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1. Introduction

Fractional calculus has developed rapidly in recent decades. It has been successfully applied in
many aspects of science and technology. At the same time, many related masterpieces emerged, such
as S. Samko et al. [1], I. Podlubny [2], R. Hilfer [3], A. Kilbas et al. [4], etc.

Time delay is a common phenomenon in real world [5]. In order to describe the models more
accurately in many practical systems, we need to take fractional calculus and delay into consideration
together. Therefore, it has a significance to study the solutions and their characteristics of fractional
differential equation with delay.

Many analytic techniques have been developed to deal with fractional differential equations
(FDEs). Among them, the Lie symmetry analysis method is an effective technique to derive exact
solutions of FDEs. This method was initially advocated by Norwegian mathematician Sophus Lie in
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the beginning of nineteenth century and was further developed by Ovsianikov [6] and others [7–12].
The Lie symmetry analysis method of differential equations has been extended to FDEs by Gazizov
et al. [13] (see also [14,15]). The effectiveness of this method has widely been demonstrated in
variety of nonlinear fractional partial differential equations occurring in different areas of applied
science (see [16–18]).

Recently, there are some literatures studying delay fractional differential equations by Lie
symmetry technique (see [19–21]). Complete Lie group classifications of first- and second-order
delay ordinary differential equations are obtained by Dorodnitsyn et al. [22] and Pue-on and
Meleshko [23], respectively.

In [19], Aminu M. Nass studied the Lie symmetry analysis of fractional ordinary differential
equations with neutral delay as follows

Dα
x y(x) = a(x)y(x − τ) + b(x)y′(x − τ) + d(x)y(x) + g(x).

The author use symmetry analysis method, establish infinite dimension symmetry algebras and obtain
the exact solutions to the equation. Aminu M. Nass [20], Kassimu Mpungu and Aminu M. Nass [21]
presented the complete Lie group classifications of delay fractional differential equations.

In this paper, we continue the study and extend the Lie symmetry analysis to the following equation

Dα
x y(x) = a(x)y(x − τ) + b(x)y′(x − τ) + d(x)y(x) + e(x)y′(x) + g(x), (FODE)

where the coefficients a(x), b(x), d(x), e(x) and g(x) are arbitrary functions with respect to independent
variable x, the delay τ > 0, and 0 < α < 1. This equation appears in many fields, such as population
dynamics, prey-predator systems, viscoelasticity, heat flow and so on. we set out to obtain the Lie
symmetries of (FODE) by the Lie point symmetry approach.

Moreover, we carry out the complete group classification of the equation, and get some concrete
periodic invariant solutions to (FODE).

This paper is organized as follows. In Section 2, we recall the definition of the Riemann-Liouville
fractional derivative and some relevant properties. In Section 3, we compute Lie symmetries for the
fractional ordinary differential equation (FODE) and complete the group classification of the equation.
In Section 4, some group invariant solutions for the (FODE) are constructed. The conclusion is given
in the last section.

2. Preliminaries

In this section, we recall some standard definitions and notations in fractional calculus. For
convenience, we suggest that one refers to [1–4] for details.
Definition 2.1. The Riemann-Liouville fractional integral operator of order α > 0 of the function
f(t)∈ L1([a, b] ,R+), denoted by aIαt , is defined by

aIαt f (t) =
1

Γ(α)

∫ t

a

f (x)
(t − x)1−αdx, t > a,

aI0
t f (t) = f (t),

where Γ(s) =
∫ ∞

0
xs−1e−xdx is the Gamma function.
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Definition 2.2. The Riemann-Liouville fractional differential operator of order α > 0 of the function
f(t)∈ L1([a, b] ,R+), denoted by aDα

t , is defined by

aDα
t f (t) = Dn

aIn−α
t f (t) =

 1
Γ(n−α)

dn

dtn

∫ t

a
f (x)

