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1. Introduction

The new era of fixed point theory associated with metrics is now ineluctably associated with
medical biological sciences, abstract terminology, space analysis and epidemiological data mining
through engineering. This were often persisted by extending metric fixed point theory to a profusion
of literature from computational engineering, fluid mechanics, and medical science. Fixed point
theory has made a brief appearance as its own literature in the analysis of metric spaces, as keep
referring to many other mathematical groups. Popular uses of metric fixed point theory involve
defining and/or generalizing the various metric spaces and the notion of contractions. These
extensions are also rendered with the intended consequence of a deeper comprehension of the
geometric properties of Banach spaces, set theory, and non-expensive mappings.

A qualitative principle that concerns seeking conditions on the set M structure and choosing a
mapping on M to get a fixed point is generally referred to as a fixed point theorem. The fixed point
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theory framework falls from the larger field of nonlinear functional analysis. Many of the natural
sciences and engineering physical questions are usually developed in the form of numerical and
analytical equations. Fixed-point assumptions find potential advantages in proving the existence of
the solutions of some differential and integral equations which occur in the analysis of heat and mass
transfer problems, chemical and electro-chemical processes, fluid dynamics, molecular physics and in
many other fields. In 2006, Mustafa and Sims [17] introduced the concept of G -metric space as a
generalization of metric space.

It is calculated that investigators get their fresh outputs from engineering mathematics and/or its
applications from ∼ 60%. For example, non-linear integral equations: it has been commonly utilized
both in engineering and technology streams of all kinds. These are also appealing to researchers
because of the simplicity of using non-linear integral equations and/or their implementations for
approximation/numerical/data analysis strategies. In bio-medical sciences, evolution, database
technology and computational systems, the steady flow of non-linear integral equations will create
fresh avenues in broad directions. Non-linear integral equations are gradually becoming methods for
different aspects of hydrodynamics, cognitive science, respectively (see for example [20–36]). The
impetus of this work is to prove coupled coincidence point theorems for two mappings via rational
type contractions satisfying mixed g-monotone property which are the generalizations of theorems of
Chouhan and Richa Sharma [5] and extensions of some other existed results.

The basic definitions and propositions which are used to derive our main results are given below
and also note that G -metric and g-monotone property are denoted by ϑ−metric and B-monotone
property respectively through out this paper.

Definition 1.1. ( [17]) Let M be a set wihch is nonempty and ϑ : M ×M ×M → R such that

(ϑ1) ϑ(a, b, c) ≥ 0 for all a, b, c ∈M with ϑ(a, b, c) = 0 if a = b = c;
(ϑ2) ϑ(a, a, b) > 0 for all a, b ∈M with a , b;
(ϑ3) ϑ(a, a, b) ≤ ϑ(a, b, c) for all a, b, c ∈M with c , b;
(ϑ4) ϑ(a, b, c) = ϑ(a, c, b) = ϑ(b, a, c) = ϑ(c, a, b) = ϑ(b, c, a) = ϑ(c, b, a) for all a, b, c ∈M ;
(ϑ5) ϑ(a, b, c) ≤ ϑ(a, d, d) + ϑ(d, b, c) for all a, b, c, d ∈M .

Then the pair (M , ϑ) is called a ϑ-metric space with ϑ-metric ϑ on M . Axioms (ϑ4) and (ϑ5) are
referred to as the symmetry and the rectangle inequality (of ϑ) respectively.

If (M ,≤) is partially ordered set in the definition of ϑ-metric space, then (M , ϑ,≤) is partially
ordered ϑ-metric space.
Given a ϑ-metric space (M , ϑ), define

ρϑ(a, b) = ϑ(a, b, b) + ϑ(a, a, b) for all a, b, c ∈M . (1.1)

Then it is seen in [17] that ϑ is a metric on M , and that the family of all ϑ-balls
{
Bϑ(a, r) : a ∈

M , r > 0
}

is the base topology, called the ϑ-metric topology τ(ϑ) on M , where Bϑ(a, r) =
{
b ∈ M :

ϑ(a, b, b) < r
}
. Further, it was shown that the ϑ-metric topology coincides with the metric topology

induced by the metric ϑ, which allows us to readily transform many concepts from metric spaces into
ϑ-metric space.

