the detour index of the line graph
of Pn.

Corollary 3.2. Let G = Pn, where n ≥ 5. Then the detour index of G is

ω(G) =
6n(6n − 1)2

2
.

Proof. The number of vertices in the line graph G is 6n. Replacing 6n with n in Theorem 2.4 shows
the proposition. �

4. Hamilton-connectedness and the detour index of Tn

For n ≥ 4, the family of convex polytope Tn is introduced in [3] which consists of 3, 4 & 5-sided
faces.

The vertex set of Tn consists of four layers of vertices i.e. wi, xi, yi and zi. That is to say that
V(Tn) = {wi, xi, yi, zi : 1 ≤ i ≤ n}. Accordingly, the edge set of Tn is as follows:

E(Tn) = {(wi,wi+1), (zi, zi+1), (wi, xi), (xi,wi+1), (xi, yi), (yi, zi+1), (yi, zi) : 1 ≤ i ≤ n}.

The subscripts are to be considered modulo n. Figure 3 presents the n-dimensional convex polytope Tn

with proper labeling of vertices which will be used to show its Hamilton-connectedness.

x1

x2 xn-1

xn

y
1

y
2

zn

yn

y
n-1

yn-2

zn-1

z1

z2

xn-2

1

2 nww
w

n-1
w3w

Figure 3. The n-dimensional convex polytope Tn.

Next, we show the main result of this section.

Theorem 4.1. The n-dimensional convex polytope Tn, with n ≥ 4, is Hamilton-connected.

Proof. We prove it by definition. This implies that we need to show the existence of Hamiltonian paths
between any pair of vertices of G.

Let PH(u, v) denote a Hamiltonian path between vertices u and v of Tn. By following the labeling
of vertices exhibited in Figure 3, we show the existence of Hamiltonian paths between vertices of Tn

in a number of cases.
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Case 1: u = z1 and v = zi, 2 ≤ i ≤ n
Subcase 1.1: 2 ≤ i ≤ n − 1

PH(u, v) : u = {z jy j : 1 ≤ j ≤ i − 1} ◦ {y j : i ≤ j ≤ n − 1} ◦ {xn− j : 1 ≤ j ≤ n − 1}◦

{w j : 1 ≤ j ≤ n} ◦ xnyn ◦ {zn− j : 0 ≤ j ≤ n − i} = v

Subcase 1.2: i = n

PH(u, v) : u = {z j : 1 ≤ j ≤ n − 1} ◦ {yn− j : 1 ≤ j ≤ n − 1} ◦ {x j : 1 ≤ j ≤ n − 1}◦

{wn− j : 0 ≤ j ≤ n − 1} ◦ xnynzn = v

Case 2: u = z1 and v = yi, 1 ≤ i ≤ n
Subcase 2.1: 1 ≤ i ≤ n − 1

PH(u, v) : u = {z j : 1 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − i − 1} ◦ xi+1wi+1 ◦ {w jx j : i + 2 ≤ j ≤ n}◦

{w j : 1 ≤ j ≤ i} ◦ {xi− j : 0 ≤ j ≤ i − 1} ◦ {y j : 1 ≤ j ≤ i} = v

Subcase 2.2: i = n

PH(u, v) : u = z1 ◦ {zn− j : 0 ≤ j ≤ n − 2} ◦ {y j : 1 ≤ j ≤ n − 1} ◦ {xn− j : 1 ≤ j ≤ n − 1}

◦{w j : 1 ≤ j ≤ n} ◦ xnyn = v

Case 3: u = z1 and v = xi, 1 ≤ i ≤ n
Subcase 3.1: 1 ≤ i ≤ n − 1

PH(u, v) : u = z1 ◦ {zn− j : 0 ≤ j ≤ n − 2} ◦ {y j : 1 ≤ j ≤ n} ◦ {xn− j : 0 ≤ j ≤ n − i − 1}◦

{w j : i + 1 ≤ j ≤ n} ◦ {w jx j : 1 ≤ j ≤ i} = v

Subcase 3.2: i = n

PH(u, v) : u = {z j : 1 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 1} ◦ {x j : 1 ≤ j ≤ n − 1}◦

{wn− j : 0 ≤ j ≤ n − 1} ◦ xn = v

Case 4: u = z1 and v = wi, 1 ≤ i ≤ n
Subcase 4.1: 1 ≤ i ≤ n − 1

PH(u, v) : u = z1 ◦ {zn− j : 0 ≤ j ≤ n − 2} ◦ {y j : 1 ≤ j ≤ n} ◦ {xn− j : 0 ≤ j ≤ n − i}◦

{w j : i + 1 ≤ j ≤ n} ◦ {w jx j : 1 ≤ j ≤ i − 1} ◦ wi = v

Subcase 4.2: i = n

PH(u, v) : u = {z j : 1 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 1} ◦ {x j : 1 ≤ j ≤ n}◦

{w j : 1 ≤ j ≤ n} = v
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Case 5: u = y1 and v = zi, 1 ≤ i ≤ n
Subcase 5.1: 1 ≤ i ≤ n − 1

PH(u, v) : u = {y j : 1 ≤ j ≤ i} ◦ {xi− jwi− j : 0 ≤ j ≤ i − 1} ◦ {wn− j : 0 ≤ j ≤ n − i − 1}◦

{x j : i + 1 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − i − 1} ◦ {z j : i + 1 ≤ j ≤ n}

{z j : 1 ≤ j ≤ i} = v

Subcase 5.2: i = n

PH(u, v) : u = {y j : 1 ≤ j ≤ n − 1} ◦ {xn− j : 1 ≤ j ≤ n − 1} ◦ {w j : 1 ≤ j ≤ n}◦

xnyn ◦ {z j : 1 ≤ j ≤ n} = v

Case 6: u = y1 and v = yi, 2 ≤ i ≤ n
Subcase 6.1: i = 2

PH(u, v) : u = y1 ◦ {z j : 1 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 3} ◦ {x j : 3 ≤ j ≤ n}◦