(t−x)α−n+1 dx, n − 1 < α < n, n ∈ N
f (n)(t), α = n ∈ N

for t > a.
If α = 0, then aDα

t f (t) = f (t).
Some properties for the Riemann-Liouville fractional derivative and integral are as follows:

0Iαt tβ =
Γ(β + 1)

Γ(β + α + 1)
tβ+α, α > 0, β > −1, t > 0,

0Dα
t tβ =

Γ(β + 1)
Γ(β − α + 1)

tβ−α, α > 0, β > −1, t > 0,

0Iαt 0Dα
t f (t) = f (t) −

n∑
k=1

[0Dα−k
t f (t)]t=0

Γ(α − k + 1)
tα−k, t > 0, n − 1 ≤ α < n, n ∈ N,

0Dα
t 0Iαt f (t) = f (t), α > 0, t > 0.

The generalized Leibnitz rule for the Riemann-Liouville fractional derivative has the following form

aDα
t ( f (t)g(t)) =

+∞∑
k=0

(
α

k

)
aDα−k

t f (t)Dk
t g(t), α > 0, t > a,

where
(
α
k

)
=

Γ(α+1)
Γ(α−k+1)Γ(k+1) .

If a = 0, we denote aDα
t f (t) = Dα

t f (t) for simplicity.

3. Lie symmetries of the fractional ordinary differential equation

Consider the fractional ordinary differential equation with neutral delay as follows,

Dα
x y(x) = a(x)y(x − τ) + b(x)y′(x − τ) + d(x)y(x) + e(x)y′(x) + g(x), (3.1)

where the coefficients a(x), b(x), d(x), e(x) and g(x) are arbitrary functions with respect to independent
variable x, the delay τ > 0,and 0 < α < 1.

We assume that the FODE (3.1) is invariant under the one-parameter(ε) Lie group of continuous
point transformations in (x, y) plane, i.e.,

x̄ = x + εξ(x, y) + o(ε)

ȳ = y + εη(x, y) + o(ε)

ȳτ = yτ + εητ + o(ε) (3.2)

ȳ′ = y′ + εη1 + o(ε)

ȳ′τ = y′τ + εη1
τ + o(ε)
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Dα
x̄ ȳ = Dα

x y + εηα + o(ε)

for some smooth functions ξ(x, y) and η(x, y) known as infinitesimals, and yτ = y(x − τ), ξτ = ξ(x −
τ, y(x − τ)), ητ = η(x − τ, y(x − τ)).

According to the Lie group theory, the group generator X of the point transformations (3.2) is
expressed as

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
. (3.3)

So the prolongation of the above group generator X has the form

prX = X + η1 ∂

∂y′
+ η1

τ

∂

∂y′τ
+ ηα

∂

∂yα
, (3.4)

where

η1 = Dx(η − y′ξ) + ξDx(y′), η1
τ = Dx(ητ − y′τξτ) + ξτDx(y′τ), η

α = Dα
x (η − y′ξ) + ξDx(Dα

x (y))

and Dx is the total derivative with respect to x.
The prolongation of Lie-Bäcklund generator [10] equivalent to infinitesimal prolongation (3.4) is

X̄ = ζ
∂

∂y
+ ζτ

∂

∂yτ
+ ζ1 ∂

∂y′
+ ζ1

τ

∂

∂y′τ
+ ζα

∂

∂yα
(3.5)

where

ζ = η − y′ξ, ζτ = ητ − y′τξτ, ζ
1 = Dx(η − y′ξ), ζ1

τ = Dx(ητ − y′τξτ), ζ
α = Dα

x (η − y′ξ).

