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1. Introduction

The following approach to protection of a simple graph was described by Cockayne et al. [5]. Let
G be a simple graph with vertex set V(G) and let S ⊆ V(G) be a nonempty set. Suppose that one
or more guards are stationed at the vertices belonging to S and that a guard stationed at a vertex can
deal with a problem at any vertex in its closed neighbourhood. We say that G is protected under the
placement of guards in S if there is at least one guard available to handle a problem at any vertex.
Consider a function f : V(G) −→ {0, 1, 2, . . . , k} where f (v) is the number of guards stationed at v,
and let Vi = {v ∈ V(G) : f (v) = i} for every i ∈ {0, 1, 2, . . . , k}. Notice that S = V(G) \ V0. We will
identify the function f with the sets V0, . . . ,Vk induced by f and write f (V0,V1, . . . ,Vk). The weight of
f is defined to be

w( f ) =
∑

v∈V(G)

f (v) =

k∑
i=0

i|Vi|.
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A vertex v ∈ V(G) is undefended with respect to f if f (v) = 0 and f (u) = 0 for every vertex u adjacent
to v. We say that G is protected under the function f if G has no undefended vertices with respect to f .

In fact, the simplest form of protection of a graph is known under the name of domination. We
say that f (V0,V1) is a dominating function (DF) if G is protected under f . This classical method of
protection has been studied extensively [10, 11]. The domination number is defined to be

γ(G) = min{w( f ) : f is a DF on G}.

Obviously, f (V0,V1) is a DF if and only if V1 is a dominating set. A dominating set of cardinality γ(G)
is called a γ(G)-set.

We now define a particular subclass of protected graphs considered in [12]. The functions in this
subclass protect the graph according to a certain strategy. Let f (V0,V1,V2) be a function on G. We
say that v ∈ V0 is protected under f if there exists a neighbour u of v such that u ∈ V1 ∪ V2 and G
does not have undefended vertices under the function f ′ : V(G) −→ {0, 1, 2} defined by f ′(v) = 1,
f ′(u) = f (u) − 1 and f ′(z) = f (z) for every z ∈ V(G) \ {u, v}. In such a case, we say that v is protected
by u under f . A weak Roman dominating function (WRDF) is a function f (V0,V1,V2) such that every
v ∈ V0 is protected under f . The weak Roman domination number is defined to be

γr(G) = min{w( f ) : f is a WRDF on G}.

A WRDF of weight γr(G) is called a γr(G)-function. For instance, for the graph shown in Figure 1,
on the left, a γr(G)-function can place 2 guards at the white-coloured vertex of degree three and one
guard at the other white-coloured vertex. This concept of protection was introduced by Henning and
Hedetniemi [12] and studied further, for instansce, in [1–4, 13–18].

The problem of computing γr(G) is NP-hard∗, even when restricted to bipartite or chordal graphs.
This suggests finding the weak Roman domination number for special classes of graphs or obtaining
good bounds on these invariant. This is precisely the aim of this work in which we obtain closed
formulae for the weak Roman domination number of rooted product graphs. As a particular case of
the study, we derive the corresponding formula for corona graphs. Furthermore, we show that the
use of rooted product graphs is a useful tool to show that the problem of computing the weak Roman
domination number of a graph is NP-hard.

2
1

1

1

1

1

Figure 1. Two placements of guards which correspond to two different weak Roman
dominating functions on the same graph. Notice that 2 = γ(G) < 3 = γr(G).

Given a graph G of order n(G) and a graph H with root vertex v, the rooted product G◦v H is defined
as the graph obtained from G and H by taking one copy of G and n(G) copies of H and identifying the
ith vertex of G with the vertex v in the ith copy of H for each i ∈ {1, . . . , n(G)}.

∗As the decision problem is NP-Complete [12].
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For every x ∈ V(G), the copy of H in G ◦v H containing x will be denoted by Hx and for any WRDF
f on G ◦v H, the restriction of f to V(Hx) and V(Hx) \ {x} will be denoted by fx and f −x , respectively.
Notice that V(G ◦v H) = ∪x∈V(G)V(Hx) and so, if f is a γr(G ◦v H)-function, then

γr(G ◦v H) =
∑

x∈V(G)

ω( fx) =
∑

x∈V(G)

ω( f −x ) +
∑

x∈V(G)

f (x).

Throughout the paper, we will use the notation Kt, K1,t−1, Ct and Pt for complete graphs, star graphs,
cycle graphs and path graphs of order t, respectively. We will use the notation G � H if G and H
are isomorphic graphs. For a vertex v of a graph G, N(v) will denote the set of neighbours or open
neighbourhood of v in G. The closed neighbourhood, denoted by N[v], equals N(v) ∪ {v}. A vertex
v ∈ V(G) such that N[v] = V(G) is said to be a universal vertex.