Definition 1.2. ( [17]) If a sequence 〈aκ〉 ∞n=1 in (M , ϑ) converges to an element p ∈M in the ϑ-metric
topology τ(ϑ), then 〈aκ〉 ∞n=1 is called ϑ-convergent with limit p.
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Proposition 1.1. ( [17]) If (M , ϑ) is a ϑ-metric space, then following are equivalent.

(i) 〈aκ〉 ∞κ=1 is ϑ-convergent to a;
(ii) ϑ(aκ, aκ, a)→ 0 as κ → ∞;

(iii) ϑ(aκ, a, a)→ 0 as κ → ∞;
(iv) ϑ(aκ, aη, a)→ 0 as κ, η→ ∞.

Definition 1.3. ( [17]) A sequence 〈aκ〉 in (M , ϑ)is called ϑ-Cauchy if for every σ > 0 there exists a
positive integer N such that ϑ(aκ, aη, aζ) < σ for all κ, η, ζ ≥ N .

Proposition 1.2. ( [18]) If (M , ϑ) is a ϑ-metric space,then 〈aκ〉 is ϑ-Cauchy if and only if for every
σ > 0, there exists a positive integer N such that ϑ(aκ, aη, aη) < σ for all η, κ ≥ N .

Proposition 1.3. ( [17]) Every ϑ-convergent sequence in (M , ϑ) is ϑ-Cauchy.

Definition 1.4. ( [17]) If every ϑ-Cauchy sequence in M converges in M , then (M , ϑ) is called
ϑ-complete.

Proposition 1.4. ( [17]) If (M , ϑ)is a ϑ-metric space and B is a self-map on M , then B is ϑ-
continuous at a point a ∈ M iff the sequence〈Baκ〉 converges to Ba whenever 〈aκ〉 converges to
a.

Proposition 1.5. ( [17]) The ϑ-metric ϑ(a, b, c) is continuous jointly in all the variables a, b and c.

Proposition 1.6. ( [17]) If (M , ϑ) is a ϑ-metric space, then

(i) if ϑ(a, b, c) = 0 then a = b = c;
(ii) ϑ(a, b, c) ≤ ϑ(a, a, b) + ϑ(a, a, c);

(iii) ϑ(a, b, b) ≤ 2ϑ(b, a, a);
(iv) ϑ(a, b, c) ≤ ϑ(a, x, c) + ϑ(x, b, c) for all a, b, c, x ∈M .

Definition 1.5. ( [6]) Let (M , ϑ) be a ϑ-metric space and X : M ×M → M be a mapping on
M ×M . Then X is called continuous if the sequence 〈X (an, bn)〉 converge to X (a, b) whenever the
sequences 〈an〉 and 〈bn〉 are converge to a and b respectively.

Definition 1.6. ( [11]) Let M be a set which is nonempty and X : M ×M →M , B : M →M be
two mappings. Then X is said to be commute with B if X (Ba,Bb) = B(X (a, b)).

Definition 1.7. ( [11]) Let M be a set which is nonempty set and X : M ×M →M , B : M →M
be two mappings. Then X is said to have mixed B-monotone property if

a1, a2 ∈M ,Ba1 ≤ Ba2 ⇒X (a1, b) ≤X (a2, b)
and

b1, b2 ∈M ,Bb1 ≤ Bb2 ⇒X (b1, a) ≥X (b2, a)
for all a, b ∈M .

If B is an identity mapping in the above deinition, then X has mixed monotone property.

Definition 1.8. ( [2]) If M is a set which is nonempty and X : M ×M → M is a mapping such
thatX (a, b) = a and X (b, a) = b, then (a, b) ∈M ×M is called coupled fixed point of X .
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Definition 1.9. ( [17]) If M is a set which is nonempty set and X : M ×M →M , B : M →M
are two mappings such that X (a, b) = Ba and X (b, a) = Bb, then (a, b) ∈M ×M is called coupled
coincidence point of X and B.

If B is an identity mapping in the above definition, then (a, b) is called coupled fixed point of a
mapping X .