From the definition of total derivative, we have

ζ1 = Dx(η − y′ξ) = ηx + (ηy − ξx)y′ − ξyy′2 − ξy′′, (3.6)

ζ1
τ = Dx(ητ − y′τξτ) = ητx + (ητy − ξ

τ
x)y
′
τ − ξ

τ
yy′2τ − ξτyτ

′′. (3.7)

Since

ηα = Dα
x (η − y′ξ) + ξDx(Dα

x (y)) = Dα
x (η) −

+∞∑
n=0

(
α

n + 1

)
Dα−n

x (y)Dn+1
x (ξ),

we obtain

ζα = Dα
x (η − y′ξ) = Dα

x (η) −
+∞∑
n=0

(
α

n + 1

)
Dα−n

x (y)Dn+1
x (ξ) − ξDα+1

x (y). (3.8)

Remark: The infinitesimal transformations (3.2) should conserve the structure of the
Riemann-Liouville fractional derivative operator, of which, the lower limit in the integral is fixed.
Therefore, the manifold x = 0 should be invariant with respect to transformations (3.2). The
invariance condition arrives at

ξ(x, y)|x=0 = 0.

The one-parameter Lie symmetry transformations (3.2) are admitted by FODE (3.1), if the
following invariance criterion holds,

X̄(Dα
x y(x) − a(x)y(x − τ) − b(x)y′(x − τ) − d(x)y(x) − e(x)y′(x) − g(x))|(3.1) = 0, (3.9)
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where the infinitesimal generator X̄ is defined in (3.5). Eq (3.9) can be abbreviated as

ζα − aζτ − bζ1
τ − dζ − eζ1|(3.1) = 0, (3.10)

which is known as the determining equation.
Put

D(α+1)
x y = a′yτ + ay′τ + b′y′τ + by′′τ + d′y + dy′ + e′y′ + ey′′ + g′

into (3.10) and let coefficients of y, yτ and their derivatives in the determining Eq (3.10) to be zero, we
can obtain the over-determined system of differential equations as follows,

ξτ = ξ (3.11)

ξτy = ξy = 0 (3.12)(
α

n

)
∂nηy

∂xn =

(
α

n + 1

)
Dn+1

x (ξ), n ∈ N (3.13)

from the coefficients of y′′τ , y′2, y′2τ and Dα−n
x (y). From (3.11), (3.12) and (3.13), we get

ξ(x, y) = ξ(x), η(x, y) = ψ1(x)y + ψ2(x), (3.14)

where ξ(x), ψ1(x) are periodic functions with period τ, i.e.,

ξ(x − τ) = ξ(x), ψ1(x − τ) = ψ1(x),

and ψ2(x) is an arbitrary function. Put (3.14) into the over-determined system, the simplified forms are

−αξxe − ξe′ + ξxe = 0 (3.15)

−αξxb − ξb′ + ξτxb = 0 (3.16)

−αξxd − ξd′ − e
dψ1

dx
= 0 (3.17)

−αξxa − ξa′ − b
dψτ1
dx

= 0 (3.18)

−αξxg − ξg′ + gψ1 − aψτ2 − b
dψτ2
dx
− dψ2 − e

dψ2

dx
− eψ1 + Dα

x (ψ2) = 0. (3.19)

From (3.13), (3.14), (3.17) and ξ(x, y)|x=0 = 0, we obtain
(i) : ξ(x) = 0, ψ1(x) = c1

(ii) : ξ(x) = c1 sin 2πx
τ
, ψ1(x) = c1

2π(α−n)
τ(n+1) cos 2πx

τ
, n ∈ N

(iii) : ξ(x) = c1 sin 2(n+1)πx
τ

, ψ1(x) = c1
2π(α−n)

τ
cos 2(n+1)πx

τ
, n ∈ N.
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3.1. Case (i): ξ(x) = 0, ψ1(x) = c1

From ξ(x, y) = 0, η(x, y) = ψ1(x)y + ψ2(x) = c1y + ψ2(x), we can get the following group generator
of the FODE (3.1):

X1 = (c1y + ψ2(x))
∂

∂y
,

where, c1 is an arbitrary constant, ψ2(x) satisfies Eq (3.19). For arbitrary functions
a(x), b(x), d(x), e(x) and g(x), it is also difficult to obtain ψ2(x) from Eq (3.19). But for some special
functions a(x), b(x), d(x), e(x) and g(x), we can get some concrete Lie symmetries.