A leaf of a graph H is a vertex of degree one, while a support vertex of H is a vertex adjacent to at
least one leaf. We denote the set of leaves of H as L(H) and the set of support vertices of H as S (H).

For the remainder of the paper, definitions will be introduced whenever a concept is needed.

2. Weak Roman domination of rooted product graphs

To begin the analysis we need to establish some preliminary lemmas.

Lemma 2.1. Let f (V0,V1,V2) be a γr(G ◦v H)-function. For any x ∈ V(G), ω( fx) ≥ γr(H) − 1.
Furthermore, if ω( fx) = γr(H) − 1, then f (x) = 0.

Proof. Suppose that there exists x ∈ V(G) such thatω( fx) ≤ γr(H)−2. If f (x) > 0 then fx is a WRDF on
Hx of weight at most γr(H)− 2, yielding a contradiction. Now, if f (x) = 0, then the function g, defined
from fx by g(v) = fx(v) for every v , x and g(x) = 1, is a WRDF on Hx of weight ω(g) ≤ γr(H) − 1,
which is a contradiction. Therefore, ω( fx) ≥ γr(H) − 1 for every x ∈ V(G).

Now, suppose that there exists x ∈ V(G) such that ω( fx) = γr(H)−1. If f (x) > 0, then fx is a WRDF
on H of weight ω( fx) < γr(H), which is a contradiction. Hence, f (x) = 0. �

Given a γr(G ◦v H)-function f (V0,V1,V2), we define the sets

A f = {x ∈ V(G) : ω( fx) ≥ γr(H)}

and
B f = {x ∈ V(G) : ω( fx) = γr(H) − 1}.

By Lemma 2.1, if B f , ∅, then {A f ,B f } is a partition of V(G) and so

γr(G ◦v H) =
∑
x∈A f

ω( fx) +
∑
x∈B f

ω( fx).

Lemma 2.2. If f (V0,V1,V2) is a γr(G ◦v H)-function, then every vertex in B f is adjacent to a vertex in
A f \ V0.

Proof. By Lemma 2.1 we have that B f ⊆ V0. Now, since f is a γr(G ◦v H)-function, if there exists
x ∈ B f such that N(x) ∩ V(G) ∩ (V1 ∪ V2) = ∅, then fx is a WRDF on Hx of weight ω( fx) = γr(H) − 1,
which is a contradiction. Therefore, every vertex x ∈ B f is adjacent to some vertex belonging to
V(G) ∩ (V1 ∪ V2) ⊆ A f \ V0. �
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Corollary 2.3. If f is a γr(G ◦v H)-function, thenA f is a dominating set of G.

Lemma 2.4. If f (V0,V1,V2) is a γr(G ◦v H)-function such that B f , ∅, then the following statements
hold.

(i) ω( fx) = γr(H) for every x ∈ A f ∩ (V0 ∪ V1).
(ii) ω( fx) ≤ γr(H) + 1 for every x ∈ A f ∩ V2.

Proof. Let f be a γr(G◦vH)-function such thatB f , ∅. First, suppose that there exists x ∈ A f∩(V0∪V1)
such that ω( fx) ≥ γr(H) + 1. Let u ∈ B f and define a function g on G ◦v H by g(w) = f (w) for every
w < V(Hx), g(x) = 1 and g−x is induced by f −u . It is readily seen that g is a WRDF on G ◦v H
and ω(g) ≤ ω( f ) − 1 = γr(G ◦v H) − 1, which is a contradiction. Hence, ω( fx) = γr(H) for every
x ∈ A f ∩ (V0 ∪ V1).

Now, suppose that there exists x ∈ A f ∩ V2 such that ω( fx) ≥ γr(H) + 2. Let u ∈ B f and define a
function g on G ◦v H by g(w) = f (w) for every w < V(Hx), g(x) = 2 and g−x is induced by f −u . It is
readily seen that g is a WRDF on G◦v H and ω(g) ≤ ω( f )−1 = γr(G◦v H)−1, which is a contradiction.
Hence, ω( fx) ≤ γr(H) + 1 for every x ∈ A f ∩ V2. �

Let us define the sets
A

i, j
f = {x ∈ A f : f (x) = i and ω( fx) = j},

where i ∈ {0, 1, 2}, j ∈ {γr(H), γr(H) + 1}. For simplicity, we will use the notation m = γr(H) in some
lemmas and proofs, specially when γr(H) is a superscript.

From Lemma 2.4 we have the following consequence.

Corollary 2.5. If f (V0,V1,V2) is a γr(G ◦v H)-function such that B f , ∅, then

A f = A0,m
f ∪A

1,m
f ∪A

2,m
f ∪A

2,m+1
f .