{wn− j : 0 ≤ j ≤ n − 1} ◦ x1x2y2 = v

Subcase 6.2: 3 ≤ i ≤ n − 1

PH(u, v) : u = y1z1 ◦ {z jy j : 2 ≤ j ≤ i − 1} ◦ {z j : i ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − i − 1}◦

{x j : i + 1 ≤ j ≤ n} ◦ {wn− j : 0 ≤ j ≤ n − 1} ◦ {x j : 1 ≤ j ≤ i} ◦ yi = v

Subcase 6.3: i = n

PH(u, v) : u = y1z1 ◦ {zn− j : 0 ≤ j ≤ n − 2} ◦ {y j : 2 ≤ j ≤ n − 1} ◦ {xn− j : 1 ≤ j ≤ n − 1}◦

{w j : 1 ≤ j ≤ n} ◦ xnyn = v

Case 7: u = y1 and v = xi, 1 ≤ i ≤ n
Subcase 7.1: 1 ≤ i ≤ n − 1

PH(u, v) : u = y1z1 ◦ {zn− j : 0 ≤ j ≤ n − 2} ◦ {y j : 2 ≤ j ≤ n} ◦ {xn− j : 0 ≤ j ≤ n − i − 1}◦

{w j : i + 1 ≤ j ≤ n} ◦ {w jx j : 1 ≤ j ≤ i} = v

Subcase 7.2: i = n

PH(u, v) : u = y1 ◦ {z j : 1 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 2} ◦ {x j : 2 ≤ j ≤ n − 1}◦

{wn− j : 0 ≤ j ≤ n − 1} ◦ x1xn = v

Case 8: u = y1 and v = wi, 1 ≤ i ≤ n
Subcase 8.1: 1 ≤ i ≤ n − 1

PH(u, v) : u = y1z1 ◦ {zn− j : 0 ≤ j ≤ n − 2} ◦ {y j : 2 ≤ j ≤ n} ◦ {xn− j : 0 ≤ j ≤ n − i}◦

AIMS Mathematics Volume 6, Issue 4, 3947–3973.



3956

{w j : i + 1 ≤ j ≤ n} ◦ {w jx j : 1 ≤ j ≤ i − 1} ◦ wi = v

Subcase 8.2: i = n

PH(u, v) : u = y1z1 ◦ {zn− j : 0 ≤ j ≤ n − 2} ◦ {y j : 2 ≤ j ≤ n} ◦ {xn− j : 0 ≤ j ≤ n − 1}◦

{w j : 1 ≤ j ≤ n} = v

Case 9: u = x1 and v = zi, 1 ≤ i ≤ n
Subcase 9.1: 1 ≤ i ≤ n − 1

PH(u, v) : u = x1w1 ◦ {wn− j : 0 ≤ j ≤ n − 2} ◦ {x j : 2 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − i}◦

{z j : i + 1 ≤ j ≤ n} ◦ {z jy j : 1 ≤ j ≤ i − 1} ◦ zi = v

Subcase 9.2: i = n

PH(u, v) : u = x1w1 ◦ {wn− j : 0 ≤ j ≤ n − 2} ◦ {x j : 2 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 1}◦

{z j : 1 ≤ j ≤ n} = v

Case 10: u = x1 and v = yi, 1 ≤ i ≤ n
Subcase 10.1: 1 ≤ i ≤ n − 1

PH(u, v) : u = x1w1 ◦ {wn− j : 0 ≤ j ≤ n − 2} ◦ {x j : 2 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − i − 1}◦

{z j : i + 1 ≤ j ≤ n} ◦ {z jy j : 1 ≤ j ≤ i} = v

Subcase 10.2: i = n

PH(u, v) : u = x1 ◦ {w j : 1 ≤ j ≤ n} ◦ {xn− j : 0 ≤ j ≤ n − 2} ◦ {y j : 2 ≤ j ≤ n − 1}◦

{zn− j : 0 ≤ j ≤ n − 2} ◦ y1z1yn = v

Case 11: u = x1 and v = xi, 2 ≤ i ≤ n
Subcase 11.1: 2 ≤ i ≤ n − 1

PH(u, v) : u = x1y1z1 ◦ {zn− j : 0 ≤ j ≤ n − 2} ◦ {y j : 2 ≤ j ≤ n} ◦ {xn− j : 0 ≤ j ≤ n − i − 1}◦

{w j : i + 1 ≤ j ≤ n} ◦ w1 ◦ {w jx j : 2 ≤ j ≤ i} = v

Subcase 11.2: i = n

PH(u, v) : u = x1y1 ◦ {z j : 1 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 2} ◦ {x j : 2 ≤ j ≤ n − 1}◦

{wn− j : 0 ≤ j ≤ n − 1} ◦ xn = v

Case 12: u = x1 and v = wi, 1 ≤ i ≤ n
Subcase 12.1: i = 1

PH(u, v) : u = x1y1{z j : 1 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 2} ◦ {x j : 2 ≤ j ≤ n}◦
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{wn− j : 0 ≤ j ≤ n − 1} = v

Subcase 12.2: 2 ≤ i ≤ n − 1

PH(u, v) : u = x1y1z1 ◦ {zn− j : 0 ≤ j ≤ n − 2} ◦ {y j : 2 ≤ j ≤ n} ◦ {xn− j : 0 ≤ j ≤ n − i}◦

{w j : i + 1 ≤ j ≤ n} ◦ w1 ◦ {w jx j : 2 ≤ j ≤ i − 1} ◦ wi = v

Subcase 12.3: i = n

PH(u, v) : u = x1y1 ◦ {z j : 1 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 2} ◦ {x j : 2 ≤ j ≤ n}◦