2. Main results

Theorem 2.1. Let (M , ϑ,≤) be a partially ordered complete ϑ-metric space and X : M ×M →M ,
B : M →M be two continuous mappings such that X has mixed B-monotone property and

(i) there exist α, β, γ ∈ [0, 1) and L ≥ 0 with 8α + β + γ < 1 such that

ϑ(X (x, y),X (u, v),X (w, z)) (2.1)

≤ αϑ(B,X (x,y),X (y,x))ϑ(Bu,X (u,v),X (u,v))ϑ(Bw,X (w,z),X (w,z))
[ϑ(Bx,Bu,Bw)]2 + βϑ(Bx,Bu,Bw),

+ γϑ(By,Bv,Bz) + Lmin
{
ϑ(Bx,X (u, v),X (w, z)), ϑ(Bu,X (x, y),X (w, z)),

ϑ(Bw,X (x, y),X (u, v)), ϑ(Bx,X (x, y),X (x, y)),

ϑ(Bu,X (u, v),X (u, v)), ϑ(Bw,X (w, z),X (w, z))
}

for all x, y, u, v,w, z ∈M with Bx ≥ Bu ≥ Bw and By ≤ Bv ≤ Bz;

(ii) X (M ×M ) ⊆ B(M );
(iii) B commutes with X .

If there exist x0, y0 ∈ M such that Bx0 ≤ X (x0, y0) and By0 ≥ X (y0, x0), then X and B have a
coupled coincidence point in M ×M .

Proof. Let x0 and y0 be any two elements in M such that Bx0 ≤ X (x0, y0) and By0 ≥ X (y0, x0).
Since X (M ×M ) ⊆ B(M ), we construct two sequences 〈xκ〉∞κ=1 and 〈yκ〉∞κ=1 in M as follows:

Bxκ+1 = X (xκ, yκ) and Byκ+1 = X (yκ, xκ) for κ ∈ N.

Since X has mixed B-monotone property, we have

Bxκ = X (xκ−1, yκ−1) ≤X (xκ, yκ−1) ≤X (xκ, yκ) = Bxκ+1

and Byκ+1 = X (yκ, xκ) ≤X (yκ−1, xκ) ≤X (yκ−1, xκ−1) = Byκ.

Now using (2.1) with x = xκ, y = yκ, u = w = xκ−1 and v = z = yκ−1, we get

ϑ(Bxκ+1,Bxκ,Bxκ) = ϑ(X (xκ, yκ),X (xκ−1, yκ−1),X (xκ−1, yκ−1))

≤αϑ(Bxκ,X (xκ,yκ),X (xκ,yκ))ϑ(Bxκ−1,X (xκ−1,yκ−1),X (xκ−1,yκ−1))ϑ(Bxκ−1,X (xκ−1,yκ−1),X (xκ−1,yκ−1))
[ϑ(Bxκ,Bxκ−1,Bxκ−1)]2

+ βϑ(Bxκ,Bxκ−1,Bxκ−1) + γϑ(Byκ,Byκ−1,Byκ−1)

+ Lmin
{
ϑ(Bxκ,X (xκ−1, yκ−1),X (xκ−1, yκ−1)), ϑ(Bxκ−1,X (xκ, yκ),X (xκ−1, yκ−1)),
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ϑ(Bxκ−1,X (xκ, yκ),X (xκ−1, yκ−1)), ϑ(Bxκ,X (xκ, yκ),X (yκ, xκ)),

ϑ(Bxκ−1,X (xκ−1, yκ−1),X (xκ−1, yκ−1)), ϑ(Bxκ−1,X (xκ−1, yκ−1),X (xκ−1, yκ−1))
}

=αϑ(Bxκ,Bxκ+1,Bxκ+1)ϑ(Bxκ−1,Bxκ,Bxκ)ϑ(Bxκ−1,Bxκ,Bxκ)
[ϑ(Bxκ,Bxκ−1,Bxκ−1)]2

+ βϑ(Bxκ,Bxκ−1,Bxκ−1) + γϑ(Byκ,Byκ−1,Byκ−1)

+ Lmin
{
ϑ(Bxκ,Bxκ,Bxκ), ϑ(Bxκ−1,Bxκ+1,Bxκ),

ϑ(Bxκ−1,Bxκ+1,Bxκ)), ϑ(Bxκ,Bxκ+1,Bxκ+1),

ϑ(Bxκ−1,Bxκ,Bxκ), ϑ(Bxκ−1,Bxκ,Bxκ)
}

≤8αϑ(Bxκ+1,Bxκ,,Bxκ)ϑ(Bxκ,Bxκ−1,Bxκ−1)ϑ(Bxκ,Bxκ−1,Bxκ−1)
[ϑ(Bxκ,Bxκ−1,Bxκ−1)]2

+ βϑ(Bxκ,Bxκ−1,Bxκ−1) + γϑ(Byκ,Byκ−1,Byκ−1)

so that

ϑ(Bxκ+1,Bxκ,Bxκ) ≤
1

(1 − 8α)
[βϑ(Bxκ,Bxκ−1,Bxκ−1) + γϑ(Byκ,Byκ−1,Byκ−1)] (2.2)

