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Abstract: Spinors permeate all of modern physics and have also an important place in mathematics.
Spinors are used intensively in modern theoretical physics and differential geometry. In this study,
spinors are used for a different representation of differential geometry in E3. The goal of this study is
also the spinor structure lying at the basis of differential geometry. In this paper, firstly, spinors are
introduced algebraically. Then, the spinor construction of Bertrand curves is defined. Moreover, the
angle notion for these spinors is given. In this way, a different geometric construction of spinors is
established in this paper.
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1. Introduction

Spinors are structures used in many fields of applied sciences. In physics, the theory of spinors is
especially used in applications electron spin and theory of relativity in quantum mechanics. The wave
function of a particle whose spin is 1/2 is called spinor. In addition to that, the application of spinors in
electromagnetic theory is very important. The construction to obtain a spin structure on a
4-dimensional space-time are extended to obtain spinors in physics, such as the Dirac spinor. The
Dirac representation of the column vectors in Heisenberg representation corresponds to

Ket ≡ |ψ〉 =

(
ψ1

ψ2

)
. Here, ψ1 and ψ2 are complex numbers [7, 16, 24]. The Pauli spin matrices

mentioned here are with dimension 2x2, and the two-component complex column matrices acting on
these matrices are spinors. Spinors can be evaluated as concrete objects when choosing Cartesian
coordinates. For example, in three dimensional Euclidean space, spinors can be generated by
choosing Pauli spin matrices corresponding to the three coordinate axes.

In quantum theory, spin is represented by Pauli matrices. Also, Pauli matrices are a representation
of Clifford spin algebra and therefore all properties of Pauli matrices derive from basic algebra. One
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of the most important studies giving the relationship between Clifford algebra and spinors is [23].
Clifford algebras constitute a highly intuitive formalism, having an intimate relationship to quantum
field theory. Among the existing approaches to Clifford algebras and spinors this book is unique in that
it provides a didactical presentation of the topic. Also, the first person to study spinors in geometric
terms is Cartan, one of the founders of Clifford algebra. Cartan studied spinors in a geometric sense
[4]. Cartan’s study gives the spinor representation of the basic geometric definitions. So, it is a very
impressive reference in terms of the geometry of the spinors. In Cartan’s study, it was emphasized that
the set of isotropic vectors in the vector space C3 forms a two-dimensional surface in the space C2. It is
seen that each isotropic vector in the complex vector space C3 corresponds to two vectors in the space
C2. Conversely; these vectors in space C2 correspond to the same isotropic vector. Cartan expressed
that these complex vectors with two-dimensional [4].

In 1927, when Pauli introduced his spin matrices, he first applied the spinors to mathematical
physics [20]. After that, the relationship between the spinors and the Lorentz group was demonstrated
by Dirac, and the fully relativistic theory of electron spin was discovered [8]. In 1930, Juvet and
Sauter represented the spinor space as the left ideal of a matrix algebra [13, 18, 21]. In further detail,
instead of taking the spinors as complex valued two-dimensional column vectors, as Pauli did, if the
spinors are taken as complex-valued 2x2-dimensional matrices where the left column of the elements
are not zero, then the spinor space becomes a minimal left ideal in Mat (2, C) [17]. Later, in
differential geometry the spinor representation of curve theory was expressed by Torres del Castillo
and Barrales [6]. That study is one of the basic references of our study. Then, the spinor formulation
of the Darboux frame on a directed surface and Bishop frame of curves in E3 were given in [15, 22].
After that, the hyperbolic spinor corresponding to the Frenet frame of curves in Minkowski space E3

1
was expressed by Ketenci et al. [14]. Moreover, Erişir et. al obtained the spinor formulation of the
alternative frame of a curve in Minkowski space, and the spinor formulation of the relationship
between Frenet frame and Bishop frame [10]. Thus, Balcı et al. gave the hyperbolic spinor
formulation of the Darboux frame in E3

1 [1]. Finally, Erişir and Kardağ have shown a new
representation of the Involute Evolute curves in E3 with the help of spinors [11].

