Research article

Multiple solutions of Kirchhoff type equations involving Neumann conditions and critical growth

Jun Lei and Hongmin Suo∗

School of Data Sciences and Information Engineering, Guizhou Minzu University, Guiyang 550025, China

* Correspondence: Email: gzmysxx88@sina.com.

Abstract: In this paper, we consider a Neumann problem of Kirchhoff type equation

\[
\begin{aligned}
- \left(a + b \int_{\Omega} |\nabla u|^2 \, dx \right) \Delta u + u &= Q(x)|u|^4u + \lambda P(x)|u|^q - 2 u, \quad \text{in } \Omega, \\
\frac{\partial u}{\partial v} &= 0, \quad \text{on } \partial \Omega,
\end{aligned}
\]

where \(\Omega \subset \mathbb{R}^3 \) is a bounded domain with a smooth boundary, \(a, b > 0, 1 < q < 2, \lambda > 0 \) is a real parameter, \(Q(x) \) and \(P(x) \) satisfy some suitable assumptions. By using the variational method and the concentration compactness principle, we obtain the existence and multiplicity of nontrivial solutions.

Keywords: Kirchhoff type equation; Neumann problem; critical growth; variation methods; nontrivial solution

Mathematics Subject Classification: 35B33, 35B35, 35J33

1. Introduction and main results

We study the following Neumann problem of Kirchhoff type equation with critical growth

\[
\begin{aligned}
- \left(a + b \int_{\Omega} |\nabla u|^2 \, dx \right) \Delta u + u &= Q(x)|u|^4u + \lambda P(x)|u|^q - 2 u, \quad \text{in } \Omega, \\
\frac{\partial u}{\partial v} &= 0, \quad \text{on } \partial \Omega,
\end{aligned}
\]

where \(\Omega \subset \mathbb{R}^3 \) is a bounded domain with a smooth boundary, \(a, b > 0, 1 < q < 2, \lambda > 0 \) is a real parameter. We assume that \(Q(x) \) and \(P(x) \) satisfy the following conditions:

\((Q_1)\) \(Q(x) \in C(\bar{\Omega}) \) is a sign-changing;
there exists $x_M \in \Omega$ such that $Q_M = Q(x_M) > 0$ and
\[
|Q(x) - Q_M| = o(|x - x_M|) \text{ as } x \to x_M;
\]
(Q3) there exists $0 \in \partial \Omega$ such that $Q_m = Q(0) > 0$ and
\[
|Q(x) - Q_m| = o(|x|) \text{ as } x \to 0;
\]
(P1) $P(x)$ is positive continuous on $\bar{\Omega}$ and $P(x_0) = \max_{x \in \bar{\Omega}} P(x)$;
(P2) there exist $\sigma > 0, R > 0$ and $3 - q < \beta < \frac{6 - q}{2}$ such that $P(x) \geq \sigma |x - y|^{-\beta}$ for $|x - y| \leq R$, where y is $x_M \in \Omega$ or $0 \in \partial \Omega$.

In recent years, the following Dirichlet problem of Kirchhoff type equation has been studied extensively by many researchers
\[
\begin{cases}
-a \int_{\Omega} |\nabla u|^2 \, dx + \Delta u = f(x, u), & \text{in } \Omega, \\
u = 0, & \text{on } \partial \Omega,
\end{cases}
\tag{1.2}
\]
which is related to the stationary analogue of the equation
\[
u_n = \left(a + b \int_{\Omega} |\nabla u|^2 \, dx \right) \Delta u = f(x, u)
\tag{1.3}
\]
proposed by Kirchhoff in [13] as an extension of the classical D’Alembert’s wave equation for free vibrations of elastic strings. Kirchhoff’s model takes into account the changes in length of the string produced by transverse vibrations. In (1.2) and (1.3), u denotes the displacement, b is the initial tension and $f(x, u)$ stands for the external force, while a is related to the intrinsic properties of the string (such as Youngs modulus). We have to point out that such nonlocal problems appear in other fields like biological systems, such as population density, where the displacement u describes a process which depends on the average of itself (see Alves et al. [2]). After the pioneer work of Lions [18], where a functional analysis approach was proposed. The Kirchhoff type Eq (1.2) with critical growth began to call attention of researchers, we can see [1, 9, 14, 17, 23, 24, 28, 30] and so on.

Recently, the following Kirchhoff type equation has been well studied by various authors
\[
\begin{cases}
-a \int_{\mathbb{R}^3} |\nabla u|^2 \, dx + \Delta u + V(x)u = f(x, u), & \text{in } \mathbb{R}^3, \\
u > 0, u \in H^1(\mathbb{R}^3),
\end{cases}
\tag{1.4}
\]
proposed by Kirchhoff in [13] as an extension of the classical D’Alembert’s wave equation for free vibrations of elastic strings. Kirchhoff’s model takes into account the changes in length of the string produced by transverse vibrations. In (1.2) and (1.3), u denotes the displacement, b is the initial tension and $f(x, u)$ stands for the external force, while a is related to the intrinsic properties of the string (such as Youngs modulus). We have to point out that such nonlocal problems appear in other fields like biological systems, such as population density, where the displacement u describes a process which depends on the average of itself (see Alves et al. [2]). After the pioneer work of Lions [18], where a functional analysis approach was proposed. The Kirchhoff type Eq (1.2) with critical growth began to call attention of researchers, we can see [1, 9, 14, 17, 23, 24, 28, 30] and so on.

Recently, the following Kirchhoff type equation has been well studied by various authors
\[
\begin{cases}
-a \int_{\mathbb{R}^3} |\nabla u|^2 \, dx + \Delta u + V(x)u = f(x, u), & \text{in } \mathbb{R}^3, \\
u > 0, u \in H^1(\mathbb{R}^3),
\end{cases}
\tag{1.4}
\]
proposed by Kirchhoff in [13] as an extension of the classical D’Alembert’s wave equation for free vibrations of elastic strings. Kirchhoff’s model takes into account the changes in length of the string produced by transverse vibrations. In (1.2) and (1.3), u denotes the displacement, b is the initial tension and $f(x, u)$ stands for the external force, while a is related to the intrinsic properties of the string (such as Youngs modulus). We have to point out that such nonlocal problems appear in other fields like biological systems, such as population density, where u describes a process which depends on the average of itself (see Alves et al. [2]). After the pioneer work of Lions [18], where a functional analysis approach was proposed. The Kirchhoff type Eq (1.2) with critical growth began to call attention of researchers, we can see [1, 9, 14, 17, 23, 24, 28, 30] and so on.

Recently, the following Kirchhoff type equation has been well studied by various authors
\[
\begin{cases}
-a \int_{\mathbb{R}^3} |\nabla u|^2 \, dx + \Delta u + V(x)u = f(x, u), & \text{in } \mathbb{R}^3, \\
u > 0, u \in H^1(\mathbb{R}^3),
\end{cases}
\tag{1.4}
\]
proposed by Kirchhoff in [13] as an extension of the classical D’Alembert’s wave equation for free vibrations of elastic strings. Kirchhoff’s model takes into account the changes in length of the string produced by transverse vibrations. In (1.2) and (1.3), u denotes the displacement, b is the initial tension and $f(x, u)$ stands for the external force, while a is related to the intrinsic properties of the string (such as Youngs modulus). We have to point out that such nonlocal problems appear in other fields like biological systems, such as population density, where u describes a process which depends on the average of itself (see Alves et al. [2]). After the pioneer work of Lions [18], where a functional analysis approach was proposed. The Kirchhoff type Eq (1.2) with critical growth began to call attention of researchers, we can see [1, 9, 14, 17, 23, 24, 28, 30] and so on.

