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1. Introduction and definition

Let us consider the following second-order linear homogeneous differential equation

z2w′′(z) + zw′(z) +
(
z2 − u2

)
w(z) = 0 (u ∈ C) . (1.1)

The differential equation in (1.1) is famous Bessel’s differential equation. Its solution is denoted by
Ju(z) and known as Bessel function. The familiar representation of Ju(z) is given by (1.2) and is defined
by particular solution of (1.1) as follows:

Ju(z) =

∞∑
n=0

(−1)n

n!Γ (u + n + 1)

( z
2

)2n+u
(z ∈ C) , (1.2)
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where Γ is the familiar Euler Gamma function. For a comprehensive study of Bessel function of first
kind, see [9, 30].

LetA represents the class of all those functions which are analytic in the open unit disk

E = {z : z ∈ C and |z| < 1}

and having the series expansion of the form

f (z) = z +

∞∑
n=2

anzn (z ∈ E) . (1.3)

Let S be the subclass of A consisting the functions that is univalent in E and satisfy the normalized
conditions

f (0) = 0 and f ′ (0) = 1.

Let two functions f and g are analytic in E, then f is subordinate to g , (written as f ≺ g), if there
exists a Schwarz function h (z), which is analytic in E with

h (0) = 0 and |h (z)| < 1,

such that
f (z) = g (h (z)) .

If g is univalent in E, then

f (z) ≺ g (z)⇔ f (0) = 0 = g(0) and f (E) ⊂ g (E) .

For f ∈ A, given by (1.3) and another function g, given by

g(z) = z +

∞∑
n=2

bnzn,

then the Hadamard product (or convolution) of f (z) and g(z) is given by

( f ∗ g) (z) = z +

∞∑
n=2

anbnzn = (g ∗ f ) (z).

In [34], Robertson introduced the class of starlike (S∗) and class of convex (C) functions and be defined
as:

S∗ = f ∈ A : <
(
z f ′(z)
f (z)

)
> 0 and C = f ∈ A : <

(
1 +

z f ′′(z)
f ′(z)

)
> 0.

It can easily seen that
f ∈ C ⇐⇒ z f

′

∈ S∗.

After that Srivastava and Owa investigated these subclasses in [43].
Let f ∈ A and g ∈ S∗, is said to be close to convex (K) functions if and only if

<

(
z f ′(z)
g(z)

)
> 0.
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Furthermore, Kanas and Wisniowska in [12] introduced subclasses of k-uniformly convex (k −UCV)
and (k − ST ) and be defined as:

k −UCV =

{
f ∈ A : <

(
1 +

z f ′′(z)
f ′(z)

)
> k

∣∣∣∣∣z f ′′(z)
f ′(z)

∣∣∣∣∣ , z ∈ E, k ≥ 0
}

and

k − ST =

{
f ∈ A : <

(
z f ′(z)
f (z)

)
> k

∣∣∣∣∣z f ′(z)
f (z)

− 1
∣∣∣∣∣ , z ∈ E, k ≥ 0

}
.

Note that
f ∈ k −UCV ⇐⇒ z f ′ ∈ k − ST .

For the further developments Kanas and Srivastava studied these subclasses (k −UCV) and (k − ST )
of analytic functions in [11]. For particular value of k = 1, then k −UCV =UCV and k − ST = S∗

Kanas and Wisniowska [13, 14] (see also [11] and [15]) defined these subclasses of analytic
functions subject to the conic domain Ωk, where

Ωk = a + ib : a2 > k2
{
(a − 1)2 + b2

}
, a > 0, k ≥ 0.

For k = 0, the domain Ωk presents the right half plane, for 0 < k < 1, the domain Ωk presents hyperbola,
for k = 1 its presents parabola and an ellipse for k > 1.