For example, if ψ2(x) is an arbitrary function, we get

X∞ = ψ2(x)
∂

∂y

with functions a(x), b(x), d(x), e(x) and g(x) satisfying Eq (3.19).
If ψ2(x) = 0, we get

X1 = y
∂

∂y
with functions e(x), g(x) satisfying e(x) = g(x).

If ψ2(x) = c4 , 0, we get

X1 = y
∂

∂y
, X2 =

∂

∂y
with function g(x) satisfying

g(x) =
c4

c1
a(x) +

c4

c1
d(x) + e(x) −

c4

c1

x−α

Γ(1 − α)
.

In what follows, we present Lie symmetries for some special functions a(x), b(x), d(x), e(x) and
g(x).

3.2. Case (ii): ξ(x) = c1 sin 2πx
τ
, ψ1(x) = c1

2π(α−n)
τ(n+1) cos 2πx

τ
, n ∈ N

By (3.15) and (3.16), we obtain

b(x) = e(x) = c2(sin
2πx
τ

)1−α. (3.20)

Put (3.14) into (3.17) and (3.18), we can get

a(x) = d(x) = (sin
2πx
τ

)−α[−c2
2π(α − n)
τ(n + 1)

cos
2πx
τ

+ c3] (3.21)

Therefore, the FODE (3.1) admits infinite dimensional Lie algebra, which is spanned by the
following group generators

X1 = sin
2πx
τ

∂

∂x
+ y

2π(α − n)
τ(n + 1)

cos
2πx
τ

∂

∂y
, X∞ = ψ2(x)

∂

∂y

for any functions g(x) and ψ2(x) satisfying Eq (3.19), and the coefficient functions a(x), b(x), d(x) and
e(x) defined in (3.20) and (3.21) with period τ .
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Particularly, for (3.19), we assume ψ2 = constant = c4, and obtain the following two forms of g(x),
i.e.,

g(x) =


(sin 2πx

τ
)−

n(α+1)
n+1 [− c2(α−n)

2n+1−α (sin 2πx
τ

)
2n+1−α

n+1 + c5], ψ2 = 0 (3.22)
(sin 2πx

τ
)−

n(α+1)
n+1 [ c4

c1Γ(1−α)

∫
(sin 2πx

τ
)

nα−1
n+1 dx − 2c4c3

c1

∫
(sin 2πx

τ
)−

α+1
n+1 dx

−
2c4c2

c1
(sin 2πx

τ
)

n−α
n+1 −

c2(α−n)
2n+1−α (sin 2πx

τ
)

2n+1−α
n+1 + c6], ψ2 = c4 , 0 (3.23)

Therefore, if ψ2 = c4 = 0, the FODE (3.1) admits one-dimension Lie algebra, which is spanned by

X1 = sin
2πx
τ

∂

∂x
+ y

2π(α − n)
τ(n + 1)

cos
2πx
τ

∂

∂y

for given functions a(x), b(x), d(x), e(x) and g(x) defined in (3.20), (3.21) and (3.22).
In the same way, if ψ2 = c4 , 0, the FODE (3.1) admits one extra dimensional Lie algebra spanned

by the infinitesimal operators

X1 = sin
2πx
τ

∂

∂x
+ y

2π(α − n)
τ(n + 1)

cos
2πx
τ

∂

∂y
, X2 =

∂

∂y

for given functions a(x), b(x), d(x), e(x) and g(x) defined in (3.20), (3.21) and (3.23). Note, the ci(i =

1, · · · , 6) are arbitrary constants.