Recently, the following Kirchhoff type equation has been well studied by various authors
\[
\begin{cases}
-a \int_{\mathbb{R}^3} |\nabla u|^2 \, dx + \Delta u + V(x)u = f(x, u), & \text{in } \mathbb{R}^3, \\
u > 0, u \in H^1(\mathbb{R}^3),
\end{cases}
\tag{1.4}
\]
proposed by Kirchhoff in [13] as an extension of the classical D’Alembert’s wave equation for free vibrations of elastic strings. Kirchhoff’s model takes into account the changes in length of the string produced by transverse vibrations. In (1.2) and (1.3), u denotes the displacement, b is the initial tension and $f(x, u)$ stands for the external force, while a is related to the intrinsic properties of the string (such as Youngs modulus). We have to point out that such nonlocal problems appear in other fields like biological systems, such as population density, where u describes a process which depends on the average of itself (see Alves et al. [2]). After the pioneer work of Lions [18], where a functional analysis approach was proposed. The Kirchhoff type Eq (1.2) with critical growth began to call attention of researchers, we can see [1, 9, 14, 17, 23, 24, 28, 30] and so on.

Recently, the following Kirchhoff type equation has been well studied by various authors
\[
\begin{cases}
-a \int_{\mathbb{R}^3} |\nabla u|^2 \, dx + \Delta u + V(x)u = f(x, u), & \text{in } \mathbb{R}^3, \\
u > 0, u \in H^1(\mathbb{R}^3),
\end{cases}
\tag{1.4}
\]
where $\Omega \subset \mathbb{R}^N$ is a smooth bounded domain, $2^* = \frac{2N}{N-2}(N \geq 3)$ is the critical Sobolev exponent, $\lambda > 0$ is a parameter. Assume that $Q(x) \in C(\overline{\Omega})$ is a sign-changing function and $\int_{\Omega} Q(x)dx < 0$, under the condition of $f(x,u)$. Using the space decomposition $H^1(\Omega) = \text{span}1 \oplus V$, where $V = \{v \in H^1(\Omega) : \int_{\Omega} vdx = 0\}$, the author obtained the existence of two distinct solutions by the variational method.

In [34], Zhang obtained the existence and multiplicity of nontrivial solutions of the following Kirchhoff type equation with critical exponent

$$
\begin{cases}
-\left(a + b \int_{\Omega} |\nabla u|^2dx\right) \Delta u = u^5 + \lambda \frac{u^{q-1}}{|x|^\beta}, & \text{in } \Omega, \\
u = 0, & \text{on } \partial \Omega,
\end{cases}
$$

where $\Omega \subset \mathbb{R}^3$ is a smooth bounded domain, $a, b > 0$, $1 < q < 2$, $\lambda > 0$ is a parameter. They obtained the existence of a positive ground state solution for $0 \leq \beta < 2$ and two positive solutions for $3 - \beta < 2$ by the Nehari manifold method.

In [34], Zhang obtained the existence and multiplicity of nontrivial solutions of the following equation

$$
\begin{cases}
-\left(a + b \int_{\Omega} |\nabla u|^2dx\right) \Delta u + u = \lambda |u|^{q-2}u + f(x,u) + Q(x)u^5, & \text{in } \Omega, \\
\partial u \over \partial v = 0, & \text{on } \partial \Omega,
\end{cases}
$$

where Ω is an open bounded domain in \mathbb{R}^3, $a, b > 0$, $1 < q < 2$, $\lambda \geq 0$ is a parameter, $f(x,u)$ and $Q(x)$ are positive continuous functions satisfying some additional assumptions. Moreover, $f(x,u) \sim |u|^{p-2}u$ with $4 < p < 6$.

Comparing with the above mentioned papers, our results are different and extend the above results to some extent. Specially, motivated by [34], we suppose $Q(x)$ changes sign on Ω and $f(x,u) \equiv 0$ for (1.5). Since (1.1) is critical growth, which leads to the cause of the lack of compactness of the embedding $H^1(\Omega) \hookrightarrow L^6(\Omega)$, we overcome this difficulty by using P.Lions concentration compactness principle [19]. Moreover, note that $Q(x)$ changes sign on Ω, how to estimate the level of the mountain pass is another difficulty.

We define the energy functional corresponding to problem (1.1) by

$$
I_\lambda(u) = \frac{1}{2}||u||^2 + \frac{b}{4} \left(\int_{\Omega} |\nabla u|^2dx \right)^2 - \frac{1}{6} \int_{\Omega} Q(x)||u||^6dx - \frac{\lambda}{q} \int_{\Omega} P(x)||u||^qdx.
$$

A weak solution of problem (1.1) is a function $u \in H^1(\Omega)$ and for all $\varphi \in H^1(\Omega)$ such that

$$
\int_{\Omega} (a \nabla u \nabla \varphi + u \varphi)dx + b \int_{\Omega} |\nabla u|^2dx \int_{\Omega} \nabla u \nabla \varphi dx = \int_{\Omega} Q(x)||u||^4u \varphi dx + \lambda \int_{\Omega} P(x)||u||^{q-2}u \varphi dx.
$$

Our main results are the following:

Theorem 1.1. Assume that $1 < q < 2$ and $Q(x)$ changes sign on Ω. Then there exists $\Lambda_0 > 0$ such that for every $\lambda \in (0, \Lambda_0)$, problem (1.1) has at least one nontrivial solution.

Theorem 1.2. Assume that $1 < q < 2$, $3 - \beta < \frac{q-2}{2}$ and $Q(x)$ changes sign on Ω, there exists $\Lambda_* > 0$ such that for all $\lambda \in (0, \Lambda_*)$. Then problem (1.1) has at least two nontrivial solutions.

Throughout this paper, we make use of the following notations:
Lemma 2.1. Hence, combining (2.1) and (2.2), we have the following estimate
and there exists a constant C

Proof. λ conditions for each I

(ii) There exists $e \in H^1(\Omega) : \|e\| = \rho$, $B_\rho = \{u \in H^1(\Omega) : \|u\| \leq \rho\}$.

Let S be the best constant for Sobolev embedding $H^1(\Omega) \hookrightarrow L^6(\Omega)$, namely

$$S = \inf_{u \in H^1(\Omega) \setminus \{0\}} \frac{\int_{\Omega} (|\nabla u|^2 + u^2) \, dx}{(\int_{\Omega} u^6 \, dx)^{1/3}}.$$

Let S_0 be the best constant for Sobolev embedding $D^{1,2}(\mathbb{R}^3) \hookrightarrow L^6(\mathbb{R}^3)$, namely

$$S_0 = \inf_{u \in D^{1,2}(\mathbb{R}^3) \setminus \{0\}} \frac{\int_{\mathbb{R}^3} |\nabla u|^2 \, dx}{(\int_{\mathbb{R}^3} u^6 \, dx)^{1/3}}.$$

2. Proofs of theorems

In this section, we firstly show that the functional $I_\lambda(u)$ has a mountain pass geometry.