{w j : 1 ≤ j ≤ n} = v

Case 13: u = w1 and v = zi, 1 ≤ i ≤ n
Subcase 13.1: 1 ≤ i ≤ n − 1

PH(u, v) : u = w1 ◦ {wn− j : 0 ≤ j ≤ n − 2} ◦ {x j : 1 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − i}◦

{z j : i + 1 ≤ j ≤ n} ◦ {z jy j : 1 ≤ j ≤ i − 1} ◦ zi = v

Subcase 13.2: i = n

PH(u, v) : u = w1 ◦ {wn− j : 0 ≤ j ≤ n − 2} ◦ {x j : 1 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 1}◦

{z j : 1 ≤ j ≤ n} = v

Case 14: u = w1 and v = yi, 1 ≤ i ≤ n
Subcase 14.1: 1 ≤ i ≤ n − 1

PH(u, v) : u = w1 ◦ {wn− j : 0 ≤ j ≤ n − 2} ◦ {x j : 1 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − i − 1}◦

{z j : i + 1 ≤ j ≤ n} ◦ {z jy j : 1 ≤ j ≤ i} = v

Subcase 14.2: i = n

PH(u, v) : u = {w j : 1 ≤ j ≤ n} ◦ {xn− j : 0 ≤ j ≤ n − 1} ◦ {y j : 1 ≤ j ≤ n − 1}◦

{zn− j : 1 ≤ j ≤ n − 1} ◦ znyn = v

Case 15: u = w1 and v = xi, 1 ≤ i ≤ n
Subcase 15.1: i = 1

PH(u, v) : u = {w j : 1 ≤ j ≤ n} ◦ {xn− j : 0 ≤ j ≤ n − 2} ◦ {y j : 2 ≤ j ≤ n}◦

{zn− j : 0 ≤ j ≤ n − 1} ◦ y1x1 = v

Subcase 15.2: 2 ≤ i ≤ n − 1

PH(u, v) : u = w1x1y1z1 ◦ {zn− j : 0 ≤ j ≤ n − 2} ◦ {y j : 2 ≤ j ≤ n} ◦ {xn− j : 0 ≤ j ≤ n − i − 1}◦

{w j : i + 1 ≤ j ≤ n} ◦ w1 ◦ {w jx j : 2 ≤ j ≤ i} = v
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Subcase 15.3: i = n

PH(u, v) : u = {w j : 1 ≤ j ≤ n} ◦ {xn− j : 1 ≤ j ≤ n − 1} ◦ {y j : 1 ≤ j ≤ n − 1}◦

{zn− j : 0 ≤ j ≤ n − 1} ◦ ynxn = v

Case 16: u = w1 and v = wi, 2 ≤ i ≤ n
Subcase 16.1: 2 ≤ i ≤ n − 1

PH(u, v) : u = w1 ◦ {wn− j : 0 ≤ j ≤ n − i − 1} ◦ {x j : i ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 2}◦

{z j : 2 ≤ j ≤ n} ◦ z1y1 ◦ {x j−1w j : 2 ≤ j ≤ i} = v

Subcase 16.2: i = n

PH(u, v) : u = w1x1y1z1 ◦ {zn− j : 0 ≤ j ≤ n − 2} ◦ {y j : 2 ≤ j ≤ n}◦

{xn− j : 0 ≤ j ≤ n − 2} ◦ {w j : 2 ≤ j ≤ n} = v

This show the existence of Hamiltonian paths between any two vertices of S n. This completes the
proof. �

Using Theorems 2.4 & 4.1, the following proposition calculates the detour index of Tn.

Corollary 4.2. Let G = Tn, where n ≥ 3. Then the detour index of G is

ω(G) =
4n(4n − 1)2

2
.

Proof. The number of vertices in G is 4n. Replacing 4n with n in Theorem 2.4 completes the proof. �

5. Hamilton-connectedness and the detour index of An

In this section, we show that the graph An is Hamilton-connected. Next, we use the Hamilton-
connectedness to find a formula for the detour index of the graph An. This family of convex polytopes
were introduced by Imran et al. [14].

The vertex set of An, with n ≥ 3, is defined as V(An) = {u, v}
⋃
{wi, xi, yi, zi : 1 ≤ i ≤ n}. The edge

set of An is defined as

E(An) = {uzi, vwi,wiwi+1, xixi+1, yiyi+1, zizi+1,wixi,wixi+1, xiyi, xiyi+1, yizi, yizi+1 : 1 ≤ i ≤ n},

where the subscripts are performed modulo n. Figure 4 presents the n-dimensional convex polytope An

with proper labeling of vertices which will be used to show its Hamilton-connectedness.
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Figure 4. The n-dimensional convex polytope An.

The following the main result of this section.

Theorem 5.1. The graph n-dimensional convex polytope An, with n ≥ 5, is Hamilton-connected.

Proof. We prove this result by definition. For this we have to show that their exists Hamiltonian paths
between any pair of vertices of An.

Let PH(x′, y′) denote a Hamiltonian path between vertices x′ and y′ in An. Let An = U ∪Z ∪Y ∪X∪
W∪V such that U = {u}, Z = {z1, z2, . . . , zn}, Y = {y1, y2...yn}, X = {x1, x2, . . . , xn}, W = {w1,w2, . . . ,wn}

and V={v}. See Figure 4.
Case 1: x′ = u and y′ = zi, 1 ≤ i ≤ n
Subcase 1.1: 1 ≤ i ≤ n − 1

PH(x′, y′) : x′ = u ◦ {z j : i + 1 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 2} ◦ {x j : 2 ≤ j ≤ n}◦