3.3. Case (iii): ξ(x) = c1 sin 2(n+1)πx
τ

, ψ1(x) = c1
2π(α−n)

τ
cos 2(n+1)πx

τ
, n ∈ N

In this case, we can obtain

b(x) = e(x) = c2(sin
2(n + 1)πx

τ
)1−α (3.24)

a(x) = d(x) = (sin
2(n + 1)πx

τ
)−α[−c2

2π(α − n)
τ

cos
2(n + 1)πx

τ
+ c3] (3.25)

from Eqs (3.15)–(3.18). Therefore, the FODE (3.1) admits infinite dimensional Lie algebra, which is
spanned by the following infinitesimal operators

X1 = sin
2(n + 1)πx

τ

∂

∂x
+ y

2π(α − n)
τ

cos
2(n + 1)πx

τ

∂

∂y
, X∞ = ψ2(x)

∂

∂y

for any function g(x) and ψ2(x) satisfying Eq (3.19), and the coefficient functions a(x), b(x), d(x)and
e(x) defined in (3.20) and (3.21) with period τ .

As same as Case (ii), we assume ψ2 = constant = c4, and obtain the following two forms of g(x),
i.e.,

g(x) =


(sin 2(n+1)πx

τ
)−

n(α+1)
n+1 [− c2(α−n)

2n+1−α (sin 2(n+1)πx
τ

)
2n+1−α

n+1 + c5], ψ2 = 0 (3.26)
(sin 2(n+1)πx

τ
)−

n(α+1)
n+1 [ c4

c1Γ(1−α)

∫
(sin 2(n+1)πx

τ
)

nα−1
n+1 dx−

2c4c3
c1

∫
(sin 2(n+1)πx

τ
)−

α+1
n+1 dx − 2c4c2

c1
(sin 2(n+1)πx

τ
)

n−α
n+1−

c2(α−n)
2n+1−α (sin 2(n+1)πx

τ
)

2n+1−α
n+1 + c6], ψ2 = c4 , 0 (3.27)

Therefore, if ψ2 = c4 = 0, FODE (3.1) admits one-dimension Lie algebra, which is spanned by

X1 = sin
2(n + 1)πx

τ

∂

∂x
+ y

2π(α − n)
τ

cos
2(n + 1)πx

τ

∂

∂y
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for given functions a(x), b(x), d(x), e(x) and g(x) defined in (3.24), (3.25) and (3.26).
If ψ2 = c4 , 0, FODE (3.1) admits one extra dimensional Lie algebra spanned by the differential

operators

X1 = sin
2(n + 1)πx

τ

∂

∂x
+ y

2π(α − n)
τ

cos
2(n + 1)πx

τ

∂

∂y
, X2 =

∂

∂y

for given functions a(x), b(x), d(x), e(x) and g(x) defined in (3.24), ( 3.25) and (3.27), where ci(i =

1, · · · , 6) are arbitrary constants.

4. Invariant solutions

In this section, we use the admitted group generators to construct some analytical solutions for
fractional ordinary differential equation with neutral delay (FODE).

4.1. Case (i): ξ(x) = 0, ψ1(x) = c1

According to the Lie group theory, we can not obtain a new solution, when ψ2(x) = 0 with

X1 = y
∂

∂y
,

ψ2(x) = c4 , 0 with

X1 = y
∂

∂y
, X2 =

∂

∂y
,

and ψ2(x) is an arbitrary function with

X∞ = ψ2(x)
∂

∂y
.

4.2. Case (ii): ξ(x) = c1 sin 2πx
τ
, ψ1(x) = c1

2π(α−n)
τ(n+1) cos 2πx

τ
, n ∈ N

4.2.1. ψ2 = 0

The characteristic equation associated with the group generator X1 is

dx
sin 2πx

τ

=
dy

y 2π(α−n)
τ(n+1) cos 2πx

τ

, (4.1)

where

X1 = sin
2πx
τ

∂

∂x
+ y

2π(α − n)
τ(n + 1)

cos
2πx
τ

∂

∂y
.

Solving (4.1), we have

y(x) = c(sin
2πx
τ

)
α−n
n+1 , n ∈ N, (4.2)

where c is a constant.
Graphical representations of the periodic solutions (4.2) are given in Figures 1–3. The behaviors of

the solutions depend on the delay (τ), the coefficient (c), the fractional order (α) and the natural number
(n). For example, in Figure 1, we set τ = 1, c = 0.8, α = 0.5 and n = 1.
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Figure 1. Graph of solutions (4.2) with τ = 1, c = 0.8, α = 0.5 and n = 1.