Lemma 2.1. There exist constants $r, \rho, \Lambda_0 > 0$ such that the functional I_λ satisfies the following conditions for each $\lambda \in (0, \Lambda_0)$:

(i) $I_{\lambda|_{u \in S_\rho}} \geq r > 0$; $\inf_{u \in B_\rho} I_\lambda(u) < 0$.

(ii) There exists $e \in H^1(\Omega)$ with $\|e\| > \rho$ such that $I_\lambda(e) < 0$.

Proof. (i) From (P_1), by the Hölder inequality and the Sobolev inequality, for all $u \in H^1(\Omega)$ one has

$$\int_{\Omega} P(x) |u|^p \, dx \leq P(x_0) \int_{\Omega} |u|^q \, dx \leq P(x_0) |\Omega|^{-\frac{6-q}{6}} S^{-\frac{q}{2}} \|u\|^q,$$

and there exists a constant $C > 0$, we get

$$\left| \int_{\Omega} Q(x) |u|^6 \, dx \right| \leq C \int_{\Omega} |u|^6 \, dx \leq C S^{-3} \|u\|^6.$$

Hence, combining (2.1) and (2.2), we have the following estimate

$$I_\lambda(u) = \frac{1}{2} \|u\|^2 + \frac{b}{4} \left(\int_{\Omega} |\nabla u|^2 \, dx \right)^2 - \frac{1}{6} \int_{\Omega} Q(x) |u|^6 \, dx - \frac{\lambda}{q} \int_{\Omega} P(x) |u|^q \, dx$$

$$\geq \frac{1}{2} \|u\|^2 - \frac{C}{6} \int_{\Omega} |u|^6 \, dx - \frac{\lambda}{q} P(x_0) |\Omega|^{-\frac{6-q}{6}} S^{-\frac{q}{2}} \|u\|^q$$

$$\geq \|u\|^q \left(\frac{1}{2} \|u\|^2 - \frac{C}{6} S^{-3} \|u\|^6 - \frac{\lambda}{q} P(x_0) |\Omega|^{-\frac{6-q}{6}} S^{-\frac{q}{2}} \right).$$
Set \(h(t) = \frac{1}{2} t^{-q} - \frac{C}{t} \) for \(t > 0 \), then there exists a constant \(\rho = \left(\frac{3(2-q)}{C(6-q)} \right)^{\frac{1}{2}} > 0 \) such that
\[\max_{t \geq 0} h(t) = h(\rho) > 0. \]
Letting \(\Lambda_{0} = \frac{aS_{0}}{P(x_{0})}h(\rho) \), there exists a constant \(r > 0 \) such that \(I_{\lambda,\nu,\nu,\rho} \geq r \) for every \(\lambda \in (0, \Lambda_{0}) \). Moreover, for all \(u \in H^{1}(\Omega) \setminus \{0\} \), we have
\[\lim_{t \to 0} \frac{I_{\lambda}(tu)}{t^{q}} = -\lambda \int_{\Omega} P(x)|u|^{q}dx < 0. \]
So we obtain \(I_{\lambda}(tu) < 0 \) for every \(u \neq 0 \) and \(t \) small enough. Therefore, for \(||u|| \) small enough, one has
\[m \triangleq \inf_{u \in \mathcal{B}_{\rho}} I_{\lambda}(u) < 0. \]
(ii) Let \(v \in H^{1}(\Omega) \) be such that \(\text{supp } v \subset \Omega^{+} \), \(v \neq 0 \) and \(t > 0 \), we have
\[I_{\lambda}(tv) = \frac{t^{2}}{2}||v||^{2} + \frac{b^{4}}{4} \left(\int_{\Omega} |\nabla v|^{2}dx \right)^{2} - \frac{t^{6}}{6} \int_{\Omega} Q(x)|v|^{6}dx - \frac{\lambda t^{4}}{4} \int_{\Omega} P(x)|v|^{4}dx \rightarrow -\infty \]
as \(t \to \infty \), which implies that \(I_{\lambda}(tv) < 0 \) for \(t > 0 \) large enough. Therefore, we can find \(e \in H^{1}(\Omega) \) with \(||e|| > \rho \) such that \(I_{\lambda}(e) < 0 \). The proof is complete.

Denote
\[
\begin{align*}
\Theta_{1} &= \frac{abS_{0}^{3}}{4Q_{m}} + \frac{b^{3}S_{0}^{6}}{24Q_{m}^{2}} + \frac{aS_{0}\sqrt{b^{2}S_{0}^{4} + 4aS_{0}Q_{m}}}{6Q_{m}} + \frac{b^{2}S_{0}^{4}\sqrt{b^{2}S_{0}^{4} + 4aS_{0}Q_{m}}}{24Q_{m}^{2}} , \\
\Theta_{2} &= \frac{abS_{0}^{3}}{16Q_{m}} + \frac{b^{3}S_{0}^{6}}{384Q_{m}^{2}} + \frac{aS_{0}\sqrt{b^{2}S_{0}^{4} + 16aS_{0}Q_{m}}}{24Q_{m}} + \frac{b^{2}S_{0}^{4}\sqrt{b^{2}S_{0}^{4} + 16aS_{0}Q_{m}}}{384Q_{m}^{2}}.
\end{align*}
\]
Then we have the following compactness result.

Lemma 2.2. Suppose that \(1 < q < 2 \). Then the functional \(I_{\lambda} \) satisfies the (PS)\(_{c_{\lambda}}\) condition for every \(c_{\lambda} < c_{\ast} = \min \{ \Theta_{1} - D\lambda^{-\frac{2}{3}} - \Theta_{2} - D\lambda^{-\frac{2}{3}} \} \), where \(D = \frac{2-q}{3q} \left(6-q \right)^{\frac{2}{4}} P(x_{0})S^{-\frac{q}{2}}|\nu|^{-\frac{q}{2}} \).

Proof. Let \(\{u_{n}\} \subset H^{1}(\Omega) \) be a (PS)\(_{c_{\lambda}}\) sequence for
\[I_{\lambda}(u_{n}) \to c_{\lambda} \text{ and } I_{\lambda}'(u_{n}) \to 0 \text{ as } n \to \infty. \tag{2.3} \]
It follows from (2.1), (2.3) and the Hölder inequality that
\[
\begin{align*}
c_{\lambda} + 1 + o(||u_{n}||) &\geq I_{\lambda}(u_{n}) - \frac{1}{6} \langle I_{\lambda}'(u_{n}), u_{n} \rangle \\
&\geq \frac{1}{3} ||u_{n}||^{2} + \frac{b}{12} \left(\int_{\Omega} |\nabla u_{n}|^{2}dx \right)^{2} \tag{2.1} \\
&\quad - \lambda \left(\frac{1}{q} - \frac{1}{6} \right) P(x_{0})S^{-\frac{q}{2}}|\Omega|^{-\frac{q}{2}} ||u_{n}||^{q} \\
&\geq \frac{1}{3} ||u_{n}||^{2} - \frac{\lambda(6-q)}{6q} P(x_{0})S^{-\frac{q}{2}}|\Omega|^\frac{6-q}{q} ||u_{n}||^{q}.
\end{align*}
\]
Therefore \(\{u_n\} \) is bounded in \(H^1(\Omega) \) for all \(1 < q < 2 \). Thus, we may assume up to a subsequence, still denoted by \(\{u_n\} \), there exists \(u \in H^1(\Omega) \) such that

\[
\begin{cases}
 u_n \rightharpoonup u, & \text{weakly in } H^1(\Omega), \\
 u_n \to u, & \text{strongly in } L^p(\Omega) \ (1 \leq p < 6), \\
 u_n(x) \to u(x), & \text{a.e. in } \Omega,
\end{cases}
\]

as \(n \to \infty \). Next, we prove that \(u_n \to u \) strongly in \(H^1(\Omega) \). By using the concentration compactness principle (see [19]), there exist some at most countable index set \(J \), \(\delta_{x_j} \) is the Dirac mass at \(x_j \subset \bar{\Omega} \) and positive numbers \(\{v_j\}, \{\mu_j\}, j \in J \), such that

\[
|u_n|^{6} dx \to dv = |u|^{6} dx + \sum_{j \in J} v_j \delta_{x_j},
\]

\[
|\nabla u_n|^{2} dx \to d\mu \geq |\nabla u|^{2} dx + \sum_{j \in J} \mu_j \delta_{x_j},
\]