In this study, answer to the following question has been sought: “What is the geometric construction
of spinors for Bertrand curves?”. For this, firstly, the spinor characterization of unit speed and not unit
speed curve is calculated. Then, Bertrand curves have been considered and these curves have been
represented by spinors in the space C2. Later, considering the relations between Bertrand curves, the
spinor relations corresponding to these curves have been obtained. After that, the answer of question
“If the angle between the tangent vectors of the Bertrand curves is θ, what is the angle between the
spinors corresponding to these curves?” has been found. In this way, a different geometric construction
of the spinors has been shown.

2. Preliminaries

A curve is considered as differentiable at the each point of an open interval. Thus, one can construct
a set of mutually orthogonal unit vectors on this curve. These vectors are called tangent, normal and
binormal unit vectors or the Serret-Frenet frame, collectively. So, let us consider that the regular
curve (α) which is differentiable function so that α : I → E3, (I ⊆ R) has the arbitrary parameter t.
Moreover, for ∀t ∈ I the Frenet vectors on the point α(t) of the curve (α) are given by {T(t),N(t),B(t)}.
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So, these Frenet vectors are obtained by the equations T (t) = 1
‖α′(t)‖α

′(t), N (t) = B(t) × T(t) and
B(t) = 1

‖α′(t)×α′′(t)‖ (α
′(t) × α′′(t)) where “ ′ ” is the derivative with respect to arbitrary parameter t, κ and

τ are the curvature and torsion of this curve (α) [12]. Moreover, the Frenet derivative formulas of
this curve (α) are given by T′ = ‖α′‖ κN, N′ = ‖α′‖ (−κT + τB), B′ = − ‖α′‖ τN [12]. Consider that
the parameter of the curve (α) is the arc-length parameter s. So, if there is the equation ‖α̇ (s)‖ = 1
on the point ∀s ∈ I of the curve α : I → E3, (I ⊆ R), the curve (α) is called a curve parameterized
by the arc-length or a unit speed curve. Thus, the Frenet vectors of the curve (α) parameterized by
arc-length can be obtained by T (s) = α̇(s), N (s) = 1

‖α̈(s)‖ α̈(s) and B(s) = T(s) × N(s) where “ . ” is the
derivative with respect to arc-length parameter s. Moreover, the Frenet formulas of this curve are as
Ṫ = κN, Ṅ = −κT + τB, Ḃ = −τN [12].

French mathematician Saint-Venant raised the question in 1845 on whether the principal normal
vectors of a curve α on a ruled surface produced by the principal normal vectors of a curve α in three
dimensional Euclidean space can be the same as the principal normal vectors of a second curve. This
question was answered by an article published by Bertrand in 1850. For this reason, the curves with
this feature started to be called Bertrand curves after that study. Bertrand expressed that to have a
second curve with this property, there is a linear relationship between the curvature and torsion of the
original curve. These curve pairs, which are a remarkable subject for scientists, have been treated in
many studies [2, 3, 5, 9, 12, 19]. So, for the Bertrand curves, the following definition and theorems can
be given.

Definition 2.1. Let α, β : I → E3 be two curves and the Frenet vector fields of these curves be {T,N,B}
and {T∗,N∗,B∗}, respectively. If the vector pair {N,N∗} is linearly dependent, this pair (α, β) is called
Bertrand curves [12].

Theorem 2.2. Let the curves α, β : I → E3 be Bertrand curves. Then, the distance between mutual
points of these curves is constant [12].

Theorem 2.3. If the curves α, β : I → E3 are considered Bertrand curves then the angle between the
tangent vectors at mutual points of these curves is constant [12].

Theorem 2.4. Let the Frenet frames of the Bertrand curves (α, β) be {T,N,B} and {T∗,N∗,B∗},
respectively. So, especially if N = N∗ is chosen, the relationship between these Frenet frames is

T∗

N∗

B∗

 =


cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ




T
N
B

 (2.1)

where θ is the angle between the tangent vectors of Bertrand curves (α, β) [12].