For this conic domain, the following functions play the role of extremal functions.

pk (z) =


φ1(z) for k = 0,
φ2(z) for k = 1,
φ3(z) for 0 < k < 1,
φ4(z) for k > 1,

(1.4)

where
φ1(z)) =

1 + z
1 − z

,

φ2(z) = 1 +
2
π2

(
log

1 +
√

z
1 −
√

z

)2

,

φ3(z) = 1 +
2

1 − k2 sinh2
{(

2
π

arccos k
)

arctan h
√

z
}
,

φ4(z) = 1 +
1

k2 − 1
sin

 π

2R(t)

∫ y(z)
√

t

0

dx
√

1 − x2
√

1 − t2x2

 +
1

k2 − 1

and

y(z) =
z −
√

t

1 −
√

tz
{t ∈ (0, 1)}

is chosen such that
k = cosh (πR′(t)/(4R(t))).

Here R(t) is Legender’s complete elliptic integral of first kind (see [13, 14]).
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Since the q-calculus is being vastly used in different areas of mathematics and physics it is of
great interest of researchers. In the study of Geometric Function Theory, the versatile applications
of q-derivative operator make it remarkably significant. Initially, in the year 1990, Ismail et al. [5]
gave the idea of q-starlike functions. Nevertheless, a firm foothold of the usage of the q-calculus in
the context of Geometric Function Theory was effectively established, and the use of the generalized
basic (or q-) hypergeometric functions in Geometric Function Theory was made by Srivastava (see for
detail [37]). For the study of various families of analytic and univalent function, the quantum (or q-)
calculus has been used as a important tools. Jackson [7, 8] first defined the q-derivative and integral
operator as well as provided some of their applications. The q-Ruscheweyh differential operator was
defined by Kanas and Raducanu in [10]. Recently, by using the concept of convolution Srivastava [40]
introduced q-Noor integral operator and studied some of its applications. Many q-differential and q-
integral operators can be written in term of convolution, for detail we refer [4,23,36,39,41] see also [16,
18]. Moreover, Srivastava et al. (see, for example, [35,44,45]) published a set of articles in which they
concentrated upon the classes of q-starlike functions related with the Janowski functions from several
different aspects. Additionally specking, a recently-published survey-cum-expository review article by
Srivastava [38] is potentially useful for researchers and scholars working on these topics. In this survey-
cum-expository review article [38], the mathematical explanation and applications of the fractional
q-calculus and the fractional q-derivative operators in Geometric Function Theory was systematically
investigated. For other recent investigations involving the q-calculus, one may refer to [1, 19, 22,
24, 25, 31–33] and [17]. We remark in passing that, in the above-cited recently-published survey-
cum-expository review article [38], the so-called (p, q)-calculus was exposed to be a rather trivial and
inconsequential variation of the classical q-calculus, the additional parameter p being redundant or
superfluous (see, for details, [38, p. 340]). In order to have a better understanding of the present article
we provide some notation and concepts of quantum (or q-) calculus used in this article.

Definition 1. ( [10]). Let q ∈ (0, 1) and define the q-number [η]q as:[
η
]
q =

1 − qη

1 − q
, η ∈ C,

= 1 + q + ... + qn−1, η = n ∈ N,

[0] = 0, η = 0.

Definition 2. Let q ∈ (0, 1) , n ∈ N and define the q-factorial [n]q!

[n]q! = [1]q [2]q ... [n]q and [0]q! = 1.

Definition 3. The q-generalized Pochhammer symbol [a]n,q be defined as:

[a]n,q =

n∏
k=1

(
1 − aqk−1

)
, n ∈ N

and

[a]∞,q =

∞∏
k=1

(
1 − aqk−1

)
.
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Definition 4. The q-Gamma function Γq(n) is defined by

Γq(n) =

[
q, q

]
∞[

qn, q
]
∞

(1 − q)n−1 .

The q-Gamma function Γq(n) satisfies the following functional equation

Γq(n + 1) =

(
1 − qn

1 − q

)
Γq(n).

Definition 5. ( [7]). For f ∈ A, and the q-derivative operator or q-difference operator be defined as:

Dq f (z) =
f (z) − f (qz)

(1 − q) z
(z ∈ E) ,

Dq f (z) = 1 +

∞∑
n=2

[n]q anzn−1 (1.5)

and
Dqzn = [n]q zn−1.