Moreover, numbers \(v_j \) and \(\mu_j \) satisfy the following inequalities

\[
\begin{align}
S_{0} v_j^\frac{1}{2} &\leq \mu_j \quad \text{if } x_j \in \Omega, \\
\frac{S_{0}}{2} v_j^\frac{1}{2} &\leq \mu_j \quad \text{if } x_j \in \partial \Omega.
\end{align}
\]

For \(\varepsilon > 0 \), let \(\phi_{\varepsilon,j}(x) \) be a smooth cut-off function centered at \(x_j \) such that \(0 \leq \phi_{\varepsilon,j} \leq 1 \), \(|\nabla \phi_{\varepsilon,j}| \leq \frac{2}{\varepsilon} \), and

\[
\phi_{\varepsilon,j}(x) = \begin{cases}
1, & \text{in } B(x_j, \frac{\varepsilon}{2}) \cap \bar{\Omega}, \\
0, & \text{in } \Omega \setminus B(x_j, \varepsilon).
\end{cases}
\]

There exists a constant \(C > 0 \) such that

\[
\lim_{\varepsilon \to 0} \lim_{n \to \infty} \int_{\Omega} P(x)|u_n|^q \phi_{\varepsilon,j} dx \leq P(x_0) \lim_{\varepsilon \to 0} \lim_{n \to \infty} \int_{B(x_j, \varepsilon)} |u_n|^q dx = 0.
\]

Since \(|\nabla \phi_{\varepsilon,j}| \leq \frac{2}{\varepsilon} \), by using the Hölder inequality and \(L^2(\Omega) \)-convergence of \(\{u_n\} \), we have

\[
\lim_{\varepsilon \to 0} \lim_{n \to \infty} \left(a + b \int_{\Omega} |\nabla x_n|^2 dx \right) \int_{\Omega} (\nabla u_n, \nabla \phi_{\varepsilon,j}) u_n dx
\]

\[
\leq C \lim_{\varepsilon \to 0} \lim_{n \to \infty} \left(\int_{\Omega} |\nabla u_n|^2 dx \right)^{\frac{1}{2}} \left(\int_{\Omega} |u_n|^2 |\nabla \phi_{\varepsilon,j}|^2 dx \right)^{\frac{1}{2}}
\]

\[
\leq C \lim_{\varepsilon \to 0} \left(\int_{B(x_j, \varepsilon)} |u|^6 dx \right)^{\frac{1}{2}} \left(\int_{B(x_j, \varepsilon)} |\nabla \phi_{\varepsilon,j}|^2 dx \right)^{\frac{1}{2}}
\]

\[
\leq C \lim_{\varepsilon \to 0} \left(\int_{B(x_j, \varepsilon)} |u|^6 dx \right)^{\frac{1}{2}} \left(\int_{B(x_j, \varepsilon)} \left(\frac{2}{\varepsilon} \right)^3 dx \right)^{\frac{1}{2}}
\]

\[
\leq C \lim_{\varepsilon \to 0} \left(\int_{B(x_j, \varepsilon)} |u|^6 dx \right)^{\frac{1}{2}} = 0,
\]
where $C_1 > 0$, and we also derive that

\[
\lim_{\varepsilon \to 0} \lim_{n \to \infty} \int_{\Omega} |\nabla u_n|^2 \phi_{e,j} \, dx \geq \lim_{\varepsilon \to 0} \int_{\Omega} |\nabla u|^2 \phi_{e,j} \, dx + \mu_j = \mu_j,
\]

\[
\lim_{\varepsilon \to 0} \lim_{n \to \infty} \int_{\Omega} Q(x)|u_n|^6 \phi_{e,j} \, dx = \lim_{\varepsilon \to 0} \int_{\Omega} Q(x)|u|^6 \phi_{e,j} \, dx + Q(x)\nu_j = Q(x)\nu_j,
\]

\[
\lim_{\varepsilon \to 0} \lim_{n \to \infty} \int_{\Omega} u_n^2 \phi_{e,j} \, dx = \lim_{\varepsilon \to 0} \int_{\Omega} u^2 \phi_{e,j} \, dx \leq \lim_{\varepsilon \to 0} \int_{\Omega} u^2 \, dx = 0.
\]

Noting that $u_n \phi_{e,j}$ is bounded in $H^1(\Omega)$ uniformly for n, taking the test function $\varphi = u_n \phi_{e,j}$ in (2.3), from the above information, one has

\[
0 = \lim_{\varepsilon \to 0} \lim_{n \to \infty} \langle L(u_n), u_n \phi_{e,j} \rangle
\]

\[
= \lim_{\varepsilon \to 0} \lim_{n \to \infty} \left\{ \left(a + b \int_{\Omega} |\nabla u_n|^2 \, dx \right) \int_{\Omega} (\nabla u_n, \nabla (u_n \phi_{e,j})) \, dx + \int_{\Omega} u_n^2 \phi_{e,j} \, dx \right.
\]

\[
- \int_{\Omega} Q(x)|u_n|^6 \phi_{e,j} \, dx - \lambda \int_{\Omega} P(x)|u_n|^q \phi_{e,j} \, dx \right\}
\]

\[
= \lim_{\varepsilon \to 0} \lim_{n \to \infty} \left\{ \left(a + b \int_{\Omega} |\nabla u_n|^2 \, dx \right) \int_{\Omega} (\nabla u_n, \nabla \phi_{e,j}) u_n) \, dx \right.
\]

\[
- \int_{\Omega} Q(x)|u_n|^6 \phi_{e,j} \, dx \right\}
\]

\[
\geq \lim_{\varepsilon \to 0} \left\{ \left(a + b \int_{\Omega} |\nabla u|^2 \, dx + b\mu_j \right) \left(\int_{\Omega} |\nabla u|^2 \phi_{e,j} \, dx + \mu_j \right)
\]

\[
- \int_{\Omega} Q(x)|u|^6 \phi_{e,j} \, dx - Q(x)\nu_j \right\}
\]

\[
\geq (a + b\mu_j) \mu_j - Q(x)\nu_j,
\]

so that

\[
Q(x)\nu_j \geq (a + b\mu_j)\mu_j,
\]

which shows that $\{u_n\}$ can only concentrate at points x_j where $Q(x_j) > 0$. If $\nu_j > 0$, by (2.5) we get

\[
v_j^4 \geq \frac{bS_0^2 + \sqrt{b^2S_0^4 + 4aS_0Q_M}}{2Q_M} \quad \text{if} \ x_j \in \Omega,
\]

\[
v_j^4 \geq \frac{bS_0^2 + \sqrt{b^2S_0^4 + 16aS_0Q_m}}{2^2Q_m} \quad \text{if} \ x_j \in \partial\Omega.
\]