2.1. Spinors

Spinors form a vector space equipped with a linear group representation of the spin group. Here
this vector space is usually over the complex numbers. Cartan [4] introduced the spinors geometrically
over the complex numbers as follows. Let the vector x = (x1, x2, x3) ∈ C3 be an isotropic vector
(x1

2 + x2
2 + x3

2 = 0) and the space C3 be the 3-dimensional complex vector space. A two-dimensional
surface in the space C2 is formed by the set of isotropic vectors in the vector space C3. If this two-
dimensional surface is parameterized by coordinates γ1 and γ2, then x1 = γ1

2 − γ2
2, x2 = i(γ1

2 + γ2
2),
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x3 = −2γ1γ2 is obtained. So, the equations γ1 = ±

√
x1−ix2

2 , γ2 = ±

√
−x1−ix2

2 are obtained. Each
isotropic vector in the complex vector space C3 corresponds to two vectors, (γ1, γ2) and (−γ1, − γ2) in
the space C2. Conversely; both vectors so given in space C2 correspond to the same isotropic vector x.
Moreover, Cartan expressed that the two-dimensional complex vectors γ = (γ1, γ2) described in this
way are called spinors

γ =

(
γ1

γ2

)
.

Using Cartan’s study [4], Torres del Castillo and Barrales [6] matched the isotropic vector a + ib ∈ C3

with spinor γ = (γ1, γ2) where a, b ∈ R3. So, considering the Pauli matrices they created the matrices
σ and gave

a + ib = γtσγ,

c = −γ̂tσγ
(2.2)

where a + ib is the isotropic vector in the space C3, c ∈ R3 and the mate γ̂ of the spinor γ is

γ̂ = −

(
0 1
−1 0

)
γ = −

(
0 1
−1 0

) (
γ1

γ2

)
=

(
−γ2

γ1

)
.

When all necessary operations are considered, it is seen that the vectors a, b and c have the same length
‖a‖ = ‖b‖ = ‖c‖ = γtγ and these vectors are mutually orthogonal. The correspondence between spinors
and orthogonal bases given by equation (2.2) is two to one; the spinors γ and −γ correspond to the same
ordered orthonormal basis {a, b, c}, with 〈a × b, c〉 > 0. It is important to notice that the ordered triads
{a, b, c}, {b, c, a} and {c, a, b} correspond to different spinors [6]. Moreover, the following proposition
can be given.

Proposition 2.5. Let two arbitrary spinors be γ and ψ. Then, the following statements hold;

i) ψtσγ = −ψ̂tσγ̂

ii) ̂λψ + µγ = λψ̂ + µγ̂

iii) ˆ̂γ = −γ

iv) ψtσγ = γtσψ

where λ, µ ∈ C [6].

Now, let a curve parameterized by arc-length be α : I → E3, (I ⊆ R). So, ‖α′ (s)‖ = 1 where
s is the arc-length parameter of the curve (α). Moreover, consider the Frenet vectors of this curve as
{N,B,T} and the spinor ζ represents the Frenet vector triad {N,B,T}. Thus, from Eq (2.2) the following
equations can be obtained

N + iB = ζ tσζ = (ζ1
2 − ζ2

2, i(ζ1
2 + ζ2

2), − 2ζ1ζ2),
T = −ζ̂ tσζ = (ζ1ζ2 + ζ1ζ2, i(ζ1ζ2 − ζ1ζ2), |ζ1|

2
− |ζ2|

2)
(2.3)

with ζ
t
ζ = 1 [6]. Moreover, the following theorem can be given.
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Theorem 2.6. If the spinor ζ with two complex components represents the triad {N,B,T} of a curve
(α) parameterized by its arc-length s, the Frenet equations are equivalent to the single spinor equation

dζ
ds

=
1
2

(−iτζ + κζ̂)

where κ and τ denote the curvature and torsion of the curve (α), respectively [6].

Before I get to the main section, I have to emphasize that: While Torres del Castillo and Barrales
matched a spinor with Frenet frame {N,B,T} of an unit speed curve α : I → E3, they separated Frenet
vectors as N + iB and T where N + iB is an isotropic vector. Unlike Torres del Castillo and Barrales,
in this paper, the Frenet frame {B,T,N} corresponds to a different spinor and this Frenet frame is
separated as B + iT and N where B + iT is an isotropic vector.

3. Main theorems and proofs

Now let the Frenet vectors on the point α(s) of the regular and unit speed curve α : I ⊆ R → E3 be
{B,T,N}. Moreover, the Frenet vectors {B,T,N} correspond to a spinor ξ. So, the spinor equations of
this Frenet frame can be written by

B + iT = ξtσξ (3.1)

and
N = −ξ̂tσξ (3.2)

where ξ̄tξ = 1. So, the following theorems can be given.