Lemma 2.6. Let f be a γr(G ◦v H)-function. If B f , ∅, then there exists a γr(G ◦v H)-function g such
that Bg = B f and

Ag ∈ {A
1,m
g ,A2,m

g ,A2,m+1
g ,A1,m

g ∪A
2,m+1
g }.

Proof. Let f be a γr(G ◦v H)-function with B f , ∅. Notice that, by Lemma 2.2, A f , ∅. Now, since
f is a γr(G ◦v H)-function, if A2,m

f , ∅, then A2,m+1
f = ∅. Furthermore, if A1,m

f , ∅ and A0,m
f , ∅, then

we fix y ∈ A1,m
f and we define a γr(G ◦v H)-function g such that for every x ∈ A0,m

f , gx is induced by fy

and gz = fz for every z ∈ V(G) \ A0,m
f . In such a case,A1,m

g , ∅ andA0,m
g = ∅.

Using similar arguments we can show that if A2,m
f , ∅, then there exists a γr(G ◦v H)-function g

such thatA0,m
g ∪A

1,m
g ∪A

2,m+1
g = ∅.

Hence, by Corollary 2.5 we conclude that

Ag ∈ {A
0,m
g ,A1,m

g ,A2,m
g ,A0,m

g ∪A
2,m+1
g ,A1,m

g ∪A
2,m+1
g }.

Finally, if A0,m
g , ∅, then we fix y ∈ Bg and we define a function h on G ◦v H by hz = gz for every

z ∈ V(G) \ A0,m
g and for every x ∈ A0,m

g we set h(x) = 1 and h−x is induced by g−y . Notice that h is a
WRDF of weight ω(h) = ω(g) = ω( f ) and Ah ∈ {A

1,m
h ,A2,m

h ,A2,m+1
h ,A1,m

h ∪ A
2,m+1
h }. Therefore, the

result follows. �
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Proposition 2.7. If there exists a γr(G◦vH)-function f such thatB f , ∅, then γr(G◦vH) ≤ n(G)(γr(H)−
1) + γr(G).

Proof. Let f be a γr(G ◦v H)-function such that B f , ∅. Let x ∈ B f and consider a γr(G)-function h.
By Lemma 2.1, f (x) = 0, so that f −x is a WRDF on Hx − {x}. Consider the function g on G ◦v H such
that for every vertex u ∈ V(G), g−u is induced by f −x and g(u) = h(u). Thus, g is a WRDF on G ◦v H of
weight n(G)(γr(H) − 1) + γr(G), concluding that γr(G ◦v H) ≤ n(G)(γr(H) − 1) + γr(G). �

Theorem 2.8 (Trichotomy). For any graph G, any graph H and any v ∈ V(H),

γr(G ◦v H) ∈ {n(G)(γr(H) − 1) + γ(G), n(G)(γr(H) − 1) + γr(G), n(G)γr(H)}.

Furthermore, the following statements hold for any pair of γr(G ◦v H)-functions f and f ′.

• B f = ∅ if and only if B f ′ = ∅.
• γr(G ◦v H) = n(G)γr(H) if and only if B f = ∅.

Proof. Let f (V0,V1,V2) be a γr(G ◦v H)-function. If B f = ∅, then ω( fx) ≥ γr(H) for every x ∈ V(G),
which implies that γr(G◦v H) ≥ n(G)γr(H). Hence, γr(G◦v H) = n(G)γr(H), as we always can construct
a WRDF g such that gx = γr(H) for every x ∈ V(G).

From now on we consider the case B f , ∅, and so we can assume that f is a γr(G ◦v H)-function
which satisfies Lemma 2.6.

First, suppose that there exists x ∈ B f such that f (y) > 0 for some y ∈ N(x) ∩ V(Hx). Let S be a
γ(G)-set and consider the function g on G ◦v H where g−u is induced by f −x for every u ∈ V(G), g(u) = 1
for every u ∈ S and g(u) = 0 for every u ∈ V(G) \ S . Notice that for every u ∈ V(G), g−u is a WRDF
on Hu − {u}. Moreover, since S is a dominating set of G and for every u ∈ V(G) \ S there exists a
vertex y ∈ N(u) ∩ V(Hu) with g(y) > 0, we conclude that every vertex u ∈ V(G) \ S is protected under
g by some vertex in S . Hence, g is a WRDF on G ◦v H of weight n(G)(γr(H) − 1) + γ(G), concluding
that γr(G ◦v H) ≤ n(G)(γr(H) − 1) + γ(G). To show that in fact this is an equality, we observe that
Corollary 2.3 and Lemma 2.4 lead to

γr(G ◦v H) ≥ |A f |γr(H) + |B f |(γr(H) − 1)
= n(G)(γr(H) − 1) + |A f |

≥ n(G)(γr(H) − 1) + γ(G).
Hence, γr(G ◦v H) = n(G)(γr(H) − 1) + γ(G).
From now on we suppose that N(x) ∩ V(Hx) ⊆ V0 for every x ∈ B f . Notice that in this case every

vertex x ∈ B f must be protected under f by some vertex inA f . Furthermore, since f satisfies Lemma
2.6,A f ⊆ V1 ∪ V2. Hence, the restriction of f to V(G) is a WRDF on G, and so∑

x∈A f

f (x) ≥ γr(G).