From (2.5) and (2.6), we have

\[
\mu_j \geq \frac{bS_0^3 + \sqrt{b^2S_0^6 + 4aS_0^3Q_M}}{2Q_M} \quad \text{if} \ x_j \in \Omega,
\]

\[
\mu_j \geq \frac{bS_0^3 + \sqrt{b^2S_0^6 + 16aS_0^3Q_m}}{8Q_m} \quad \text{if} \ x_j \in \partial\Omega.
\]
To proceed further we show that (2.7) is impossible. To obtain a contradiction assume that there exists
$j_0 \in J$ such that $\mu_{j_0} \geq \frac{bs_0^{\frac{6}{4}} + \sqrt{bs_0^{\frac{6}{4}} + 4as_0Q_M}}{2Q_M}$ and $x_{j_0} \in \Omega$. By (2.1), (2.3) and (2.4), one has

$$c_J = \lim_{n \to \infty} \left\{ I_n(u_n) - \frac{1}{6} (I'_n(u_n), u_n) \right\}$$

$$= \lim_{n \to \infty} \left\{ \frac{a}{3} \frac{1}{\Omega} \int \left| \nabla u_n \right|^2 \, dx + \frac{b}{12} \left(\int \left| \nabla u_n \right|^2 \, dx \right)^2 \right\}$$

$$+ \frac{1}{3} \frac{1}{\Omega} \int u_n^2 \, dx - \frac{6 - q}{6q} \frac{1}{\Omega} \int P(x) \left| u_n \right|^q \, dx$$

$$\geq \frac{a}{3} \left(\frac{1}{\Omega} \int \left| \nabla u_n \right|^2 \, dx + \sum_{j \in J} \mu_j \right) + \frac{b}{12} \left(\int \left| \nabla u_n \right|^2 \, dx + \sum_{j \in J} \mu_j \right)^2$$

$$+ \frac{1}{3} \frac{1}{\Omega} \int u^2 \, dx - \frac{6 - q}{6q} P(x_0) S^{- \frac{6}{7}} \Omega^{- \frac{1}{7}} \left| u \right|^q$$

$$\geq \frac{a}{3} \mu_{j_0} + \frac{b}{12} \mu^2_{j_0} + \frac{1}{3} \left| \mu \right|^2 - \frac{6 - q}{6q} P(x_0) S^{- \frac{6}{7}} \Omega^{- \frac{1}{7}} \left| u \right|^q.$$

Set

$$g(t) = \frac{1}{3} t^2 - \frac{6 - q}{6q} P(x_0) S^{- \frac{6}{7}} \Omega^{- \frac{1}{7}} t^q, \quad t > 0,$$

then

$$g'(t) = \frac{2}{3} t - \frac{6 - q}{6} P(x_0) S^{- \frac{6}{7}} \Omega^{- \frac{1}{7}} t^{q-1} = 0,$$

we can deduce that $\min_{t \geq 0} g(t)$ attains at $t_0 > 0$ and

$$t_0 = \left(\frac{6 - q}{4} P(x_0) S^{- \frac{6}{7}} \Omega^{- \frac{1}{7}} \right)^{\frac{1}{2q-3}}.$$

Consequently, we obtain

$$c_J \geq \frac{abS_0^3}{4Q_M} + \frac{b^3S_0^6}{24Q_M^2} + \frac{aS_0 \sqrt{b^2S_0^4 + 4as_0Q_M}}{6Q_M}$$

$$+ \frac{b^2S_0^4 \sqrt{b^2S_0^4 + 4as_0Q_M}}{24Q_M^2} - D \lambda^{\frac{2}{\gamma}}$$

$$= \Theta_1 - D \lambda^{\frac{2}{\gamma}},$$

where $D = \frac{2-q}{3q} \left(\frac{6 - q}{4} P(x_0) S^{- \frac{6}{7}} \Omega^{- \frac{1}{7}} \right)^{-\frac{1}{q}}$. If $\mu_{j_0} \geq \frac{bs_0^{\frac{6}{4}} + \sqrt{bs_0^{\frac{6}{4}} + 16as_0Q_m}}{8Q_m}$ and $x_{j_0} \in \partial \Omega$, then, by the similar calculation, we also get

$$c_J \geq \frac{abS_0^3}{16Q_m} + \frac{b^3S_0^6}{384Q_m^2} + \frac{aS_0 \sqrt{b^2S_0^4 + 16as_0Q_m}}{24Q_m}$$

$$+ \frac{b^2S_0^4 \sqrt{b^2S_0^4 + 16as_0Q_m}}{384Q_m^2} - D \lambda^{\frac{2}{\gamma}}$$

$$= \Theta_2 - D \lambda^{\frac{2}{\gamma}}.$$
Let $c_\ast = \min\{\Theta_1 - D\lambda^{\frac{2}{N}}, \Theta_2 - D\lambda^{\frac{2}{N}}\}$, from the above information, we deduce that $c_\ast \geq c_\ast$. It contradicts our assumption, so it indicates that $v_j = \mu_j = 0$ for every $j \in J$, which implies that
\[
\int_\Omega |u_n|^6 \, dx \to \int_\Omega |u|^6 \, dx
\]
as $n \to \infty$. Now, we may assume that $\int_\Omega |
abla u_n|^2 \, dx \to A^2$ and $\int_\Omega |
abla u|^2 \, dx \leq A^2$, by (2.3), (2.4) and (2.8), one has
\[
0 = \lim_{n \to \infty} \langle I'(u_n), u_n - u \rangle
\]
\[
= \lim_{n \to \infty} \left[a + b \int_\Omega |
abla u_n|^2 \, dx \right] \left(\int_\Omega |
abla u_n|^2 \, dx - \int_\Omega \nabla u_n \nabla u \, dx \right)
\]
\[
+ \int_\Omega u_n (u_n - u) \, dx - \int_\Omega Q(x)|u_n|^5 (u_n - u) \, dx - \lambda \int_\Omega P(x)|u_n|^q-1 (u_n - u) \, dx
\]
\[
= (a + bA^2) \left(A^2 - \int_\Omega |
abla u|^2 \, dx \right).
\]
Then, we obtain that $u_n \to u$ in $H^1(\Omega)$. The proof is complete.