Theorem 3.1. Let ξ be the spinor corresponding to the Frenet vectors {B,T,N} of the unit speed and
regular curve α : I → E3. So, the Frenet equations are equivalent to the single spinor equation

dξ
ds

=
(τ − iκ)

2
ξ̂ (3.3)

where τ and κ denote the torsion and curvature of the curve (α) and ξ̂ is the mate of spinor ξ,
respectively.

Proof. If the derivative of the Eq (3.1) with respect to arc-length parameter s of the curve (α) is
considered, one can write

d (B + iT)
ds

=
dξ
ds

t

σξ + ξtσ
dξ
ds
.

So, since
{
ξ, ξ̂

}
is a basis for spinors with two complex components in the space C2, the spinor dξ/ds

can be written dξ/ds = f ξ + gξ̂ where f and g are arbitrary complex valued functions and ξ̂ is the mate
of spinor ξ. If Proposition 2.5 is considered, one can obtain f = 0, g = τ−iκ

2 . Thus, dξ
ds =

(τ−iκ)
2 ξ̂. �

Now, in addition to reference [6], I give the components of the vector B + iT, separately, with the
following theorem.

Theorem 3.2. Let a spinor ξ represent the Frenet frame {B,T,N} of the regular and unit speed curve
(α). So, the spinor equations of Frenet vectors T and B from the complex vector B + iT can be written
as

T = − i
2

(
ξtσξ + ξ̂tσξ̂

)
,

B = 1
2 (ξtσξ − ξ̂tσξ̂).
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Proof. Let a spinor ξ represent the Frenet vectors {B,T,N} of the curve (α). If Eq (3.1) is considered,
B = Re

(
ξtσξ

)
and T = Im

(
ξtσξ

)
hold. Moreover, from Proposition 2.5 one can write T = − i

2 (ξtσξ +

ξ̂tσξ̂), B = 1
2

(
ξtσξ − ξ̂tσξ̂

)
. �

Corollary 3.3. If the spinor ξ represents the Frenet frame {B,T,N} of the curve (α), then the spinor
components of Frenet vectors can be written as

T = − i
2

(
ξ1

2 − ξ2
2 + ξ2

2
− ξ1

2
, i

(
ξ1

2 + ξ2
2 + ξ1

2
+ ξ2

2
)
, 2

(
ξ1ξ2 − ξ1ξ2

))
,

N = (ξ1ξ2 + ξ1ξ2, i(ξ1ξ2 − ξ1ξ2), |ξ1|
2
− |ξ2|

2),

B = 1
2

(
ξ1

2 − ξ2
2 + ξ1

2
− ξ2

2
, i

(
ξ1

2 + ξ2
2 − ξ1

2
− ξ2

2
)
,−2

(
ξ1ξ2 + ξ1ξ2

))
.

On the other hand, let any curve (β) which is not parameterized by arc length be considered and the
Frenet vectors of this curve be {B∗, T∗,N∗}. Moreover, let the different spinor φ represent the Frenet
vectors of the curve (β). So, similar to the Eqs (3.1) and (3.2), one can write

B∗ + iT∗ = φtσφ,

N∗ = −φ̂tσφ.

Thus, the spinor equations of the Frenet vectors of the curve (β) similar to Corollary 3.3 can be written
by components as

T∗ = − i
2

(
φ1

2 − φ2
2 + φ2

2
− φ1

2
, i

(
φ1

2 + φ2
2 + φ1

2
+ φ2

2
)
, 2

(
φ1φ2 − φ1φ2

))
,

N∗ = (φ1φ2 + φ1φ2, i(φ1φ2 − φ1φ2), |φ1|
2
− |φ2|

2),

B∗ = 1
2

(
φ1

2 − φ2
2 + φ1

2
− φ2

2
, i

(
φ1

2 + φ2
2 − φ1

2
− φ2

2
)
,−2

(
φ1φ2 + φ1φ2

))
.

So, one can give the following theorem without proof. The proof of this theorem can be easily done
similar to Theorem 3.1.

Theorem 3.4. Let the Frenet vectors of the curve (β) which is not parameterized by arc length be
{B∗, T∗,N∗} and the spinor corresponding to this curve be φ. So, the Frenet equation of this curve in
terms of a single spinor equation is written as

dφ
dt

=

∥∥∥∥∥dβ
dt

∥∥∥∥∥ (τ∗ − iκ∗)
2

φ̂

where t is any arbitrary parameter of the curve (β).