{wn− j : 0 ≤ j ≤ n − 2} ◦ vw1x1y1 ◦ {z j : 1 ≤ j ≤ i} = y′

Subcase 1.2: i = n

PH(x′, y′) : x′ = u ◦ {z j : 1 ≤ j ≤ n − 1} ◦ {yn− j : 1 ≤ j ≤ n − 1}◦

{x j : 1 ≤ j ≤ n − 1} ◦ {wn− j : 1 ≤ j ≤ n − 1} ◦ vwnxnynzn = y′

Case 2: x′ = u and y′ = yi, 1 ≤ i ≤ n
Subcase 2.1: 1 ≤ i ≤ n − 1

PH(x′, y′) : x′ = u ◦ {z j : 1 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − i − 1} ◦ {x j : i + 1 ≤ j ≤ n}◦

{wn− j : 0 ≤ j ≤ n − i − 1} ◦ v ◦ {w j : 1 ≤ j ≤ i} ◦ {xi− j : 0 ≤ j ≤ i − 1}◦
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{y j : 1 ≤ j ≤ i} = y′

Subcase 2.2: i = n

PH(x′, y′) : x′ = u ◦ {z j : 1 ≤ j ≤ n} ◦ {yn− j : 1 ≤ j ≤ n − 1}◦

{x j : 1 ≤ j ≤ n − 1} ◦ {wn− j : 1 ≤ j ≤ n − 1} ◦ vwnxnyn = y′

Case 3: x′ = u and y′ = xi, 1 ≤ i ≤ n
Subcase 3.1: 1 ≤ i ≤ n − 1

PH(x′, y′) : x′ = u ◦ {zn− j : 0 ≤ j ≤ n − 1} ◦ {y j : 1 ≤ j ≤ n} ◦ {xn− j : 0 ≤ j ≤ n − i − 1}◦

{w j : i + 1 ≤ j ≤ n} ◦ v ◦ {wi− j : 0 ≤ j ≤ i − 1} ◦ {x j : 1 ≤ j ≤ i} = y′

Subcase 3.2: i = n

PH(x′, y′) : x′ = u ◦ {z j : 1 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 1}◦

{x j : 1 ≤ j ≤ n − 1} ◦ {wn− j : 1 ≤ j ≤ n − 1} ◦ vwnxn = y′

Case 4: x′ = u and y′ = wi, 1 ≤ i ≤ n
Subcase 4.1: 1 ≤ i ≤ n − 1

PH(x′, y′) : x′ = u ◦ {z j : 1 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 1} ◦ {x j : 1 ≤ j ≤ n}◦

{wn− j : 0 ≤ j ≤ n − i − 1} ◦ v ◦ {w j : 1 ≤ j ≤ i} = y′

Subcase 4.2: i = n

PH(x′, y′) : x′ = u ◦ {zn− j : 0 ≤ j ≤ n − 1} ◦ {y j : 1 ≤ j ≤ n}◦

{xn− j : 0 ≤ j ≤ n − 1} ◦ {w j : 1 ≤ j ≤ n − 1} ◦ vwn = y′

Case 5: x′ = u and y′ = v

PH(x′, y′) : x′ = u ◦ {z j : 1 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 1} ◦ {x j : 1 ≤ j ≤ n}◦

{wn− j : 0 ≤ j ≤ n − 1} ◦ v = y′

Case 6: x′ = v and y′ = u
This case is similar to Case 5.

Case 7: x′ = v and y′ = zi, 1 ≤ i ≤ n
Subcase 7.1: 1 ≤ i ≤ n − 1

PH(x′, y′) : x′ = v ◦ {w j : 1 ≤ j ≤ n} ◦ {xn− j : 0 ≤ j ≤ n − 1} ◦ {y j : 1 ≤ j ≤ n}◦

{zn− j : 0 ≤ j ≤ n − i − 1} ◦ u ◦ {z j : 1 ≤ j ≤ i} = y′

Subcase 7.2: i = n

PH(x′, y′) : x′ = v ◦ {w j : 1 ≤ j ≤ n} ◦ {xn− j : 0 ≤ j ≤ n − 1}◦
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{y j : 1 ≤ j ≤ n} ◦ {z j : 1 ≤ j ≤ n − 1} ◦ uzn = y′

Case 8: x′ = v and y′ = yi, 1 ≤ i ≤ n
Subcase 8.1: 1 ≤ i ≤ n − 1

PH(x′, y′) : x′ = v ◦ {wn− j : 0 ≤ j ≤ n − 1} ◦ {x j : 1 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − i − 1}◦

{z j : i + 1 ≤ j ≤ n} ◦ u ◦ {z jy j : 1 ≤ j ≤ i} = y′

Subcase 8.2: i = n

PH(x′, y′) : x′ = v ◦ {w j : 1 ≤ j ≤ n} ◦ {xn− j : 0 ≤ j ≤ n − 1}◦

{y j : 1 ≤ j ≤ n − 1} ◦ {zn− j : 1 ≤ j ≤ n − 1} ◦ uznyn = y′

Case 9: x′ = v and y′ = xi, 1 ≤ i ≤ n
Subcase 9.1: 1 ≤ i ≤ n − 1

PH(x′, y′) : x′ = v ◦ {w j : 1 ≤ j ≤ n} ◦ {xn− j : 0 ≤ j ≤ n − i − 1} ◦ {y j : i + 1 ≤ j ≤ n}◦

{zn− j : 0 ≤ j ≤ n − 2} ◦ uz1 ◦ {y jx j : 1 ≤ j ≤ i} = y′

Subcase 9.2: i = n

PH(x′, y′) : x′ = v ◦ {w j : 1 ≤ j ≤ n} ◦ {x j : 1 ≤ j ≤ n − 1}◦

{yn− j : 1 ≤ j ≤ n − 1} ◦ {z j : 1 ≤ j ≤ n − 1} ◦ uznynxn = y′

Case 10: x′ = v and y′ = wi, 1 ≤ i ≤ n
Subcase 10.1: 1 ≤ i ≤ n − 1

PH(x′, y′) : x′ = v ◦ {wn− j : 0 ≤ j ≤ n − i − 1} ◦ {x j : i + 1 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 2}◦

{z j : 2 ≤ j ≤ n} ◦ uz1y1 ◦ {x jw j : 1 ≤ j ≤ i} = y′

Subcase 10.2: i = n

PH(x′, y′) : x′ = v ◦ {w j : 1 ≤ j ≤ n − 1} ◦ {xn− j : 1 ≤ j ≤ n − 1}◦

{y j : 1 ≤ j ≤ n − 1} ◦ {zn− j : 1 ≤ j ≤ n − 1} ◦ uznynxnwn = y′

Case 11: x′ = z1 and y′ = u
This case is similar to Case 1.