Since f satisfies Lemma 2.6, we differentiate the following cases.

Case 1. A f = A1,m
f . In this case,

γr(G ◦v H) = |A f |γr(H) + |B f |(γr(H) − 1)
= n(G)(γr(H) − 1) + |A f |

≥ n(G)(γr(H) − 1) + γr(G).
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Hence, by Proposition 2.7 we conclude that γr(G ◦v H) = n(G)(γr(H) − 1) + γr(G).

Case 2. A f = A2,m
f . By Corollary 2.3 we have that |A f | ≥ γ(G), so that

γr(G ◦v H) = |A f |γr(H) + |B f |(γr(H) − 1)
= n(G)(γr(H) − 1) + |A f |

≥ n(G)(γr(H) − 1) + γ(G).

To show the equality, we take a γ(G)-set S and fix x ∈ A f and y ∈ B f . Consider the function g on G◦vH
such that for every u ∈ S , gu is induced by fx and for every u ∈ V(G) \ S , gu is induced by fy. Then,
g(u) = 2 for every u ∈ S and we have that g is a WRDF on G ◦v H of weight n(G)(γr(H) − 1) + γ(G),
concluding that γr(G ◦v H) = n(G)(γr(H) − 1) + γ(G).

Case 3. A f = A2,m+1
f . By Corollary 2.3 we have that |A f | ≥ γ(G) and since γr(G) ≤ 2γ(G) we deduce

that
γr(G ◦v H) = |A f |(γr(H) + 1) + |B f |(γr(H) − 1)

= n(G)(γr(H) − 1) + 2|A f |

≥ n(G)(γr(H) − 1) + 2γ(G)
≥ n(G)(γr(H) − 1) + γr(G).

Hence, by Proposition 2.7 we conclude that γr(G ◦v H) = n(G)(γr(H) − 1) + γr(G).

Case 4. A f = A1,m
f ∪A

2,m+1
f . In this case,

|A
1,m
f | + 2|A2,m+1

f | =
∑
x∈A f

f (x) ≥ γr(G).

Thus,
γr(G ◦v H) = |A1,m

f |γr(H) + |A2,m+1
f |(γr(H) + 1) + |B f |(γr(H) − 1)

= n(G)(γr(H) − 1) + |A1,m
f | + 2|A2,m+1

f |

≥ n(G)(γr(H) − 1) + γr(G).

Finally, by Proposition 2.7 we conclude that γr(G ◦v H) = n(G)(γr(H) − 1) + γr(G).
Therefore, γr(G◦v H) ∈ {n(G)(γr(H)−1)+γ(G), n(G)(γr(H)−1)+γr(G), n(G)γr(H)}. The remaining

statements follow from the previous analysis. �

We now proceed to consider the different cases of γr(G ◦v H). It is straightforward that for G � Kt,

γr(G ◦v H) = n(G)γr(H) = n(G)(γr(H) − 1) + γr(G) = n(G)(γr(H) − 1) + γ(G).

In order to stablish a sufficient and necessary condition to assure that γr(G ◦v H) = n(G)γr(H) when G
is nonempty, we need to state the following notation.

Given a nontrivial graph H and a vertex v ∈ V(H), the graph obtained from H by removing vertex v
will be denoted by H − {v}. Notice that any γr(H − {v})-function can be extended to a WRDF on H by
assigning the value 1 to v, which implies that the following lemma holds.

Lemma 2.9. For any nontrivial graph H and any v ∈ V(H),

γr(H − {v}) ≥ γr(H) − 1.

AIMS Mathematics Volume 6, Issue 4, 3641–3653.
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We also need the following lemma.

Lemma 2.10. Let f be a γr(G ◦v H)-function. If B f , ∅, then γr(H − {v}) = γr(H) − 1.

Proof. Let x ∈ B f . Notice that ω( fx) = γr(H) − 1, by definition of B f . Now, by Lemma 2.1, f (x) = 0,
which implies that that f −x is a WRDF on Hx−{x} of weight γr(H)−1, and so γr(H−{v}) = γr(Hx−{x}) ≤
γr(H) − 1. By Lemma 2.9 we conclude the proof. �

Theorem 2.11. Let G be a nonempty graph. Given a graph H and a vertex v ∈ V(H), γr(G ◦v H) =

n(G)γr(H) if and only if γr(H − {v}) ≥ γr(H).