Here, if s is considered arc-length parameter of the curve (β),
∥∥∥dβ

dt

∥∥∥ = ds
dt holds. So, one can write

dφ
ds

=
(τ∗ − iκ∗)

2
φ̂.

Now, the curves α and β mentioned above are considered Bertrand curves. Let the spinors ξ and
φ represent the Bertrand curves α and β, respectively. Moreover, the Frenet vectors of the curve α
are {B,T,N} and the Frenet vectors of the curve β are {B∗,T∗,N∗}. So, the geometric interpretation of
angles between spinors can be done with the following theorems.
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Theorem 3.5. Let the curves α, β : I → E3 be Bertrand curves and the curves α and β correspond to
the spinors ξ and φ, respectively. Moreover, the Frenet vectors of the curves α and β shall be {B,T,N}
and {B∗,T∗,N∗}, respectively. So, the relationship between spinors of corresponding Bertrand curves
is

φ = ±e−
iθ
2 ξ. (3.4)

Proof. Let the spinors ξ and φ represent the Frenet vectors {B,T,N} and {B∗,T∗,N∗} of Bertrand curves
α, β : I→ E3, respectively. So, if the relationship between Bertrand curves in the Eq (2.1) is used, one
can obtain

B∗ + iT∗ = sin θT + cosθB + i cos θT − i sin θB
= (cos θ − i sin θ) (B + iT)
= e−iθ (B + iT)

where θ is the angle between the tangent vectors of the Bertrand curves (α, β). From here it appears
that the angle between the B + iT and B∗ + iT∗ vectors is also θ. So, one can write

φtσφ = e−iθ (ξtσξ
)

and finally
φ1 = ±e−

iθ
2 ξ1,

φ2 = ±e−
iθ
2 ξ2.

It is known from Section 2.2 that the spinors γ and −γ correspond to the same ordered orthonormal
basis. Namely, the spinors φ and −φ correspond to the vector B∗ + iT∗, while the spinors ξ and −ξ
correspond to the vector B + iT. So, one can write

φ = ±e−
iθ
2 ξ.

�

Theorem 3.6. (Main Theorem): Let the spinors ξ and φ represent the Bertrand curves α, β : I→ E3,
respectively. So, if the angle between the tangent vectors of these curves is θ, then the angle between
the spinors ξ and φ is θ

2 .

The following corollaries of the main theorem can be given.

Corollary 3.7. Let the spinors ξ and φ represent the Bertrand curves α, β : I → E3, respectively.
Then, the spinor ξ returns to the spinor φ, while the vector ξ̂ makes a reverse rotation to the vector φ̂.
Moreover, the rotation angle is also θ

2 ,
φ̂ = ±e

iθ
2 ξ̂.

Corollary 3.8. Let the curves α, β : I→ E3 be Bertrand curves and the curves α and β correspond to
the spinors ξ and φ, respectively. Thus, the angle between the derivatives of spinors ξ and φ is also θ

2 .

Corollary 3.9. Let the curves (α, β) be Bertrand curves and the spinors ξ and φ represent these
curves, respectively. Thus, the derivative of spinor φ which represent the curve (β) with respect to the
curvatures of curve (α) can be rewritten as

dφ
dt

= e−iθ
(
τ − iκ

2

)
φ̂.
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4. Conclusions

Spinors can be considered as concrete objects using a set of Cartesian coordinates. For example,
spinors can be formed from Pauli spin matrices corresponding to coordinate axes in three-dimensional
Euclidean space. By using matrices with these 2x2 dimensional complex elements, spinors, which are
column matrices, are created. In this case, the spin group is isomorphic to the group of 2x2 unitary
matrices with determinant one, which naturally sits inside the matrix algebra. This group acts by
conjugation on the real vector space spanned by the Pauli matrices themselves, realizing it as a group
of rotations among them, but it also acts on the column vectors (that is, the spinors). So, in this study,
a different geometric interpretation of spinors has been created by using Pauli matrices and spinors. A
different (spinor) representation of Bertrand curves, one of the most important curve pairs in differential
geometry, has been obtained. Thus, this study in geometry brings a new perspective as an interesting
geometric interpretation of spinors used in many fields of science.
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