Definition 6. ( [5]). An analytic function f ∈ S∗q if

f (0) = f
′

(0) = 1, (1.6)

and ∣∣∣∣∣∣zDq f (z)
f (z)

−
1

1 − q

∣∣∣∣∣∣ ≤ 1
1 − q

, (1.7)

we can rewrite the conditions (1.7) as follows, (see [46]).

zDq f (z)
f (z)

≺
1 + z

1 − qz
.

Here Serivastava et al. [39] (see also [42]) defined the following definition by making use of
quantum (or q-) calculus, principle of subordination and general conic domain Ωk,q as:

Definition 7. ( [39]) . Let k ≥ 0 and q ∈ (0, 1). A function p(z) is said to be in the class k − Pq if and
only if

p(z) ≺ pk,q(z) =
2pk(z)

(1 + q) + (1 − q) pk(z)
(1.8)

and pk(z) is given by (1.4).

Geometrically, the function p(z) ∈ k − Pq takes all values from the domain Ωk,q which is defined as
follows:

Ωk,q =

{
w : <

(
(1 + q) w

2 + (q − 1) w

)
> k

∣∣∣∣∣ (1 + q) w
2 + (q − 1) w

− 1
∣∣∣∣∣} .
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Remark 1. We see that

k − Pq ⊆ P

(
2k

2k + 1 + q

)
and

<(p(z)) > <(pk,q(z)) >
2k

2k + 1 + q
.

For q→ 1−, then we have

k − Pq = P

(
k

k + 1

)
,

where the class P
(

k
k+1

)
introduced by Kanas and Wisniowska [13] and therefore,

<(p(z)) > <(pk(z)) >
k

k + 1
.

Also for k = 0 and q→ 1−, we have
k − Pq = P

and
<(p(z)) > 0.

Remark 2. For q → 1−, then Ωk,q = Ωk, where domain Ωk introduced by Kanas and Wisniowska
in [13].

By Applying q-derivative operator we introduce new subclasses of q-starlike functions, q-convex
functions, q-close to convex functions and q-quasi-convex functions as follows:

Definition 8. [42] For f ∈ A, k ≥ 0, then f ∈ k − ST q if and only if

zDq f (z)
f (z)

≺ pk,q (z) . (1.9)

Definition 9. [42] For f ∈ A, k ≥ 0, then f ∈ k −UCVq if and only if

Dq

(
zDq f (z)

)
Dq f (z)

≺ pk,q (z) .

It can easily seen that
f ∈ k −UCVq iff zDq f ∈ k − ST q. (1.10)

Definition 10. [42] For f ∈ A, k ≥ 0, then f ∈ k −UCCq if and only if

zDq f (z)
g(z)

≺ pk,q (z) , for some g(z) ∈ k − ST q.

Definition 11. [42] For f ∈ A, k ≥ 0, then f ∈ k −UQVq if and only if

Dq

(
zDq f (z)

)
Dqg(z)

≺ pk,q (z) , for some g(z) ∈ k −UCCq.
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Remark 3. For q→ 1−, then all theses newly defined subclasses reduces to the well-known subclasses
of analytic functions introduced in [29].

The Jackson q-Bessel functions and the Hahn-Exton q-Bessel functions are, respectively, defined
by

J1
u(z, q) =

[
qu+1, q

]
∞[

q, q
]
∞

∞∑
n=1

(−1)n qn(n+u)[
q, q

]
n
[
qu+1, q

]
n

( z
2

)2n+u

and

J2
u(z, q) =

[
qu+1, q

]
∞[

q, q
]
∞

∞∑
n=1

(−1)n q
1
2 n(n+u)[

q, q
]
n
[
qu+1, q

]
n
z2n+u,

where z ∈ C, u > −1, q ∈ (0, 1) . The functions J1
u(z, q) and J2

u(z, q) are the q-extensions of the
classical Bessel functions of the first kind. For more study about q-extensions of Bessel functions
(see [6, 20, 21]). Since neither J1

u(z, q) nor J2
u(z, q) belongs to A, first we perform normalizations of

J1
u(z, q) and J2

u(z, q) as:

f 1
u (z, q) = 2uCu(q)z1−n−uJ1

u(z, q)

=

∞∑
n=0

(−1)n qn(n+u)

4n [
q, q

]
n
[
qu+1, q

]
n
zn+1

= z +

∞∑
n=2

(−1)n−1 q(n−1)(n−1+u)

4n−1 [
q, q

]
n−1

[
qu+1, q

]
n−1

zn.