Figure 2. Graph of solutions (4.2) in a period with different fractional-order and τ = 1,
c = 0.8, n = 1.
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Figure 3. Graph of solutions (4.2) in a period with different fractional-order and τ = 1,
c = 0.8, n = 2.

4.2.2. ψ2 = c4 , 0

In this case, considering the linear combinations of the group generators X1 and X2, i.e.,

X1 + X2 = sin
2πx
τ

∂

∂x
+ (y

2π(α − n)
τ(n + 1)

cos
2πx
τ

+ 1)
∂

∂y
,

we can get the characteristic equation associated with the admitted operator X1 + X2 as follows,

dx
sin 2πx

τ

=
dy

y 2π(α−n)
τ(n+1) cos 2πx

τ
+ 1

, (4.3)

Its solutions are
y(x) = (sin

2πx
τ

)
α−n
n+1 [

∫
(sin

2πx
τ

)−
α+1
n+1 dx + c], n ∈ N, (4.4)

where c is a constant.

4.3. Case (iii): ξ(x) = c1 sin 2(n+1)πx
τ

, ψ1(x) = c1
2π(α−n)

τ
cos 2(n+1)πx

τ
, n ∈ N

4.3.1. ψ2 = 0

The characteristic equation associated with the group generator X1 is

dx

sin 2(n+1)πx
τ

=
dy

y 2π(α−n)
τ

cos 2(n+1)πx
τ

, (4.5)
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where
X1 = sin

2(n + 1)πx
τ

∂

∂x
+ y

2π(α − n)
τ

cos
2(n + 1)πx

τ

∂

∂y
.

Solving (4.5), we can get invariant solutions

y(x) = c(sin
2(n + 1)πx

τ
)
α−n
n+1 , n ∈ N, (4.6)

where c is a constant.
Graphical representations of the periodic solutions (4.6) are displayed in Figures 4–6. In Figure 4,

we set τ = 1, c = 0.8, α = 0.5 and n = 1.

4.3.2. ψ2 = c4 , 0

In this case, considering the linear combinations of the group generators X1 and X2, i.e.,

X1 + X2 = sin
2(n + 1)πx

τ

∂

∂x
+ (y

2π(α − n)
τ

cos
2(n + 1)πx

τ
+ 1)

∂

∂y
,

we can get the characteristic equation associated with the admitted operator X1 + X2 as follows,
dx

sin 2(n+1)πx
τ

=
dy

y 2π(α−n)
τ

cos 2(n+1)πx
τ

+ 1
. (4.7)

Solving (4.7), we can obtain the following invariant solutions,

y(x) = (sin
2(n + 1)πx

τ
)
α−n
n+1 [

∫
(sin

2(n + 1)πx
τ

)−
α+1
n+1 dx + c], n ∈ N, (4.8)

where c is a constant.

Figure 4. Graph of solutions (4.6) with τ = 1, c = 0.8, α = 0.5 and n = 1.
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Figure 5. Graph of solutions (4.6) in a period with different fractional-order and τ = 1,
c = 0.8, n = 1.

Figure 6. Graph of solutions (4.6) in a period with different fractional-order and τ = 1,
c = 0.8, n = 2.
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5. Conclusions

In this paper, it is proved that Lie symmetry technique is a powerful method to analysis the fractional
ordinary differential equation with neutral delay, i.e.,

Dα
x y(x) = a(x)y(x − τ) + b(x)y′(x − τ) + d(x)y(x) + e(x)y′(x) + g(x).

Firstly, we obtain the infinitesimal symmetries for the considered equation, and carry out a group
classification. Secondly, we use the obtained Lie symmetries to construct the invariant solutions.
Finally, we get some periodic solutions of the fractional ordinary differential equation with neutral
delay.
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