Similarly,

ϑ(Byκ+1,Byκ,Byκ) ≤
1

(1 − 8α)
[βϑ(Byκ,Byκ−1,Byκ−1) + γϑ(Bxκ,Bxκ−1,Bxκ−1)] (2.3)

Adding (2.2) and (2.3), we have

ϑ(Bxκ+1,Bxκ,Bxκ) + ϑ(Byκ+1,Byκ,Byκ) (2.4)

≤
β + γ

1 − 8α
[ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)].

Let ∆κ = ϑ(Bxκ+1,Bxκ,Bxκ) + ϑ(Byκ+1,Byκ,Byκ) and c =
β + γ

1 − 8α
where 0 ≤ c < 1 inview of choice of α, β and γ.
Now the inequality (2.4) becomes as follows
∆κ ≤ c.∆κ−1 for κ ∈ N
Consequently ∆κ ≤ c∆κ−1 ≤ c2∆κ−2 ≤ ... ≤ cκ∆0

If ∆0 = 0, we have ϑ(Bx1,Bx0,Bx0) + ϑ(By1,By0,By0) = 0
or ϑ(X (x0, y0),Bx0,Bx0) + ϑ(X (y0, x0),By0,By0) = 0 which implies that X (x0, y0) = Bx0 and
X (y0, x0) = By0.
That is, (x0, y0) is a coupled coincidence point of X and B.
Suppose that ∆0 > 0.
Now by applying rectangle inequality of ϑ-metric repeatedly and using inequality ∆κ ≤ cκ∆0, we have

ϑ(Bxη,Bxκ,Bxκ) + ϑ(Byη,Byκ,Byκ) ≤ [ϑ(Bxκ+1,Bxκ,Bxκ) + ϑ(Bxη,Bxκ+1,Bxκ+1)]
+ [ϑ(Byκ+1,Byκ,Byκ) + ϑ(Byη,Byκ+1,Byκ+1)]

≤[ϑ(Bxκ+1,Bxκ,Bxκ) + ϑ(Bxκ+2,Bxκ+1,Bxκ+1) + ϑ(Bxη,Bxκ+2,Bxκ+2)]
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[ϑ(Byκ+1,Byκ,Byκ) + ϑ(Byκ+2,Byκ+1,Byκ+1) + ϑ(Byη,Byκ+2,Byκ+2)]
...

≤[ϑ(Bxκ+1,Bxκ,Bxκ) + ϑ(Bxκ+2,Bxκ+1,Bxκ+1) + · · · + ϑ(Bxη,Bxη−1,Bxη−1)]
[ϑ(Byκ+1,Byκ,Byκ) + ϑ(Byκ+2,Byκ+1,Byκ+1) + · · · + ϑ(Byη,Byη−1,Byη−1)]

=∆κ + ∆κ+1 + ∆κ+2 + · · · + ∆η−1

≤[cκ + cκ+1 + · · · + cη−1]∆0

≤cκ ·
1

1 − c
∆0 for η > κ

or
ϑ(Bxη,Bxκ,Bxκ) + ϑ(Byη,Byκ,Byκ) ≤ cκ ·

1
1 − c

∆0 for η > κ. (2.5)

Since 0 ≤ c < 1,cκ → 0 as κ → ∞.
Now applying limit as κ → ∞ with η > κ in the inequality (2.5), we have
ϑ(Bxη,Bxκ,Bxκ)+ϑ(Byη,Byκ,Byκ) ≤ 0 which follows that 〈xκ〉∞κ=1 and 〈yκ〉∞κ=1 are cauchy sequences
in M .
Since (M , ϑ) is a partially ordered complete ϑ-metric space, there exist p, q ∈ M such that xκ → p
and yκ → q.
Now we prove that (p, q) is a coupled coincidence point of X and B.
Since X commutes with B, we have