Similarly

f 2
u (z, q) = Cu(q)z1−n−uJ2

u(z, q)

=

∞∑
n=0

(−1)n q
1
2 n(n+u)[

q, q
]
n
[
qu+1, q

]
n
zn+1,

= z +

∞∑
n=2

(−1)n−1 q
1
2 (n−1)(n−1+u)[

q, q
]
n−1

[
qu+1, q

]
n−1

zn,

where

Cu(q) =

[
q, q

]
∞[

qu+1, q
]
∞

, z ∈ C, u > −1, q ∈ (0, 1) .

Now clearly, the functions f 1
u (z, q) and f 2

u (z, q) ∈ A.
Now, by using the above idea of convolution and normalized Jackson and Hahn-Exton q-Bessel

functions, we introduce a new operators Bq
u and Bq

u,1 as follows:

Bq
u f (z) = f 1

u (z, q) ∗ f (z) = z +

∞∑
n=2

ϕ1anzn (1.11)

and

Bq
u,1 f (z) = f 2

u (z, q) ∗ f (z) = z +

∞∑
n=2

ϕ2anzn, (1.12)
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where

ϕ1 =
(−1)n−1 q(n−1)(n−1+u)

4n−1 [
q, q

]
n−1

[
qu+1, q

]
n−1

and

ϕ2 =
(−1)n−1 q

1
2 (n−1)(n−1+u)[

q, q
]
n−1

[
qu+1, q

]
n−1

.

From the definition (1.11) and (1.12), it can easy to verify that

zDq

(
Bq

u+1 f (z)
)

=

(
[u]q

qu + 1
)

Bq
u f (z) −

[u]q

qu Bq
u+1 f (z) (1.13)

and

zDq

(
Bq

u+1,1 f (z)
)

=

(
[u]q

qu + 1
)

Bq
u,1 f (z) −

[u]q

qu Bq
u+1,1 f (z).

Finally Noor et al. introduced q-Bernardi integral operator [28], which is defined by

Lq
λ = Lq

λ f (z) =
[λ + 1]q

zλ

z∫
0

tλ−1 f (t)dqt, λ > −1.

Remark 4. For q→ 1−, then Lq
λ = L , introduced by Bernardi in [2].

2. Preliminary results

Here we gave the generalization of two lemmas which was introduced in [3, 27].

Lemma 1. Let h(z) be an analytic and convex univalent in E with

< (vh(z) + α) > 0 (v, α ∈ C) and h(0) = 1.

If p(z) is analytic in E and p(0) = 1, then

p(z) +
zDq p(z)

vp(z) + α
≺ h(z), z ∈ E, (2.1)

then
p(z) ≺ h(z).

Proof. Suppose that h(z) is analytic and convex univalent in E and p(z) is analytic in E. Letting
q→ 1−, in (2.1), we have

p(z) +
zp′(z)

vp(z) + α
≺ h(z), z ∈ E,

then by Lemma in [26], we have
p(z) ≺ h(z).

�
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Lemma 2. Let an analytic functions p(z) and g(z) in open unit disk E with

<p(z) > 0 and h(0) = g(0).

suppose that h(z) be convex functions in E and let U ≥ 0, then

Uz2D2
qg(z) + p(z)g(z) ≺ h(z) (2.2)

then
g(z) ≺ h(z), z ∈ E.

Proof. Suppose that h(z) is convex in the open unit disk E. Let p(z) and g(z) is analytic in E with
<p(z) > 0 and h(0) = g(0). Letting q→ 1−, in (2.2), we have

Uz2g′′(z) + p(z)g(z) ≺ h(z), z ∈ E,

then by Lemma in [27], we have
g(z) ≺ h(z).