Case 12: x′ = z1 and y′ = zi, 2 ≤ i ≤ n
Subcase 12.1: 2 ≤ i ≤ n − 1

PH(x′, y′) : x′ = z1y1x1w1v ◦ {wn− j : 0 ≤ j ≤ n − 2} ◦ {x j : 2 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − i}◦

{z j : i + 1 ≤ j ≤ n} ◦ u ◦ {z jy j : 2 ≤ j ≤ i − 1} ◦ zi = y′

Subcase 12.2: i = n

PH(x′, y′) : x′ = z1y1x1w1v ◦ {wn− j : 0 ≤ j ≤ n − 2} ◦ {x j : 2 ≤ j ≤ n}◦

AIMS Mathematics Volume 6, Issue 4, 3947–3973.



3962

{yn− j : 0 ≤ j ≤ n − 2} ◦ {z j : 2 ≤ j ≤ n − 1} ◦ uzn = y′

Case 13: x′ = z1 and y′ = yi, 1 ≤ i ≤ n
Subcase 13.1: 1 ≤ i ≤ n − 1

PH(x′, y′) : x′ = z1u ◦ {z j : 2 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − i − 1} ◦ {x j : i + 1 ≤ j ≤ n}◦

{wn− j : 0 ≤ j ≤ n − i − 1} ◦ v ◦ {w j : 1 ≤ j ≤ i} ◦ {xi− j : 0 ≤ j ≤ i − 1}◦

{y j : 1 ≤ j ≤ i} = y′

Subcase 13.2: i = n

PH(x′, y′) : x′ = z1u ◦ {zn− j : 0 ≤ j ≤ n − 2} ◦ {y j : 1 ≤ j ≤ n − 1} ◦ {xn− j : 1 ≤ j ≤ n − 1}◦

{w j : 1 ≤ j ≤ n − 1} ◦ vwnxnyn = y′

Case 14: x′ = z1 and y′ = xi, 1 ≤ i ≤ n
Subcase 14.1: 1 ≤ i ≤ n − 1

PH(x′, y′) : x′ = z1u ◦ {z j : 2 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 1} ◦ {xn− j : 0 ≤ j ≤ n − i − 1}◦

{w j : i + 1 ≤ j ≤ n} ◦ v ◦ {wi− j : 0 ≤ j ≤ i − 1} ◦ {x j : 1 ≤ j ≤ i} = y′

Subcase 14.2: i = n

PH(x′, y′) : x′ = z1u ◦ {z j : 2 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 1} ◦ {x j : 1 ≤ j ≤ n − 1}◦

{wn− j : 1 ≤ j ≤ n − 1} ◦ vwnxn = y′

Case 15: x′ = z1 and y′ = wi, 1 ≤ i ≤ n
Subcase 15.1: 1 ≤ i ≤ n − 1

PH(x′, y′) : x′ = z1u ◦ {z j : 2 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 1} ◦ {x j : 1 ≤ j ≤ n}◦

{wn− j : 0 ≤ j ≤ n − i − 1} ◦ v ◦ {w j : 1 ≤ j ≤ i} = y′

Subcase 15.2: i = n

PH(x′, y′) : x′ = z1u ◦ {z j : 2 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 1} ◦ {x j : 1 ≤ j ≤ n}◦

{wn− j : 1 ≤ j ≤ n − 1} ◦ vwn = y′

Case 16: x′ = z1 and y′ = v
This case is similar to Case 7.

Case 17: x′ = y1 and y′ = u
This case is similar to Case 2.

Case 18: x′ = y1 and y′ = zi, 1 ≤ i ≤ n
Subcase 18.1: 1 ≤ i ≤ n − 1

PH(x′, y′) : x′ = y1x1 ◦ {w j : 1 ≤ j ≤ n − 1} ◦ vwn ◦ {xn− j : 0 ≤ j ≤ n − 2} ◦ {y j : 2 ≤ j ≤ n}◦
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{zn− j : 0 ≤ j ≤ n − i − 1} ◦ u ◦ {z j : 1 ≤ j ≤ i} = y′

Subcase 18.2: i = n

PH(x′, y′) : x′ = y1x1 ◦ {w j : 1 ≤ j ≤ n − 1} ◦ vwn ◦ {xn− j : 0 ≤ j ≤ n − 2}◦

{y j : 2 ≤ j ≤ n} ◦ {z j : 1 ≤ j ≤ n − 1} ◦ uzn = y′

Case 19: x′ = y1 and y′ = yi, 2 ≤ i ≤ n
Subcase 19.1: 2 ≤ i ≤ n − 1

PH(x′, y′) : x′ = y1x1 ◦ {w j : 1 ≤ j ≤ n − 1} ◦ vwn ◦ {xn− j : 0 ≤ j ≤ n − i} ◦ {y j : i + 1 ≤ j ≤ n}◦

z1u ◦ {zn− j : 0 ≤ j ≤ n − 2} ◦ {y jx j : 2 ≤ j ≤ i − 1} ◦ yi = y′

Subcase 19.2: i = n

PH(x′, y′) : x′ = y1x1 ◦ {w j : 1 ≤ j ≤ n − 1} ◦ vwn ◦ {xn− j : 0 ≤ j ≤ n − 1}◦

{y j : 2 ≤ j ≤ n − 1} ◦ {zn− j : 1 ≤ j ≤ n − 1} ◦ uznyn = y′

Case 20: x′ = y1 and y′ = xi, 1 ≤ i ≤ n
Subcase 20.1: 1 ≤ i ≤ n − 1

PH(x′, y′) : x′ = y1z1u ◦ {zn− j : 0 ≤ j ≤ n − 2} ◦ {y j : 2 ≤ j ≤ n} ◦ {xn− j : 0 ≤ j ≤ n − i − 1}◦