X (Bxκ,Byκ) = B(X (xκ, yκ)) = B(Bxκ+1)
and

X (Byκ,Bxκ) = B(X (yκ, xκ)) = B(Byκ+1)

Since X and B are continuous, we have

lim
κ→∞

X (Bxκ,Byκ) = lim
κ→∞

B(Bxκ+1) = Bp

and
lim
κ→∞

X (Byκ,Bxκ) = lim
κ→∞

B(Byκ+1) = Bq

Snice ϑ is continuous in all its variables, we have

ϑ(X (p, q),Bp,Bp) = ϑ(lim
κ→∞

X (Bxκ,Byκ),Bp,Bp)) = ϑ(Bp,Bp,Bp)

so that
ϑ(X (p, q),Bp,Bp) = 0

which implies that X (p, q) = Bp.
Similarly, it can be proved that X (q, p) = Bq.
Hence (p, q) is a coupled coincidence point of X and B. �

Remark 2.1. (i.) If we assume B is an identity mapping and γ = 0 in the Theorem 2.1, then we get
Theorem 3.1 in the results of the Chouhan and Richa Sharma [5];
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(ii.) If we take, α = 0 and β = α, γ = β in the Theorem 2.1, we get Theorem 3.1 in the results of
Chandok et al. [3];

(iii.) By taking γ = 0 and L = 0, we get Theorem 2.1 in the results of Chakrabarti [4].
That is Theorem 2.1 is generalization and extension of above three results.

The following is the example to illusrative Theorem 2.1.

Example 2.1. Let M = [0, 1], with ϑ-metric ϑ(x, y, z) =

0, x = y = z,

max {x, y, z} , otherwise.
Define partial order on X as x ≥ y for any x, y ∈M . Then(M , ϑ,≤) is a partially ordered ϑ-complete.

Define X : M ×M →M by X (x, y) =

 x
3(y2+2) , x ≥ y

0 otherwise
and B : M →M by Bx = x

4 .
Then clearlyX , B are continuous and X satisfies mixed B-monotone property. We show that X

satisfies the inequality (2.1) with α = β = γ = 1
32 so that 0 ≤ 8α + β + γ < 1 and for any L ≥ 0.

Let x, y, z, u, v,w ∈M be such that x ≥ u ≥ w and y ≤ v ≤ z.

We discuss four cases:
Case (i): If x ≥ y, u ≥ v and w ≥ z then we have X (x, y) = x

3(y2+2) , X (u, v) = u
3(v2+2) and

X (w, z) = w
3(z2+2)

ϑ(X (x, y),X (u, v),X (w, z)) = max
{

x
3(y2 + 2)

,
u

3(v2 + 2)
,

w
3(z2 + 2)

}
=

x
3(y2 + 2)

≤
1

32
[
16wux

x2 +
x
4

+
u
4

]

=
1

32
ϑ(Bx,X (x,y),X (y,x))ϑ(Bu,X (u,v),X (u,v))ϑ(Bw,X (w,z),X (w,z))

[ϑ(Bx,Bu,Bw)]2

+
1

32
ϑ(Bx,Bu,Bw) +

1
32
ϑ(By,Bv,Bz)

≤
1

32
ϑ(Bx,X (x,y),X (y,x))ϑ(Bu,X (u,v),X (u,v))ϑ(Bw,X (w,z),X (w,z))

[ϑ(Bx,Bu,Bw)]2

+
1

32
ϑ(Bx,Bu,Bw) +

1
32
ϑ(By,Bv,Bz)

+ Lmin
{
ϑ(Bx,X (u, v),X (w, z)), ϑ(Bu,X (x, y),X (w, z)),

ϑ(Bw,X (x, y),X (u, v)), ϑ(Bx,X (x, y),X (x, y)),

ϑ(Bu,X (u, v),X (u, v)), ϑ(Bw,X (w, z),X (w, z)
}

Case (ii): If x ≥ y, u ≥ v and w < z then we have X (x, y) = x
3(y2+2) , X (u, v) = u

3(v2+2) and X (w, z) = 0
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ϑ(X (x, y),X (u, v),X (w, z)) = max
{

x
3(y2 + 2)

,
u

3(v2 + 2)
, 0

}
=

x
3(y2 + 2)