�

3. Main results

Theorem 1. Let h(z) be convex univalent in E with <(h(z)) > 0 and h(0) = 1. If a function f ∈ A
satisfies the condition

zDq
(
Bq

u f (z)
)

Bq
u f (z)

≺ h(z), z ∈ E,

then
zDq

(
Bq

u+1 f (z)
)

Bq
u+1 f (z)

≺ h(z), z ∈ E.

Proof. Let

p(z) =
zDq

(
Bq

u+1 f (z)
)

Bq
u+1 f (z)

. (3.1)

where p is an analytic function in E with p(0) = 1. By using (1.13) into (3.1), we have

p(z) =

(
[u]q

qu + 1
)

zBq
u f (z)

Bq
u+1 f (z)

−
[u]q

qu .

Differentiating logarithmically with respect to z, we have

p(z) +
zDq p(z)

p(z) +
[u]q

qu

=
zBq

u f (z)
Bq

u+1 f (z)
.

By using Lemma 1, we get required result. �

By taking q→ 1−, in Theorem 1, then we have the following result.
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Corollary 1. Let h(z) be convex univalent in E with <(h(z) > 0 and h(0) = 1. If a function f ∈ A
satisfies the condition

z (Bu f (z))
′

Bu f (z)
≺ h(z), z ∈ E,

then
z (Bu+1 f (z))

′

Bu+1 f (z)
≺ h(z), z ∈ E.

Theorem 2. Let f ∈ A. If Bq
u f (z) ∈ k − ST q, then Bq

u+1 f (z) ∈ k − ST q.

Proof. Let

p(z) =
zDq

(
Bq

u+1 f (z)
)

Bq
u+1 f (z)

.

From (1.13), we have (
[u]q

qu + 1
)

zBq
u f (z)

Bq
u+1 f (z)

= p(z) +
[u]q

qu .

Differentiating logarithmically with respect to z, we have

zDqBq
u f (z)

Bq
u f (z)

= p(z) +
zDq p(z)

p(z) +
[u]q

qu

≺ pk,q (z) .

Since pk,q (z) is convex univalent in E given by (1.8) and

<
(
pk,q (z)

)
>

2k
2k + 1 + q

.

The proof of the theorem 2 follows by Theorem 1 and condition (1.9). �

For q→ 1−, in Theorem 2, then we have the following result.

Corollary 2. Let f ∈ A. If Bu f (z) ∈ k − ST , then Bu+1 f (z) ∈ k − ST .

Theorem 3. Let f ∈ A. If Bq
u f (z) ∈ k −UCVq, then Bq

u+1 f (z) ∈ k −UCVq.

Proof. By virtue of (1.10), and Theorem 2, we get

Bq
u f (z) ∈ k −UCVq ⇔ zDq

(
Bq

u f (z)
)
∈ k − ST q

⇔ Bq
uzDq f (z) ∈ k − ST q

⇒ Bq
u+1zDq f (z) ∈ k − ST q

⇔ Bq
u+1 f (z) ∈ k −UCVq.

Hence Theorem 3 is complete. �
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For q→ 1−, in Theorem 3, then we have the following result.

Corollary 3. Let f ∈ A. If Bu f (z) ∈ k −UCV, then Bu+1 f (z) ∈ k −UCV.

Theorem 4. Let f ∈ A. If Bq
u f (z) ∈ k −UCCq, then Bq

u+1 f (z) ∈ k −UCCq.

Proof. Since
Bq

u f (z) ∈ k −UCCq,

then
zDqBq

u f (z)
Bq

ug(z)
≺ pk,q(z), for some Bq

ug(z) ∈ k − ST q. (3.2)

Letting

h(z) =
zDqBq

u+1 f (z)
Bq

u+1g(z)

and

H(z) =
zDqBq

u+1g(z)
Bq

u+1g(z)
.