{w j : i + 1 ≤ j ≤ n} ◦ v ◦ {wi− j : 0 ≤ j ≤ i − 1} ◦ {xi : 1 ≤ j ≤ i} = y′

Subcase 20.2: i = n

PH(x′, y′) : x′ = y1z1u ◦ {zn− j : 0 ≤ j ≤ n − 2} ◦ {y j : 2 ≤ j ≤ n}◦

{xn− j : 1 ≤ j ≤ n − 1} ◦ {w j : 1 ≤ j ≤ n − 1} ◦ vwnxn = y′

Case 21: x′ = y1 and y′ = wi, 1 ≤ i ≤ n
Subcase 21.1: 1 ≤ i ≤ n − 1

PH(x′, y′) : x′ = y1z1u ◦ {zn− j : 0 ≤ j ≤ n − 2} ◦ {y j : 2 ≤ j ≤ n} ◦ {xn− j : 0 ≤ j ≤ n − 1}◦

{wn− j : 0 ≤ j ≤ n − i − 1} ◦ v ◦ {w j : 1 ≤ j ≤ i} = y′

Subcase 21.2: i = n

PH(x′, y′) : x′ = y1z1u ◦ {zn− j : 0 ≤ j ≤ n − 2} ◦ {y j : 2 ≤ j ≤ n}◦

{xn− j : 0 ≤ j ≤ n − 1} ◦ {w j : 1 ≤ j ≤ n − 1} ◦ vwn = y′

Case 22: x′ = y1 and y′ = v
This case is similar to Case 8.

Case 23: x′ = x1 and y′ = u
This case is similar to Case 3.

Case 24: x′ = x1 and y′ = zi, 1 ≤ i ≤ n
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Subcase 24.1: 1 ≤ i ≤ n − 1

PH(x′, y′) : x′ = x1 ◦ {wn− j : 0 ≤ j ≤ n − 2} ◦ vw1 ◦ {x j : 2 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − i}◦

{z j : i + 1 ≤ j ≤ n} ◦ u ◦ {z jy j : 1 ≤ j ≤ i − 1} ◦ zi = y′

Subcase 24.2: i = n

PH(x′, y′) : x′ = x1 ◦ {wn− j : 0 ≤ j ≤ n − 2} ◦ vw1 ◦ {x j : 2 ≤ j ≤ n}◦

{yn− j : 0 ≤ j ≤ n − 1} ◦ {z j : 1 ≤ j ≤ n − 1} ◦ uzn = y′

Case 25: x′ = x1 and y′ = yi, 1 ≤ i ≤ n
Subcase 25.1: 1 ≤ i ≤ n − 1

PH(x′, y′) : x′ = x1 ◦ {wn− j : 0 ≤ j ≤ n − 2} ◦ vw1 ◦ {x j : 2 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − i − 1}◦

{z j : i + 1 ≤ j ≤ n} ◦ u ◦ {z jy j : 1 ≤ j ≤ i} = y′

Subcase 25.2: i = n

PH(x′, y′) : x′ = x1 ◦ {wn− j : 0 ≤ j ≤ n − 2} ◦ vw1 ◦ {x j : 2 ≤ j ≤ n}◦

{y j : 1 ≤ j ≤ n − 1} ◦ {zn− j : 1 ≤ j ≤ n − 1} ◦ uznyn = y′

Case 26: x′ = x1 and y′ = xi, 2 ≤ i ≤ n
Subcase 26.1: 2 ≤ i ≤ n − 1

PH(x′, y′) : x′ = x1y1z1u ◦ {zn− j : 0 ≤ j ≤ n − 2} ◦ {y j : 2 ≤ j ≤ n} ◦ {xn− j : 0 ≤ j ≤ n − i − 1}◦

{w j : i + 1 ≤ j ≤ n} ◦ v ◦ {wi− j : 0 ≤ j ≤ i − 1} ◦ {xi : 2 ≤ j ≤ i} = y′

Subcase 26.2: i = n

PH(x′, y′) : x′ = x1y1z1u ◦ {z j : 2 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 2}◦

{x j : 2 ≤ j ≤ n − 1} ◦ {wn− j : 1 ≤ j ≤ n − 1} ◦ vwnxn = y′

Case 27: x′ = x1 and y′ = wi, 1 ≤ i ≤ n
Subcase 27.1: 1 ≤ i ≤ n − 1

PH(x′, y′) : x′ = x1y1z1u ◦ {z j : 2 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 2} ◦ {x j : 2 ≤ j ≤ n}◦

{wn− j : 0 ≤ j ≤ n − i − 1} ◦ v ◦ {w j : 1 ≤ j ≤ i} = y′

Subcase 27.2: i = n

PH(x′, y′) : x′ = x1y1z1u ◦ {z j : 2 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 2}◦

{x j : 2 ≤ j ≤ n} ◦ {wn− j : 1 ≤ j ≤ n − 1} ◦ vwn = y′

Case 28: x′ = x1 and y′ = v
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This case is similar to Case 9.
Case 29: x′ = w1 and y′ = u

This case is similar to Case 4.
Case 30: x′ = w1 and y′ = zi, 1 ≤ i ≤ n
Subcase 30.1: 1 ≤ i ≤ n − 1

PH(x′, y′) : x′ = {w j : 1 ≤ j ≤ n − 1} ◦ vwn ◦ {xn− j : 0 ≤ j ≤ n − 1} ◦ {y j : 1 ≤ j ≤ n}◦