Proof. Suppose that γr(H − {v}) < γr(H). In such a case, γr(H − {v}) = γr(H) − 1 by Lemma 2.9.
Hence, from any γr(H − {v})-function and any γr(G)-function we can construct a WRDF on G ◦v H of
weight n(G)(γr(H) − 1) + γr(G), concluding that γr(G ◦v H) ≤ n(G)(γr(H) − 1) + γr(G) < n(G)γr(H).
Therefore, if γr(G ◦v H) = n(G)γr(H), then γr(H − {v}) ≥ γr(H).

Now, assume that γr(H − {v}) ≥ γr(H) and let f be a γr(G ◦v H)-function. By Lemma 2.10 we have
that B f = ∅, and so Theorem 2.8 leads to γr(G ◦v H) = n(G)γr(H). �

From Lemma 2.9 and Theorems 2.8 and 2.11 we deduce the following result.

Theorem 2.12. Let G be a nonempty graph. For any graph H and any vertex v ∈ V(H), the following
statements are equivalent.

(i) γr(H − {v}) = γr(H) − 1.

(ii) γr(G ◦v H) = n(G)(γr(H) − 1) + γr(G) or γr(G ◦v H) = n(G)(γr(H) − 1) + γ(G).

We now focus on the case of graphs G with γr(G) > γ(G).

Theorem 2.13. Let G be a graph such that γr(G) > γ(G). For any graph H and any vertex v ∈ V(H),
γr(G ◦v H) = n(G)(γr(H) − 1) + γ(G) if and only if γr(H − {v}) = γr(H) − 1 and one of the following
conditions holds.

(i) There exists a γr(H − {v})-function g such that g(y) > 0 for some y ∈ N(v).

(ii) There exists a γr(H)-function h such that h(v) = 2.

Proof. Assume that γr(G ◦v H) = n(G)(γr(H) − 1) + γ(G). By Theorem 2.12, γr(H − {v}) = γr(H) − 1.
Suppose by contradiction that conditions (i) and (ii) do not hold. Let f be a γr(G ◦v H)-function.
Since γ(G) < γr(G) ≤ n(G), we have that γr(G ◦v H) = n(G)(γr(H) − 1) + γ(G) < n(G)γr(H),
concluding that B f , ∅ by Theorem 2.8. We can assume that f satisfies Lemma 2.6 and so A f ∈

{A
1,m
f ,A2,m

f ,A2,m+1
f ,A1,m

f ∪ A
2,m+1
f }. Moreover, A f , A2,m

f since (ii) does not hold. Hence A f ∈

{A
1,m
f ,A2,m+1

f ,A1,m
f ∪ A

2,m+1
f }. For any x ∈ B f , we have that f (x) = 0 (by Lemma 2.1), which implies

that f −x is γ(H − {x})−function, and since (i) does not hold, N(x)∩V(Hx) ⊆ V0. Hence, we only have to
consider Cases 1, 3 and 4 of the proof of Theorem 2.8, to obtain that γr(G ◦v H) = n(G)(γr(H) − 1) +

γr(G), which is a contradiction as γ(G) < γr(G). Hence, conditions (i) and (ii) hold.
Now, assume that γr(H − {v}) = γr(H) − 1. First, suppose that condition (i) holds. So, consider a

γr(H − {v})-function h such that h(y) > 0 for some y ∈ N(v). Let S be a γ(G)-set and consider the
function l on G ◦v H such that for every vertex x ∈ V(G), l−x is induced by h, l(x) = 1 if x ∈ S and

AIMS Mathematics Volume 6, Issue 4, 3641–3653.
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l(x) = 0 if x < S . Notice that l is a WRDF on G ◦v H of weight ω(l) = n(G)(γr(H) − 1) + γ(G), which
implies that γr(G◦v H) ≤ n(G)(γr(H)−1)+γ(G). Thus, by Theorem 2.12 we conclude that γr(G◦v H) =

n(G)(γr(H)− 1) + γ(G). Now, suppose that (i) does not hold and (ii) holds. As γr(H − {v}) = γr(H)− 1
and G is not empty, by Theorem 2.12 we have that γr(G ◦v H) < n(G)γr(H). Hence, by Theorem 2.8
we conclude that Bg , ∅ for every γr(G ◦v H)-function g. We can assume that g satisfies Lemma 2.6,
i.e., Ag ∈ {A

1,m
g ,A2,m

g ,A2,m+1
g ,A1,m

g ∪ A
2,m+1
g }. Moreover, since condition (ii) holds, we can claim that

A
2,m
g , ∅, so thatAg = A2,m

g . Now, for any x ∈ Bg, we have that g(x) = 0 and g−x is γ(H − {x})-function
and, since (i) does not hold, N(x) ∩ V(Hx) ⊆ V0. To conclude the proof we only have to consider Case
2 of the proof of Theorem 2.8, obtaining that γr(G ◦v H) = n(G)(γr(H) − 1) + γ(G). �

From Theorems 2.12 and 2.13 we inmediately have the following result.