We see that h(z),H(z) ∈ A, in E with h(0) = H(0) = 1. By using Theorem 2, we have

Bq
u+1g(z) ∈ k − ST q

and
< (H(z)) >

2k
2k + 1 + q

.

Also note that
zDqBq

u+1 f (z) = h(z)
(
Bq

u+1g(z)
)
. (3.3)

Differentiating both sides of (3.3), we obtain

zDq

(
zDqBq

u+1 f (z)
)

Bq
u+1g(z)

=
zDqBq

u+1g(z)
Bq

u+1g(z)
h(z) + zDqh(z)

= H(z)h(z) + zDqh(z). (3.4)

By using the identity (1.13), we get

zDqBq
u f (z)

Bq
ug(z)

=
Bq

uzDq f (z)
Bq

ug(z)

=
zDq

(
Bq

u+1zDq f (z)
)

+
[u]q

qu

(
Bq

u+1zDq f (z)
)

zDq

(
Bq

u+1g(z)
)

+
[u]q

qu Bq
u+1g(z)

=

zDq(Bq
u+1zDq f (z))

Bq
u+1g(z) +

[u]q

qu
(Bq

u+1zDq f (z))
Bq

u+1g(z)

zDq(Bq
u+1g(z))

Bq
u+1g(z) +

[u]q

qu
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= h(z) +
zDqh(z)

H(z) +
[u]q

qu

. (3.5)

From (3.2), (3.4), and (3.5), we conclude that

h(z) +
zDqh(z)

H(z) +
[u]q

qu

≺ pk,q (z) .

On letting U = 0 and B(z) = 1
H(z)+

[u]q
qu
, we have

< (B(z)) =
<

(
H(z) +

[u]q

qu

)
∣∣∣∣H(z) +

[u]q

qu

∣∣∣∣2 > 0.

Apply Lemma 2, we have
h(z) ≺ pk,q (z) ,

where pk,q (z) given by (1.8). Hence Theorem 4 is complete. �

We can prove Theorem 5 by using a similar argument of Theorem 4

Theorem 5. Let f ∈ A. If Bq
u f (z) ∈ k −UQCq, then Bq

u+1 f (z) ∈ k −UQCq.

Now in Theorem 6, we study the closure properties of the q-Bernardi integral operator Lq
λ.

Theorem 6. Let f ∈ A and λ > −
(

2k
2k+1+q

)
. If Bq

u f (z) ∈ k − ST q, then Lq
λ

(
Bq

u f (z)
)
∈ k − ST q.

Proof. From the definition of Lq
λ f (z) and the linearity of the operator Bq

u, we have

zDq

(
Bq

uLq
λ f (z)

)
= (1 + λ)Bq

u f (z) − λBq
uLq

λ f (z). (3.6)

Substituting p(z) =
zDq(Bq

uLq
λ f (z))

Bq
uLq

λ f (z) in (3.6), we have

p(z) = (1 + λ)
Bq

u f (z)
Bq

uLq
λ f (z)

− λ. (3.7)

Differentiating (3.7) with respect to z, we have

zDq
(
Bq

u f (z)
)

Bq
u f (z)

=
zDq

(
Bq

uLq
λ f (z)

)
Bq

uLq
λ f (z)

+
zDq p(z)
p(z) + λ

= p(z) +
zDq p(z)
p(z) + λ

.

By Lemma 1, p(z) ≺ pk,q (z), since<
(
pk,q (z) + λ

)
> 0. This completes the proof of Theorem 6. �

By a similar argument we can prove Theorem 7 as below.

Theorem 7. Let f ∈ A and λ > −
(

2k
2k+1+q

)
. If Bq

u f (z) ∈ k −UCVq, then Lq
λ

(
Bq

u f (z)
)
∈ k −UCVq.

AIMS Mathematics Volume 6, Issue 4, 3624–3640.



3636

Theorem 8. Let f ∈ A and λ > −
(

2k
2k+1+q

)
. If Bq

u f (z) ∈ k −UCCq, then Lq
λ

(
Bq

u f (z)
)
∈ k −UCCq.