≤
1

32
[
16wux

x2 +
x
4

+
u
4

]

≤
1

32
ϑ(Bx,X (x,y),X (y,x))ϑ(Bu,X (u,v),X (u,v))ϑ(Bw,X (w,z),X (w,z))

[ϑ(Bx,Bu,Bw)]2

+
1

32
ϑ(Bx,Bu,Bw) +

1
32
ϑ(By,Bv,Bz)

+ Lmin
{
ϑ(Bx,X (u, v),X (w, z)), ϑ(Bu,X (x, y),X (w, z)),

ϑ(Bw,X (x, y),X (u, v)), ϑ(Bx,X (x, y),X (x, y)),

ϑ(Bu,X (u, v),X (u, v)), ϑ(Bw,X (w, z),X (w, z))
}

Case (iii): If x ≥ y, u < v and w < z, then we have X (x, y) = x
3(y2+2) , X (u, v) = 0 and X (w, z) = 0

ϑ(X (x, y),X (u, v),X (w, z)) = max
{

x
3(y2 + 2)

, 0, 0
}

=
x

3(y2 + 2)

≤
1

32
[
16wux

x2 +
x
4

+
u
4

]

≤
1

32
ϑ(Bx,X (x,y),X (y,x))ϑ(Bu,X (u,v),X (u,v))ϑ(Bw,X (w,z),X (w,z))

[ϑ(Bx,Bu,Bw)]2

+
1

32
ϑ(Bx,Bu,Bw) +

1
32
ϑ(By,Bv,Bz)

+ Lmin
{
ϑ(Bx,X (u, v),X (w, z)), ϑ(Bu,X (x, y),X (w, z)),

ϑ(Bw,X (x, y),X (u, v)), ϑ(Bx,X (x, y),X (x, y)),

ϑ(Bu,X (u, v),X (u, v)), ϑ(Bw,X (w, z),X (w, z))
}

Case (iv): If x < y, u < v and w < z, then X (x, y) = x
3(y2+2) ,X (u, v) = 0 and X (w, z) = 0, it follows

that

ϑ(X (x, y),X (u, v),X (w, z)) ≤
1

32
ϑ(Bx,X (x,y),X (y,x))ϑ(Bu,X (u,v),X (u,v))ϑ(Bw,X (w,z),X (w,z))

[ϑ(Bx,Bu,Bw)]2

+
1
32
ϑ(Bx,Bu,Bw) +

1
32
ϑ(By,Bv,Bz)

+ Lmin
{
ϑ(Bx,X (u, v),X (w, z)), ϑ(Bu,X (x, y),X (w, z)),

ϑ(Bw,X (x, y),X (u, v)), ϑ(Bx,X (x, y),X (x, y)),

AIMS Mathematics Volume 6, Issue 4, 3562–3582.



3570

ϑ(Bu,X (u, v),X (u, v)), ϑ(Bw,X (w, z),X (w, z))
}

In similar manner, the cases x < y, u ≥ v,w ≥ z; x < y, u < v,w ≥ z and all others can be handled.
Thus X and B satify all the conditions of Theorem 2.1 and also note that (0, 0) is a coupled
coincidence point of X and B.

Theorem 2.2. Let (M , ϑ,≤) be a partially ordered complete ϑ-metric space and X : M ×M →M ,
B : M →M be two continuous mappings such that X has mixed B-monotone property and

(i) there exist α, β, γ ∈ [0, 1) and L ≥ 0 with 2α + β + γ < 1 such that

ϑ(X (x, y),X (u, v),X (w, z)) (2.6)

≤ αϑ(Bx,X (x,y),X (y,x))[1+ϑ(Bu,X (u,v),X (u,v))][1+ϑ(Bw,X (w,z),X (w,z))]
[1+2ϑ(Bx,Bu,Bw)]2 + βϑ(Bx,Bu,Bw),

+ γϑ(By,Bv,Bz) + Lmin
{
ϑ(Bx,X (u, v),X (w, z)), ϑ(Bu,X (x, y),X (w, z)),

ϑ(Bx,X (x, y),X (x, y), ϑ(Bu,X (u, v),X (u, v))
}

for all x, y, u, v,w, z ∈M with Bx ≥ Bu ≥ Bw and By ≤ Bv ≤ Bz;

(ii) X (M ×M ) ⊆ g(M );
(iii) B commutes with X .