{zn− j : 0 ≤ j ≤ n − i − 1} ◦ u ◦ {z j : 1 ≤ j ≤ i} = y′

Subcase 30.2: i = n

PH(x′, y′) : x′ = {w j : 1 ≤ j ≤ n − 1} ◦ vwn ◦ {xn− j : 0 ≤ j ≤ n − 1}◦

{y j : 1 ≤ j ≤ n} ◦ {z j : 1 ≤ j ≤ n − 1} ◦ uzn = y′

Case 31: x′ = w1 and y′ = yi, 1 ≤ i ≤ n
Subcase 31.1: 1 ≤ i ≤ n − 1

PH(x′, y′) : x′ = {w j : 1 ≤ j ≤ n − 1} ◦ vwn ◦ {x j : 1 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − i − 1}◦

{z j : i + 1 ≤ j ≤ n} ◦ u ◦ {z jy j : 1 ≤ j ≤ i} = y′

Subcase 31.2: i = n

PH(x′, y′) : x′ = {w j : 1 ≤ j ≤ n − 1} ◦ vwn ◦ {xn− j : 0 ≤ j ≤ n − 1}◦

{y j : 1 ≤ j ≤ n − 1} ◦ {zn− j : 1 ≤ j ≤ n − 1} ◦ uznyn = y′

Case 32: x′ = w1 and y′ = xi, 1 ≤ i ≤ n
Subcase 32.1: 1 ≤ i ≤ n − 1

PH(x′, y′) : x′ = {w j : 1 ≤ j ≤ n − 1} ◦ vwn ◦ {xn− j : 0 ≤ j ≤ n − i − 1} ◦ {y j : i + 1 ≤ j ≤ n}◦

{zn− j : 0 ≤ j ≤ n − 2} ◦ uz1 ◦ {y jx j : 1 ≤ j ≤ i} = y′

Subcase 32.2: i = n

PH(x′, y′) : x′ = {w j : 1 ≤ j ≤ n − 1} ◦ vwn ◦ {x j : 1 ≤ j ≤ n − 1}◦

{yn− j : 1 ≤ j ≤ n − 1} ◦ {z j : 1 ≤ j ≤ n − 1} ◦ uznynxn = y′

Case 33: x′ = w1 and y′ = wi, 2 ≤ i ≤ n
Subcase 33.1: 2 ≤ i ≤ n − 1

PH(x′, y′) : x′ = w1x1y1z1u ◦ {z j : 2 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 2} ◦ {x j : 2 ≤ j ≤ n}◦

{wn− j : 0 ≤ j ≤ n − i − 1} ◦ v ◦ {w j : 2 ≤ j ≤ i} = y′

Subcase 33.2: i = n

PH(x′, y′) : x′ = w1x1y1z1u ◦ {z j : 2 ≤ j ≤ n} ◦ {yn− j : 0 ≤ j ≤ n − 2}◦

{x j : 2 ≤ j ≤ n} ◦ {wn− j : 1 ≤ j ≤ n − 2} ◦ vwn = y′

Existence of Hamiltonian path between any two vertices of the An completes the proof. �
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Using Theorems 2.4 & 5.1, the following proposition computes the detour index of of An.

Corollary 5.2. Let G = An, where n ≥ 4. Then the detour index of G is

ω(G) =
(4n + 2)(4n + 1)2

2
.

Proof. The number of vertices in the graph G is 4n + 2. Replacing 4n + 2 with n in Theorem 2.4 shows
the proposition. �

6. Hamilton-connectedness, Hamilton-laceability and the detour index of Platonic solids

In 3D geometry, Platonic solids are characterized as convex, regular polyhedron. In a polyhedron,
two faces are congruent if they are identical in size and shape, whereas, two faces are said to be
regular if its all sides and all angles are equal. A Platonic solid is constructed by regular and
congruent polygonal faces such that the number of faces meeting at each vertex is same. There are
only five polyhedrons which meet this criterion. They are named as the tetrahedron, the
hexahedron/cube, the octahedron, the dodecahedron and the icosahedron. Platonic solids are named
after the Athenian philosopher Plato, who gave the first insight into these three-dimensional solids.

A graph G of a polyhedron D is constructed by considering points (resp. lines) in D as vertices
(resp. edges) in G such that the point-line incidency in D is retained as vertex-edge incidency in G.
Graphs of the five Platonic solids are depicted in Figures 5 and 6.

Based on the prime importance of Platonic solids in geometry, in this section we explore the
hamiltoniancity related properties of the Platonic solids.

The following theorem shows that the tetrahedron graph is Hamilton-connected.

Theorem 6.1. The tetrahedron graph is Hamilton-connected.

Proof. To show Hamilton-connectedness for the tetrahedron graph, we ensure that there exists a
Hamiltonian path between every pair of vertices. Following the labeling of vertices of the tetrahedron
graph in Figure 5, Table 1 exhibits Hamiltonian paths between any two vertices of the tetrahedron.
This show the result.

Table 1. Hamiltonian paths in the tetrahedron graph.

Initial vertex Terminal vertex Hamiltonian path
v1 v2 v1v4v3v2

v1 v3 v1v4v2v3

v1 v4 v1v2v3v4

v2 v4 v2v3v1v4

v2 v3 v2v1v4v3

v3 v4 v3v2v1v4

�

Using Theorems 2.4 & 6.1, the following proposition evaluates the detour index of the tetrahedron
graph.
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                 Tetrahedron                                                    Hexahedron 

 

Dodecahedron 

Figure 5. The tetrahedron, the hexhedron/cube and the dodecahedron.
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Octahedron 

 

Icosahedron 

Figure 6. The octahedron and the icosahedron.
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Proposition 6.2. Let G be the tetrahedron graph, then ω(G) = 18.

Note that the hexahedron/cube is bipartite, therefore, it can not be Hamilton-connected. However,
the following theorem shows that the cube graph is, in fact, Hamilton-laceable.