Proof. By definition, there exists a function

Bq
ug(z) ∈ k − ST q,

so that
zDqBq

u f (z)
Bq

ug(z)
≺ pk,q(z). (3.8)

Now from (3.6), we have

zDq
(
Bq

u f (z)
)

Bq
ug(z)

=
zDq

(
Bq

uLq
λ

(
zDq f (z)

))
+ λ

(
Bq

uLq
λ

(
zDq f (z)

))
zDq

(
Bq

uLq
λg(z)

)
+ λBq

uLq
λ (g(z))

=

zDq(Bq
uLq

λ(zDq f (z)))
Bq

uLq
λ
(g(z)) + λ

(Bq
uLq

λ(zDq f (z)))
Bq

uLq
λ
(g(z))

zDq(Bq
uLq

λg(z))
Bq

uLq
λ
(g(z)) + λ

. (3.9)

Since Bq
ug(z) ∈ k − ST q, by Theorem 6, we have Lq

λ

(
Bq

ug(z)
)
∈ k − ST q. Taking

H(z) =
zDq

(
Bq

uLq
λg(z)

)
Bq

u

(
Lq
λg(z)

) .

We see that H(z) ∈ A in E with H(0) = 1, and

< (H(z)) >
2k

2k + 1 + q
.

Now for

h(z) =
zDq

(
Bq

uLq
λ f (z)

)
Bq

u

(
Lq
λg(z)

) .

Thus we obtain
zDq

(
Bq

uLq
λ f (z)

)
= h(z)Bq

u

(
Lq
λg(z)

)
. (3.10)

Differentiating both sides of (3.10), we obtain

zDq

(
Bq

uDq

(
zLq

λ f (z)
))

Bq
u

(
Lq
λg(z)

) =
zDq

(
Bq

u

(
Lq
λg(z)

))
Bq

u

(
Lq
λg(z)

) h(z) + zDqh(z)

= H(z)h(z) + zDqh(z). (3.11)

Therefore from (3.9) and (3.11), we obtain

zDq
(
Bq

u f (z)
)

Bq
ug(z)

=
zDqh(z) + H(z)h(z) + λh(z)

H(z) + λ
.
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This in conjunction with (3.8) leads to

h(z) +
zDqh(z)
H(z) + λ

≺ pk,q (z) . (3.12)

On letting U = 0 and B(z) = 1
H(z)+λ , we have

< (B(z)) =
< (H(z) + λ)
|H(z) + λ|2

> 0.

Apply Lemma 2, we have
h(z) ≺ pk,q (z) .

where pk,q (z) given by (1.8). Hence Theorem 8 is complete. �

We can prove Theorem 9 by using a similar argument of Theorem 8.

Theorem 9. Let f ∈ A and λ > −
(

2k
2k+1+q

)
. If Bq

u f (z) ∈ k −UQCq, then Lq
λ

(
Bq

u f (z)
)
∈ k −UQCq.

4. Conclusions

Our present investigation is motivated by the well-established potential for the usages of the basic
(or q-) calculus and the fractional basic (or q-) calculus in Geometric Function Theory as described
in a recently-published survey-cum-expository review article by Srivastava [38]. We have studied new
family of analytic functions involving the Jackson and Hahn-Exton q-Bessel functions and investigate
their inclusion relationships and certain integral preserving properties bounded by generalized conic
domain Ωk,q. Also we discussed some applications of our main results by using the q-Bernardi integral
operator. The convolution operator Bq

u,1, which are defined by (1.12) will indeed apply to any attempt
to produce the rather straightforward results which we have presented in this paper.

Basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric
functions and basic (or q-) hypergeometric polynomials, are applicable particularly in several diverse
areas (see, for example, [38, p. 328]).

Moreover, in this recently-published survey-cum-expository review article by Srivastava [38], the
so-called (p, q)-calculus was exposed to be a rather trivial and inconsequential variation of the classical
q-calculus, the additional parameter p being redundant (see, for details, [38, p. 340]). This observation
by Srivastava [38] will indeed apply also to any attempt to produce the rather straightforward (p, q)-
variations of the results which we have presented in this paper.
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