Theorem 2.14. Let G be a graph such that γ(G) < γr(G). For any graph H and any vertex v ∈ V(H),
γr(G◦v H) = n(G)(γr(H)−1)+γr(G) if and only if γr(H−{v}) = γr(H)−1 and the following conditions
hold:

(i) For every γr(H − {v})-function g, g(y) = 0 for every y ∈ N(v).

(ii) For every γr(H)-function h, h(v) , 2.

We now consider some particular cases of G and H.

Theorem 2.15. Given a graph G, a nontrivial graph H and a vertex v ∈ V(H), γr(G ◦v H) = n(G) if
and only if H � Kt, t ≥ 2.

Proof. If H � Kt, where t ≥ 2, then γr(H − {v}) = γr(Kt−1) = 1 for every vertex v ∈ V(H). Hence, by
Theorem 2.11 we have γr(G ◦v H) = n(G)γr(Kt) = n(G).

On the other hand, if H � Kt, then γr(H) ≥ 2, and by Theorem 2.8 we have
γr(G ◦v H) ≥ n(G)(γr(H) − 1) + γ(G) > n(G). Therefore, the result follows. �

Theorem 2.16. Let G be a graph, H a connected graph and v ∈ V(H). If γr(H) = 2, then the following
statement hold.

(i) If H − {v} � Kt, then γr(G ◦v H) = 2n.

(ii) If H − {v} � Kt, then γr(G ◦v H) = n(G) + γ(G).

Proof. If H − {v} � Kt then γr(H − {v}) ≥ 2 = γr(H). Hence, Theorem 2.11 leads to γr(G ◦v H) =

n(G)γr(H) = 2n(G). On the other hand, if H − {v} � Kt then γr(H − {v}) = 1 = γr(H) − 1. Now, since
H is connected and H − {v} = Kt, for any y ∈ N(v) we can define a γr(H − {v})-function g such that
g(y) = 1 and g(x) = 0 for every x , y. Therefore, by Theorem 2.13 (and by Theorem 2.12 for the case
γr(G) = γ(G)) we conclude that γr(G ◦v H) = n(G)(γr(H) − 1) + γ(G) = n(G) + γ(G). �

Theorem 2.17. Let G be a graph, H a connected graph and u ∈ V(H). If f (u) = 2 for every γr(H)-
function f , then γr(G ◦v H) = n(G)γr(H) for every v ∈ N(u).

Proof. Assume that f (u) = 2 for every γr(H)-function f , and let v ∈ N(u). Suppose that γr(G ◦v H) ,
n(G)γr(H). By Theorem 2.11 and Lemma 2.9 we conclude that γr(H − {v}) = γr(H) − 1. Let g be a
γr(H−{v})-function. If g(u) = 2, then we define a function h on H such that h(w) = g(w) for every w , v
and h(v) = 0. Observe that h is a WRDF on H with ω(h) = ω(g) = γr(H)− 1, which is a contradiction.
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If g(u) ≤ 1, then we define a function h on H such that h(w) = g(w) if w , v and h(v) = 1. In this case,
h is a γr(H)-function with h(u) , 2, which is a contradiction. Therefore, γr(G ◦v H) = n(G)γr(H). �

The next theorem considers the case in which the root of H is a support vertex.

Theorem 2.18. Let G be a graph and H a connected graph. If v ∈ S (H) then γr(G ◦v H) = n(G)γr(H).

Proof. By Theorem 2.11, it is enough to show that γr(H − {v}) ≥ γr(H). Let u ∈ L(H) ∩ N(v) and
notice that for any γr(H − {v})-function g, g(u) = 1. Then the function f on H defined as f (v) = 0 and
f (w) = g(w) if w ∈ V(H)−{v} is a WRDF on H concluding that γr(H−{v}) ≥ ω(g) = ω( f ) = γr(H). �

Theorem 2.19. Let G be a graph, H a graph and v ∈ V(H). If g(v) , 1 for every γr(H)-function g,
then γr(G ◦v H) = n(G)γr(H).