Theorem 6.3. The hexahedron/cube graph is Hamilton-laceable.

Proof. Since the cube is bipartite. Let σ = {U,V} be the bipartition of the cube. Then following the
vertex labeling of the cube from Figure 5, we find that U = {ui : 1 ≤ i ≤ 4} and V = {vi : 1 ≤ i ≤ 4}. We
need show Hamiltonian paths between vertices of U and V . Table 2 presents all the Hamiltonian paths
between vertices of two different partite sets i.e., U and V , for the cube. This completes the proof.

Table 2. Hamiltonian path between vertices of two different partite sets in the cube.

Initial vertex Terminal vertex Hamiltonian path
v1 u1 v1u2v2u3v3u4v4u1

v1 u2 v1u1v2u3v4u4v3u2

v1 u3 v1u1v4u4v3u2v2u3

v1 u4 v1u1v2u2v3u3v4u4

v2 u1 v2u3v4u4v3u2v1u1

v2 u2 v2u1v4u3v3u4v1u2

v2 u3 v2u1v1u2v3u4v4u3

v2 u4 v2u1v1u2v3u3v4u4

v3 u1 v3u4v4u3v2u2v1u1

v3 u2 v3u4v4u3v2u1v1u2

v3 u3 v3u4v1u2v2u1v4u3

v3 u4 v3u3v4u1v2u2v1u4

v4 u1 v4u3v3u4v1u2v2u1

v4 u2 v4u3v2u1v1u4v3u2

v4 u3 v4u4v3u2v1u1v2u3

v4 u4 v4u3v2u1v1u2v3u4

�

Next we study Hamiltoniancity in the dodecahedron. Interestingly, the dodecahedron is neither
bipartite nor Hamilton-connected.

Theorem 6.4. The dodecahedron graph is neither Hamilton-connected nor Hamilton-laceable.

Proof. There are pentagonal faces in the dodecahedron which make it a non-bipartite graph. Thus, by
definition, it is not Hamilton-laceable.

Following the labeling of vertices in Figure 5, we see that there exists no Hamiltonian path between
v2 and v19. Thus it is not Hamilton-connected. �

The following theorem shows that the octahedron graph is Hamilton-connected.

Theorem 6.5. The octahedron graph is Hamilton-connected.
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Proof. To show that the octahedron graph is Hamilton-connected, we construct Hamiltonian paths
between each pair of vertices of the octahedron. Let x and y denote arbitrary vertices of the
octahedron. Given the vertex labeling of the octahedron in Figure 6, the following two cases comprise
all Hamiltonian paths between x and y.
Case 1: x = v1, y = vi, where i = 2, 3

x = v1v5−iu5−i
u
−−−→ uivi = y

Case 2: x = v1, y = ui, where i = 1, 2, 3
Subcase 2.1: i = 1, 3

x = v1v2v3u4−i
u
−−−→ ui = y

Subcase 2.2: i = 2
x = v1v2v3u2−i

u
−−−→ ui = y

This completes the proof. �

Using Theorems 2.4 & 6.5, the following proposition computes the detour index of the octahedron
graph.

Proposition 6.6. Let G be the octahedron graph, then ω(G) = 75.

Finally, the following theorem shows that the icosahedron graph is also Hamilton-connected.

Theorem 6.7. The icosahedron graph is Hamilton-connected.

Proof. To show that the icosahedron graph is Hamilton-connected, we construct Hamiltonian paths
between each pair of vertices of the icosahedron. Let x and y denote arbitrary vertices of the
icosahedron. Given the vertex labeling of the icosahedron in Figure 6, the following two cases
comprise all Hamiltonian paths between x and y.
Case 1: x = v1, y = vi, where i = 2, 3

x = v1u6u5w1u1 ◦ {u jw j : 2 ≤ j ≤ 3} ◦ u4v5−ivi = y

Case 2: x = v1, y = ui, where i = 1, 2, 3, ..., 6
Subcase 2.1: i = 1

x = v1v2v3 ◦ {u6− j : 0 ≤ j ≤ 4} ◦ w2w3w1u1 = y

Subcase 2.2: i = 2, 3, 4

x = v1ui−3ui−2ui−1w2w3w1u6u5v3v2 ◦ {u5− j : 1 ≤ j ≤ 4 − i} ◦ ui = y

Subcase 2.3: i = 5, 6

x = v1v2v3 ◦ {u4− j : 0 ≤ j ≤ 3} ◦ w2w3w1u11−iui = y

Case 3: x = v1, y = wi, where i = 1, 2, 3
Subcase 3.1: i = 1

x = v1v2v3 ◦ {u6− j : 0 ≤ j ≤ 5} ◦ w2w3w1 = y

Subcase 3.2: i = 2, 3
x = v1u1u2v2v3 ◦ {u6− j : 0 ≤ j ≤ 3} ◦ w5−iwi = y

This completes the proof. �
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Using Theorems 2.4 & 6.7, the following proposition calculates the detour index of the icosahedron
graph.

Proposition 6.8. Let G be the icosahedron graph, then ω(G) = 726.

7. Conclusions and future work

Computing the detour index of a graph is NP-complete and checking if a graph is
Hamilton-connected is also NP-complete. Thus, it is natural to study these problems for special
families of graphs. This paper consider certain infinite families of planar geometric graphs. We
construct three infinite families of Hamilton-connected convex polytope networks. More importantly,
we compute exact analytical expressions for the detour index of the families of Hamilton-connected
convex polytope networks.

In view of the work of the work by Alspach & Liu [1], we propose the following conjectures:

Conjecture 7.1. (i) The generalized Petersen graph GP(n, 4) n ≥ 9 is non-bipartite
Hamilton-connected.

(ii) The generalized Petersen graph GP(n, 5) n ≥ 11 is non-bipartite Hamilton-connected if n | 2 and
bipartite Hamilton-laceable if n - 2.
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