If there exist x0, y0 ∈ M such that Bx0 ≤ X (x0, y0) and By0 ≥ X (y0, x0), then X and B have a
coupled coincidence point in M ×M .

Proof. Let x0 and y0 be any two elements in M such that Bx0 ≤ X (x0, y0) and By0 ≥ X (y0, x0).
Since X (M ×M ) ⊆ B(M ), we constuct two sequences 〈xκ〉∞κ=1 and 〈yκ〉∞κ=1 in M as follows:

Bxκ+1 = X (xκ, yκ) and Byκ+1 = X (yκ, xκ) for κ ∈ N.

Since X has mixed B-monotone property, we have

Bxκ = X (xκ−1, yκ−1) ≤X (xκ, yκ−1) ≤X (xκ, yκ) = Bxκ+1

and Byκ+1 = X (yκ, xκ) ≤X (yκ−1, xκ) ≤X (yκ−1, xκ−1) = Byκ.

Now using (2.1) with x = xκ,y = yκ, u = w = xκ−1 and v = z = yκ−1, we get

ϑ(Bxκ+1,Bxκ,Bxκ) = ϑ(X (xκ, yκ),X (xκ−1, yκ−1),X (xκ−1, yκ−1))

≤αϑ(Bxκ,X (xκ,yκ),X (xκ,yκ))[1+ϑ(Bxκ−1,X (xκ−1,yκ−1),X (xκ−1,yκ−1))][1+ϑ(Bxκ−1,X (xκ−1,yκ−1),X (xκ−1,yκ−1))]
[1+2ϑ(Bxκ,Bxκ−1,Bxκ−1)]2

+ βϑ(Bxκ,Bxκ−1,Bxκ−1) + γϑ(Byκ,Byκ−1,Byκ−1)
+ Lmin

{
ϑ(Bxκ,X (xκ−1, yκ−1),X (xκ−1, yκ−1)), ϑ(Bxκ−1,X (xκ, yκ),X (xκ−1, yκ−1)),

ϑ(Bxκ,X (xκ, yκ),X (yκ, xκ)), ϑ(Bxκ−1,X (xκ−1, yκ−1),X (xκ−1, yκ−1))
}

=αϑ(Bxκ,Bxκ+1,Bxκ+1)[1+ϑ(Bxκ−1,Bxκ,Bxκ)][1+ϑ(Bxκ−1,Bxκ,Bxκ)]
[1+2ϑ(Bxκ,Bxκ−1,Bxκ−1)]2

+ βϑ(Bxκ,Bxκ−1,Bxκ−1) + γϑ(Byκ,Byκ−1,Byκ−1)
+ Lmin

{
ϑ(Bxκ,Bxκ,Bxκ), ϑ(Bxκ−1,Bxκ+1,Bxκ),

ϑ(Bxκ,Bxκ+1,Bxκ+1), ϑ(Bxκ−1,Bxκ,Bxκ)
}
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≤α 2ϑ(Bxκ+1,Bxκ,Bxκ)[1+2ϑ(Bxκ,Bxκ−1,Bxκ−1)][1+2ϑ(Bxκ,Bxκ−1,Bxκ−1)]
[1+2ϑ(Bxκ,Bxκ−1,Bxκ−1)]2

+ βϑ(Bxκ,Bxκ−1,Bxκ−1) + γϑ(Byκ,Byκ−1,Byκ−1)

so that

ϑ(Bxκ+1,Bxκ,Bxκ) ≤
1

(1 − 2α)
[βϑ(Bxκ,Bxκ−1,Bxκ−1) + γϑ(Byκ,Byκ−1,Byκ−1)] (2.7)

Similarly,

ϑ(Byκ+1,Byκ,Byκ) ≤
1

(1 − 2α)
[βϑ(Byκ,Byκ−1,Byκ−1) + γϑ(Bxκ,Bxκ−1,Bxκ−1)] (2.8)

Adding (2.7) and (2.8), we have

ϑ(Bxκ+1,Bxκ,Bxκ) + ϑ(Byκ+1,Byκ,Byκ) (2.9)

≤
β + γ

1 − 2α
[ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)].