As well known, the function
\[
U_{\varepsilon, \gamma}(x) = \frac{(3\varepsilon^2)^\frac{1}{2}}{(\varepsilon^2 + |x - y|^2)^\frac{1}{2}}, \text{ for any } \varepsilon > 0,
\]
satisfies
\[
-\Delta U_{\varepsilon, \gamma} = U_{\varepsilon, \gamma}^5 \text{ in } \mathbb{R}^3,
\]
and
\[
\int_{\mathbb{R}^3} |\nabla U_{\varepsilon, \gamma}|^2 \, dx = \int_{\mathbb{R}^3} |U_{\varepsilon, \gamma}|^6 \, dx = S_0^\frac{2}{3}.
\]
Let $\phi \in C^1(\mathbb{R}^3)$ such that $\phi(x) = 1$ on $B(x_M, \frac{R}{2})$, $\phi(x) = 0$ on $\mathbb{R}^3 - B(x_M, R)$ and $0 \leq \phi(x) \leq 1$ on \mathbb{R}^3, we set $\psi_\varepsilon(x) = \phi(x) U_{\varepsilon, \gamma}(x)$. We may assume that $Q(x) > 0$ on $B(x_M, R)$ for some $R > 0$ such that $B(x_M, R) \subset \Omega$. From [4], we have
\[
\begin{align*}
\|\nabla \psi_\varepsilon\|^2_2 &= S_0^\frac{3}{2} + O(\varepsilon), \\
\|\psi_\varepsilon\|^6_6 &= S_0^\frac{3}{2} + O(\varepsilon^5), \\
\|\psi_\varepsilon\|^2_2 &= O(\varepsilon), \\
\|\psi_\varepsilon\|^2 &= aS_0^\frac{3}{2} + O(\varepsilon).
\end{align*}
\]
(2.9)
Moreover, by [28], we get
\[
\begin{align*}
\|\nabla \psi_\varepsilon\|^2_2 &\leq S_0^3 + O(\varepsilon), \\
\|\nabla \psi_\varepsilon\|^6_6 &\leq S_0^3 + O(\varepsilon), \\
\|\nabla \psi_\varepsilon\|^2_2 &\leq S_0^3 + O(\varepsilon).
\end{align*}
\]
(2.10)
Then we have the following Lemma.

Lemma 2.3. Suppose that $1 < q < 2$, $3 - q < \beta < \frac{6 - q}{2}$, $Q_M > 4Q_m$, (Q_1) and (Q_2), then $\sup_{t \geq 0} I(tv_\varepsilon) < \Theta_1 - D\lambda^{\frac{2}{N}}$.

AIMS Mathematics

Volume 6, Issue 4, 3821–3837.
By Lemma 2.1, one has

Proof. By Lemma 2.1, one has $I_{\lambda}(tv_\varepsilon) \to -\infty$ as $t \to \infty$ and $I_{\lambda}(tv_\varepsilon) < 0$ as $t \to 0$, then there exists $t_\varepsilon > 0$ such that $I_{\lambda}(t_\varepsilon v_\varepsilon) = \sup_{t > 0} I_{\lambda}(tv_\varepsilon) \geq r > 0$. We can assume that there exist positive constants $t_1, t_2 > 0$ and $0 < t_1 < t_\varepsilon < t_2 < +\infty$. Let $I_{\lambda}(t_\varepsilon v_\varepsilon) = \beta(t_\varepsilon v_\varepsilon) - \lambda \psi(t_\varepsilon v_\varepsilon)$, where

$$
\beta(t_\varepsilon v_\varepsilon) = \frac{t_\varepsilon^2}{2} |v_\varepsilon|^2 + \frac{b t_\varepsilon^4}{4} \|\nabla v_\varepsilon\|^2 - \frac{t_\varepsilon^6}{6} \int_{\Omega} Q(x)|v_\varepsilon|^6 dx,
$$

and

$$
\psi(t_\varepsilon v_\varepsilon) = \frac{t_\varepsilon^2}{q} \int_{\Omega} P(x)|v_\varepsilon|^q dx.
$$

Now, we set

$$
h(t) = \frac{t^2}{2} |v_\varepsilon|^2 + \frac{b t^4}{4} \|\nabla v_\varepsilon\|^2 - \frac{t^6}{6} \int_{\Omega} Q(x)|v_\varepsilon|^6 dx.
$$

It is clear that $\lim_{t \to 0} h(t) = 0$ and $\lim_{t \to \infty} h(t) = -\infty$. Therefore there exists $T_1 > 0$ such that $h(T_1) = \max_{t \geq 0} h(t)$, that is

$$
h'(t)|_{t_1} = T_1 |v_\varepsilon|^2 + b T_1^3 \|\nabla v_\varepsilon\|^2 - T_1^5 \int_{\Omega} Q(x)|v_\varepsilon|^6 dx = 0,
$$

from which we have

$$
|v_\varepsilon|^2 + b T_1^3 \|\nabla v_\varepsilon\|^2 = T_1^4 \int_{\Omega} Q(x)|v_\varepsilon|^6 dx. \tag{2.11}
$$

By (2.11) we obtain

$$
T_1^2 = \frac{b \|\nabla v_\varepsilon\|^4 + \sqrt{b^2 \|\nabla v_\varepsilon\|^8 + 4 |v_\varepsilon|^2 \int_{\Omega} Q(x)|v_\varepsilon|^6 dx}}{2 \int_{\Omega} Q(x)|v_\varepsilon|^6 dx}.
$$

In addition, by (Q_2), for all $\eta > 0$, there exists $\rho > 0$ such that $|Q(x) - Q_M| < \eta |x-x_M|$ for $0 < |x-x_M| < \rho$, for $\varepsilon > 0$ small enough, we have

$$
\left| \int_{\Omega} Q(x) v_\varepsilon^6 dx - \int_{\Omega} Q_M v_\varepsilon^6 dx \right| \leq \int_{\Omega} |Q(x) - Q_M| v_\varepsilon^6 dx
\leq \int_{\Omega} \eta |x-x_M| \left(\frac{2 \varepsilon^2}{(\varepsilon^2 + |x-x_M|^2)^3} \right) dx
\leq C \varepsilon^3 \int_{\Omega} \frac{r^3}{(\varepsilon^2 + r^2)^3} dr + C \varepsilon^3 \int_{\rho}^{R} \frac{r^2}{(\varepsilon^2 + r^2)^3} dr
\leq C \varepsilon \int_{0}^{p/\varepsilon} \frac{r^3}{(1+r^2)^3} dt + C \int_{p/\varepsilon}^{R/\varepsilon} \frac{t^2}{(1+t^2)^3} dt
\leq C_1 \varepsilon + C_2 \varepsilon^3,
$$

where $C_1, C_2 > 0$ (independent of η, ε). From this we derive that

$$
\limsup_{\varepsilon \to 0} \frac{1}{\varepsilon} \left| \int_{\Omega} Q(x) v_\varepsilon^6 dx - \int_{\Omega} Q_M v_\varepsilon^6 dx \right| \leq C_1 \eta. \tag{2.12}
$$

AIMS Mathematics

Volume 6, Issue 4, 3821–3837.
Then from the arbitrariness of \(\eta > 0 \), by (2.9) and (2.12), one has

\[
\int_{\Omega} Q(x)|v_\varepsilon|^6 \, dx = Q_M \int_{\Omega} |v_\varepsilon|^6 \, dx + o(\varepsilon) = Q_M S_0^\frac{3}{2} + o(\varepsilon).
\]

(2.13)