Proof. Assume that g(v) , 1 for every γr(H)-function g, and suppose that γr(G ◦v H) , n(G)γr(H). By
Lemma 2.9 and Theorem 2.11 we have that γr(H − {v}) = γr(H) − 1. Let f be a γr(H − {v})-function
and consider the function h on H such that h(v) = 1 and h(u) = f (u) for every u , v. Notice that h is a
γr(H)-function on H with h(v) = 1,which is a contradiction. Therefore, γr(G ◦v H) = n(G)γr(H). �

Notice that if v ∈ V(H) is an isolated vertex, then γr(G ◦v H) = n(G)(γr(H) − 1) + γr(G). The
following result concerns the case in which v is not an isolated vertex.

Theorem 2.20. Let G be a graph and H a graph. If v ∈ V(H) is not an isolated vertex and g(v) , 0 for
every γr(H)-function g, then γr(G ◦v H) = n(G)γr(H).

Proof. Assume that v is not an isolated vertex and g(v) , 0 for every γr(H)-function g. Suppose that
γr(G ◦v H) , n(G)γr(H). By Lemma 2.9 and Theorem 2.11 we have that γr(H − {v}) = γr(H) − 1.
Let f be a γr(H − {v})-function. Let u ∈ V(H) ∩ N(v). Now, we may consider the function h on H
such that h(v) = 0, h(u) = min{ f (u) + 1, 2} and h(w) = f (w) if w ∈ V(H) \ {u, v}. In this case, h is a
WRDF function on H with ω(h) ≤ ω( f ) = γr(H) and h(v) = 0, which is a contradiction. Therefore,
γr(G ◦v H) = n(G)γr(H). �

Based on the two previous results, we can ask ourselves what happen in the cases in which g(v) , 2
for every γr(H)-function g, but in some cases g(v) = 1 and in others g(v) = 0. What we have observed
is that γr(G ◦v H) can take all the possible values. In order to show this, we proceed to consider the
case H � Pt and v ∈ L(Pt). To this end, we would emphasize that γr(Pt) = d 3t

7 e for t ≥ 1, which was
shown in [12].

Theorem 2.21. If G is a graph, v ∈ L(Pt) and t ≥ 2, then

γr(G ◦v Pt) =



n(G)
⌈

3t
7

⌉
, t ≡ 0, 2, 4, 6 (mod 7);

n(G)(
⌈

3t
7

⌉
− 1) + γr(G), t ≡ 1 (mod 7);

n(G)(
⌈

3t
7

⌉
− 1) + γ(G), t ≡ 3, 5 (mod 7).

AIMS Mathematics Volume 6, Issue 4, 3641–3653.



3650

Proof. Since γr(Pt) =
⌈

3t
7

⌉
for every t ≥ 2, we have that γr(Pt) = γr(Pt−1) for every t ≡ 0, 2, 4, 6

(mod 7), as
⌈

3t
7

⌉
=

⌈
3(t−1)

7

⌉
for these cases. Hence, by Theorem 2.11 we can conclude that γr(G ◦v Pt) =

n(G)
⌈

3t
7

⌉
for every t ≡ 0, 2, 4, 6 (mod 7).

Let Pt = (v = v1, v2, . . . , vt). If t ≡ 1 (mod 7), then γr(Pt) =
⌈

3(7k+1)
7

⌉
= 3k + 1, γr(Pt−1) = 3k

and γr(Pt−3) = 3k for some integer k ≥ 1. Since in Pt − {v} � Pt−1 the only neighbour of v2 is v3,
if there exists a γr(Pt−1)-function g such that g(v2) > 0, then γr(Pt−3) < 3k, which is a contradiction.
Hence, g(v2) = 0 for every γr(Pt−1)-function g, and by Theorem 2.14 (and by Theorem 2.12 for the
case γr(G) = γ(G)) we conclude that γr(G ◦v Pt) = n(G)(

⌈
3t
7

⌉
− 1) + γr(G) for every t ≡ 1 (mod 7).

Now, if t ≡ 3 (mod 7) then γr(Pt) =
⌈

3(7k+3)
7

⌉
= 3k + 2, γr(Pt−1) = 3k + 1 and γr(Pt−3) = 3k for

some integer k ≥ 1. As γr(Pt−1) = 3k + 1 and γr(Pt−3) = 3k, there exists a γr(Pt−1)-function h such that
h(v2) = 1. Also, since γr(Pt−{v}) = γr(Pt)−1, Theorem 2.13 (Theorem 2.12 for the case γr(G) = γ(G))
leads to γr(G ◦v Pt) = n(G)(

⌈
3t
7

⌉
− 1) + γ(G) for every t ≡ 3 (mod 7).

The case t ≡ 5 (mod 7) is analogous to the previous one. �

It was shown in [12] that γr(Ct) = γr(Pt) =
⌈

3t
7

⌉
for every t ≥ 4. Using similar arguments as in the

previous theorem, we deduce the following result.