Hence, it follows from (2.9), (2.10) and (2.13) that

\[
\beta(t_\varepsilon v_\varepsilon) \leq h(T_1)
\]

\[
= T_1^2 \left(\frac{1}{3} ||v_\varepsilon||^2 + \frac{bT^2}{12} ||\nabla v_\varepsilon||^2 \right)
\]

\[
= \frac{b||\nabla v_\varepsilon||^2 ||v_\varepsilon||^2}{4 \int_{\Omega} Q(x)|v_\varepsilon|^6 \, dx} + \frac{b^3||\nabla v_\varepsilon||^2}{24(\int_{\Omega} Q(x)|v_\varepsilon|^6 \, dx)^2}
\]

\[
||v_\varepsilon||^2 \sqrt{b^2 ||\nabla v_\varepsilon||^2 + 4||v_\varepsilon||^2 \int_{\Omega} Q(x)|v_\varepsilon|^6 \, dx}
\]

\[
+ \frac{6 \int_{\Omega} Q(x)|v_\varepsilon|^6 \, dx}{24(\int_{\Omega} Q(x)|v_\varepsilon|^6 \, dx)^2}
\]

\[
b^2 ||\nabla v_\varepsilon||^2 \sqrt{b^2 ||\nabla v_\varepsilon||^2 + 4||v_\varepsilon||^2 \int_{\Omega} Q(x)|v_\varepsilon|^6 \, dx}
\]

\[
\leq \frac{b(S_0^3 + O(\varepsilon))(aS_0^3 + O(\varepsilon))}{4(Q_M S_0^\frac{3}{2} + o(\varepsilon))} + \frac{b^3(S_0^6 + O(\varepsilon))}{24(Q_M S_0^\frac{3}{2} + o(\varepsilon))^2}
\]

\[
+ \frac{(aS_0^3 + O(\varepsilon)) \sqrt{b^2(S_0^6 + O(\varepsilon)) + 4(aS_0^3 + O(\varepsilon))(Q_M S_0^\frac{3}{2} + o(\varepsilon))}}{6(Q_M S_0^\frac{3}{2} + o(\varepsilon))}
\]

\[
+ \frac{b^2(S_0^6 + O(\varepsilon)) \sqrt{b^2(S_0^6 + O(\varepsilon)) + 4(aS_0^3 + O(\varepsilon))(Q_M S_0^\frac{3}{2} + o(\varepsilon))}}{24(Q_M S_0^\frac{3}{2} + o(\varepsilon))^2}
\]

\[
\leq \frac{abS_0^3}{4Q_M} + \frac{b^3S_0^6}{24Q_M^2} + \frac{aS_0 \sqrt{b^2S_0^4 + 4aS_0 Q_M}}{6Q_M}
\]

\[
+ \frac{b^2S_0^4 \sqrt{b^2S_0^4 + 4aS_0 Q_M}}{24Q_M^2} + C_3\varepsilon
\]

= \Theta_1 + C_3\varepsilon,

where the constant \(C_3 > 0 \). According to the definition of \(v_\varepsilon \), from [29], for \(\frac{R}{2} > \varepsilon > 0 \), there holds

\[
\psi(t_\varepsilon v_\varepsilon) \geq \frac{1}{q} \int_{B|x_M^\frac{2}{q}}} \frac{\sigma \varepsilon^2}{(\varepsilon^2 + |x - x_M|^2)\frac{3}{2}|X - x_M|^\rho} \, dx
\]

\[
\geq C\varepsilon^\frac{q}{2} \int_0^{R/2} \frac{r^2}{(\varepsilon^2 + r^2)\frac{3}{2}\rho} \, dr
\]

\[
= C\varepsilon^{\frac{q-2}{2}-\beta} \int_0^{|R/2|} \frac{r^2}{(1 + r^2)\frac{3}{2}\rho} \, dt
\]

(2.14)
Lemma 2.4.

Now, we set

\[\frac{\partial}{\partial t} \text{ on } \mathbb{R} \]

The proof is complete.

Here we have used the fact that \(\beta > 0 \) and let \(\varepsilon = \lambda^{2/3} \), \(0 < \lambda < \Lambda_1 = \min\{1, (\frac{\xi}{\varepsilon})^{2-q-\beta} \} \), then

\[
C_3 \varepsilon - C_4 \varepsilon^{\frac{6-q}{2-q}} = C_3 A^{2/3} - C_4 A^{\frac{4-2q-2\beta}{2-q}} \leq A^{\frac{2}{3}} (C_3 - C_4 A^{\frac{2-q-2\beta}{2-q}})
\]

\[
< -DA^{\frac{2}{3}}.
\]

The proof is complete. \(\square \)

We assume that \(0 \in \partial \Omega \) and \(Q_m = Q(0) \). Let \(\varphi \in C^1(\mathbb{R}^3) \) such that \(\varphi(x) = 1 \) on \(B(0, \frac{\xi}{2}) \), \(\varphi(x) = 0 \) on \(\mathbb{R}^3 - B(0, R) \) and \(0 \leq \varphi(x) \leq 1 \) on \(\mathbb{R}^3 \), we set \(u_e(x) = \varphi(x) U_e(x) \), the radius \(R \) is chosen so that \(Q(x) > 0 \) on \(B(0, R) \cap \Omega \). If \(H(0) \) denotes the mean curvature of the boundary at 0, then the following estimates hold (see [6] or [26])

\[
\begin{cases}
||u_e||_2^2 = O(\varepsilon), \\
||\nabla u_e||_2^2 \leq \frac{\delta_0}{\lambda^2} - A_3 H(0) \varepsilon \log \frac{1}{\varepsilon} + O(\varepsilon),
\end{cases}
\]

(2.16)

where \(A_3 > 0 \) is a constant. Then we have the following lemma.

Lemma 2.4. Suppose that \(1 < q < 2, 3 - q < \beta < \frac{6-q}{2-q} \), \(Q_m \leq 4Q_m, H(0) > 0, Q \) is positive somewhere on \(\partial \Omega, (Q_1) \) and \((Q_3) \), then \(\sup_{t \geq 0} I_{\lambda}(t u_e) < \Theta_2 - DA^{\frac{1}{3}} \).

Proof. Similar to the proof of Lemma 2.3, we also have by Lemma 2.1, there exists \(t_e > 0 \) such that \(I_{\lambda}(t_e u_e) = \sup_{t \geq 0} I_{\lambda}(t u_e) \geq r > 0 \). We can assume that there exist positive constants \(t_1, t_2 > 0 \) such that \(0 < t_1 < t_e < t_2 < +\infty \). Let \(I_{\lambda}(t_x u_e) = A(t_x u_e) - \lambda B(t_x u_e) \), where

\[
A(t_x u_e) = \frac{t_x^2}{2} ||u_e||^2 + \frac{br^4}{4} ||\nabla u_e||^2 - \frac{r^6}{6} \int_{\Omega} Q(x) |u_e|^6 dx,
\]

and

\[
B(t_x u_e) = \frac{t_x^2}{q} \int_{\Omega} P(x) |u_e|^q dx.
\]

Now, we set

\[
f(t) = \frac{t^2}{2} ||u_e||^2 + \frac{br^4}{4} ||\nabla u_e||^2 - \frac{r^6}{6} \int_{\Omega} Q(x) |u_e|^6 dx.
\]
Therefore, it is easy to see that there exists $T_2 > 0$ such that $f(T_2) = \max_{f \geq 0} f(t)$, that is
\[
f'(t)|_{t_2} = T_2\|u_c\|^2 + bT_2^2\|\nabla u_c\|^2 - T_2^3 \int Q(x)|u_c|^6\,dx = 0. \tag{2.17}
\]
From (2.17) we obtain
\[
T_2^2 = \frac{b\|\nabla u_c\|^2 + \sqrt{b^2\|\nabla u_c\|^6 + 4\|u_c\|^2 \int Q(x)|u_c|^6\,dx}}{2 \int Q(x)|u_c|^6\,dx}.
\]
By the assumption (Q_1), we have the expansion formula
\[
\int Q(x)|u_c|^6\,dx = Q_m \int |u_c|^6\,dx + o(\varepsilon). \tag{2.18}
\]
Hence, combining (2.16) and (2.18), there exists $C_5 > 0$, such that
\[
A(t_2, u_c) \leq f(T_2) = \left(1 + \frac{bT_2^2}{12}\|\nabla u_c\|^2 \right) \left(\int |u_c|^6\,dx\right) + O(\varepsilon) - \frac{3}{5} \left(\int |u_c|^6\,dx\right) + O(\varepsilon)
\]
\[
\leq \frac{ab}{4Q_m} \left(\frac{\|\nabla u_c\|^2}{\left(\int |u_c|^6\,dx\right)^2} + O(\varepsilon)\right) + \frac{b^3}{24Q_m^2} \left(\frac{\|\nabla u_c\|^4}{\left(\int |u_c|^6\,dx\right)^4} + O(\varepsilon)\right)
\]
\[
+ \frac{a}{6Q_m} \left(\frac{\|\nabla u_c\|^2}{\left(\int |u_c|^6\,dx\right)^2} \sqrt{\frac{b^2\|\nabla u_c\|^6}{\left(\int |u_c|^6\,dx\right)^3} + \frac{4aQ_m\|\nabla u_c\|^2}{\left(\int |u_c|^6\,dx\right)^2}} + O(\varepsilon)\right)
\]
\[
+ \frac{b^2}{24Q_m^2} \left(\frac{\|\nabla u_c\|^8}{\left(\int |u_c|^6\,dx\right)^5} \sqrt{\frac{b^2\|\nabla u_c\|^6}{\left(\int |u_c|^6\,dx\right)^5} + \frac{4aQ_m\|\nabla u_c\|^2}{\left(\int |u_c|^6\,dx\right)^2}} + O(\varepsilon)\right)
\]
\[
\leq \frac{abS_0^3}{16Q_m} + \frac{b^3S_0^6}{384Q_m^2} + \frac{aS_0}{24Q_m^2} \sqrt{b^2S_0^4 + 16aS_0Q_m} + \frac{b^2S_0^4}{384Q_m^2} + C_5\varepsilon
\]
\[
= \Theta_2 + C_5\varepsilon.
\]
Assume that Theorem 2.5. has a nontrivial solution \(u \). It follows from Lemma 2.1 that

\[\text{Proof.} \]

suggests that

\[\text{By the Ekeland variational principle } [7], \text{ there exists a minimizing sequence } \{ u_n \} \subset \bar{B}_r(0) \text{ such that} \]

\[I(u_n) \leq \inf_{u \in \bar{B}_r(0)} I(u) + \frac{1}{n}, \quad I(u) \geq I(u_n) - \frac{1}{n} ||v - u_n||, \quad v \in \bar{B}_r(0). \]

Therefore, there holds \(I(u_n) \to m \) and \(I'(u_n) \to 0 \). Since \(\{u_n\} \) is a bounded sequence and \(\bar{B}_r(0) \) is a closed convex set, we may assume up to a subsequence, still denoted by \(\{u_n\} \), there exists \(u_\lambda \in \bar{B}_r(0) \subset H^1(\Omega) \) such that

\[
\begin{align*}
 u_n &\to u_\lambda, \quad \text{weakly in } H^1(\Omega), \\
 u_n &\to u_\lambda, \quad \text{strongly in } L^p(\Omega), \quad 1 \leq p < 6, \\
 u_n(x) &\to u_\lambda(x), \quad \text{a.e. in } \Omega.
\end{align*}
\]

By the lower semi-continuity of the norm with respect to weak convergence, one has

\[
m \geq \liminf_{n \to \infty} \left[I(u_n) - \frac{1}{6} \langle I'(u_n), u_n \rangle \right] = \liminf_{n \to \infty} \left[\frac{1}{3} \int_\Omega (a|\nabla u_n|^2 + u_n^2) \, dx + \frac{b}{12} \left(\int_\Omega |\nabla u_n|^2 \, dx \right)^2 \right. \]

\[
+ \lambda \left(\frac{1}{6} - \frac{1}{q} \right) \int_\Omega P(x)|u_n|^q \, dx \\
\left. \geq \frac{1}{3} \int_\Omega (a|\nabla u_\lambda|^2 + u_\lambda^2) \, dx + \frac{b}{12} \left(\int_\Omega |\nabla u_\lambda|^2 \, dx \right)^2 \right. \]

\[
+ \lambda \left(\frac{1}{6} - \frac{1}{q} \right) \int_\Omega P(x)|u_\lambda|^q \, dx \\
= I(u_\lambda) - \frac{1}{6} \langle I'(u_\lambda), u_\lambda \rangle = I(u_\lambda) = m.
\]

Thus \(I(u_\lambda) = m < 0 \), by \(m < 0 < c_\lambda \) and Lemma 2.2, we can see that \(\nabla u_n \to \nabla u_\lambda \) in \(L^2(\Omega) \) and \(u_\lambda \neq 0 \). Therefore, we obtain that \(u_\lambda \) is a weak solution of problem (1.1). Since \(I(\|u_\lambda\|) = I(u_\lambda) \), which suggests that \(u_\lambda \geq 0 \), then \(u_\lambda \) is a nontrivial solution to problem (1.1). That is, the proof of Theorem 1.1 is complete.

\[\square \]
Theorem 2.6. Assume that $0 < \lambda < \Lambda_*(\Lambda_* = \min\{\Lambda_0, \Lambda_1, \Lambda_2\})$, $1 < q < 2$ and $3 - q < \beta < \frac{6-q}{2}$. Then the problem (1.1) has a nontrivial solution $u_1 \in H^1(\Omega)$ such that $I_{\lambda}(u_1) > 0$.

Proof. Applying the mountain pass lemma [3] and Lemma 2.2, there exists a sequence $\{u_n\} \subset H^1(\Omega)$ such that

$$I_{\lambda}(u_n) \to c_\lambda > 0 \text{ and } I'_{\lambda}(u_n) \to 0 \text{ as } n \to \infty,$$

where

$$c_\lambda = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I_{\lambda}(\gamma(t)),$$

and

$$\Gamma = \left\{ \gamma \in C([0,1], H^1(\Omega)) : \gamma(0) = 0, \gamma(1) = e \right\}.$$

According to Lemma 2.2, we know that $\{u_n\} \subset H^1(\Omega)$ has a convergent subsequence, still denoted by $\{u_n\}$, such that $u_n \to u_1$ in $H^1(\Omega)$ as $n \to \infty$,

$$I_{\lambda}(u_1) = \lim_{n \to \infty} I_{\lambda}(u_n) = c_\lambda > r > 0,$$

which implies that $u_1 \neq 0$. Therefore, from the continuity of I'_{λ}, we obtain that u_1 is a nontrivial solution of problem (1.1) with $I_{\lambda}(u_1) > 0$. Combining the above facts with Theorem 2.5 the proof of Theorem 1.2 is complete. \hfill \Box

3. Conclusions

In this paper, we consider a class of Kirchhoff type equations with Neumann conditions and critical growth. Under suitable assumptions on $Q(x)$ and $P(x)$, using the variational method and the concentration compactness principle, we proved the existence and multiplicity of nontrivial solutions.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant Nos. 11661021 and 11861021). Authors are grateful to the referees for their very constructive comments and valuable suggestions.

Conflict of interest

The authors declare no conflict of interest in this paper.

References