Theorem 2.22. If G be a graph, v ∈ V(Ct) and t ≥ 4, then

γr(G ◦v Ct) =



n(G)
⌈

3t
7

⌉
, t ≡ 0, 2, 4, 6 (mod 7);

n(G)(
⌈

3t
7

⌉
− 1) + γr(G), t ≡ 1 (mod 7);

n(G)(
⌈

3t
7

⌉
− 1) + γ(G), t ≡ 3, 5 (mod 7).

3. The case of corona graphs

Given two graphs G and H, the corona product G � H is defined as the graph obtained from G and
H by taking one copy of G and n(G) copies of H, and making the ith vertex of G adjacent to every
vertex of the ith copy of H for every i ∈ {1, . . . , n(G)}.

The join G + H is defined as the graph obtained from disjoint graphs G and H by taking one copy
of G and one copy of H and joining by an edge each vertex of G with each vertex of H. Notice that the
corona product graph K1 �H is isomorphic to the join graph K1 + H. Furthermore, any corona product
graph G � H can be seen as a rooted product, i.e.,

G � H � G ◦v (K1 + H),

where v is the vertex of K1.

Theorem 3.1. For any graph G and any graph H,

γr(G � H) =


n(G), if H � Kt;

2n(G), otherwise.

Proof. If H � Kt, then γr(K1 + H) = 1 = γr(H). Now, if H � Kt, then γr(K1 + H) = 2 ≤ γr(H). Hence,
by Theorem 2.11 we have that γr(G � H) = n(G)γr(K1 + H). Therefore, the result follows. �
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4. NP-hardness

Recent works have shown that graph products are useful tools to study problems related to
computational complexity. For instance, Fernau and Rodrı́guez-Velázquez [7, 8] showed how to use
the corona product of two graphs to infer P-hardness results on the (local) metric dimension, based on
known NP-hardness results on the (local) adjacency dimension. Analogously, Dettlaff et al. [6] have
shown that the lexicographic product of two graphs is an appropriate tool to infer NP-hardness results
on the super domination number, based on a well-known NP-hardness result for the independence
number. Our next result shows that we can use the rooted product of two graphs to study the problem
of finding the weak Roman domination number of a graph. In this case, the main tool is Theorem 2.21
which involves the domination number. It is well known that the dominating set problem is an
NP-complete decision problem [9], i.e., given a positive integer k and a graph G, the problem of
deciding if G has a dominating set D of cardinality |D| ≤ k is NP-complete. Hence, the optimization
problem of computing the domination number of a graph is NP-hard. Obviously, the following result
is well known†, what is relevant here is the use of product graphs to prove it.

Corollary 4.1. The problem of computing the weak Roman domination number of a graph is NP-hard.

Proof. By Theorem 2.21, for any graph G and any integer t ≡ 3, 5 (mod 7) we have that

γr(G ◦v Pt) = n(G)
(⌈

3t
7

⌉
− 1

)
+ γ(G),

where v is a leaf of Pt. Hence, the problem of computing γ(G) is equivalent to the problem of finding
γr(G ◦v Pt), which implies that the problem of computing the weak Roman domination number of a
graph is NP-hard. �

5. Conclusions

This article is a contribution to the theory of protection of graphs. In particular, it is devoted to
the study of the weak Roman domination number of a graph. We obtain closed formulas for the weak
Roman domination number of rooted product graphs and, as a particular case of the study, we derive
the corresponding formula for corona graphs. Finally, we show that the use of rooted product graphs
is a useful tool to show that the problem of computing the weak Roman domination number of a graph
is NP-hard.

Among our main contributions we highlight the following.

• γr(G ◦v H) ∈ {n(G)(γr(H)− 1) + γ(G), n(G)(γr(H)− 1) + γr(G), n(G)γr(H)}, for any graphs G and
H, and any v ∈ V(H) (Theorem 2.8).

• We characterize the graphs with γr(G ◦v H) = n(G)γr(H) (Theorem 2.11).

• We characterize the graphs with γr(G ◦v H) = n(G)(γr(H) − 1) + γ(G) (Theorem 2.13).

†As the decision problem is NP-Complete [12].
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• We characterize the graphs with γr(G ◦v H) = n(G)(γr(H) − 1) + γr(G) (Theorem 2.14).

• We characterize the graphs with γr(G ◦v H) = n(G) (Theorem 2.15).

• We obtain the weak Roman domination number of G ◦v Pt (Theorem 2.21) and G ◦v Ct (Theorem
2.22).

• γr(G � H) =


n(G), if H � Kt;

2n(G), otherwise.
for any graphs G and H (Theorem 3.1).

• The problem of computing the weak Roman domination number of a graph is NP-hard (Corollary
4.1).
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