Let ∆κ = ϑ(Bxκ+1,Bxκ,Bxκ) +ϑ(Byκ+1,Byκ,Byκ) and c =
β + γ

1 − 2α
where 0 ≤ c < 1 inview of choice

of α, β and γ.
Now the inequality (2.9) becomes as follows
∆κ ≤ c.∆κ−1 for n ∈ N.
Consequently ∆κ ≤ c∆κ−1 ≤ c2∆κ−2 ≤ ... ≤ cκ∆0.
If ∆0 = 0, we have ϑ(Bx1,Bx0,Bx0) + ϑ(By1,By0,By0) = 0
or ϑ(X (x0, y0),Bx0,Bx0) + ϑ(X (y0, x0),By0,By0) = 0 which implies that X (x0, y0) = Bx0 and
X (y0, x0) = By0.
That is, (x0, y0) is a coupled coincidence point of X and B.
Suppose that ∆0 > 0.
Now using repeated application of rectangle inequality of ϑ-metric and inequality ∆κ ≤ cκ∆0, we have

ϑ(Bxη,Bxκ,Bxκ) + ϑ(Byη,Byκ,Byκ) ≤ [ϑ(Bxκ+1,Bxκ,Bxκ) + ϑ(Bxη,Bxκ+1,Bxκ+1)]
+ [ϑ(Byκ+1,Byκ,Byκ) + ϑ(Byη,Byκ+1,Byκ+1)]

≤[ϑ(Bxκ+1,Bxκ,Bxκ) + ϑ(Bxκ+2,Bxκ+1,Bxκ+1) + ϑ(Bxη,Bxκ+2,Bxκ+2)]
[ϑ(Byκ+1,Byκ,Byκ) + ϑ(Byκ+2,Byκ+1,Byκ+1) + ϑ(Byη,Byκ+2,Byκ+2)]

...

≤[ϑ(Bxκ+1,Bxκ,Bxκ) + ϑ(Bxκ+2,Bxκ+1,Bxκ+1) + · · · + ϑ(Bxη,Bxη−1,Bxη−1)]
[ϑ(Byκ+1,Byκ,Byκ) + ϑ(Byκ+2,Byκ+1,Byκ+1) + · · · + ϑ(Byη,Byη−1,Byη−1)]

=∆κ + ∆κ+1 + ∆κ+2 + · · · + ∆η−1

≤[cκ + cκ+1 + · · · + cη−1]∆0

≤cκ ·
1

1 − c
∆0 for η > κ

or
ϑ(Bxη,Bxκ,Bxκ) + ϑ(Byη,Byκ,Byκ) ≤ cκ ·

1
1 − c

∆0 for η > κ. (2.10)
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Since 0 ≤ c < 1,cκ → 0 as κ → ∞.
Now applying limit as κ → ∞ with η > κ in the inequality (2.10), we have
ϑ(Bxη,Bxκ,Bxκ) + ϑ(Byη,Byκ,Byκ) ≤ 0 which follows that 〈xκ〉∞κ=1 and 〈yκ〉∞κ=1 are ϑ−cauchy
sequences in M .
Since (M , ϑ) is a partially ordered ϑ-complete, there exist a, b ∈M such that xκ → a and yκ → b.
Now we prove that (a, b) is a coupled coincidence point of X and B.
Since X commutes with B, we have

X (Bxκ,Byκ) = B(X (xκ, yκ)) = B(Bxκ+1)
and

X (Byκ,Bxκ) = B(X (yκ, xκ)) = B(Byκ+1)

Since X and B are continuous, we have

lim
κ→∞

X (Bxκ,Byκ) = lim
κ→∞

B(Bxκ+1) = Ba

and
lim
κ→∞

X (Byκ,Bxκ) = lim
κ→∞

B(Byκ+1) = Bb

Since ϑ is continuous in all its variables, we have

ϑ(X (a, b),Ba,Bb) = ϑ(lim
κ→∞

X (Bxκ,Byκ),Ba,Ba) = ϑ(Ba,Ba,Ba)

so that
ϑ(X (a, b),Bb,Bb) = 0

which implies that X (a, b) = Ba.
Similarly, it can be verified that X (b, a) = Bb.
Thus(a, b) is a coupled coincidence point of X and B in M ×M . �

Remark 2.2. If we take B is an identity mapping and γ = 0 in the Theorem 2.2, we get Theorem 3.1
in the results of the Chouhan and Richa Sharma [5].

Theorem 2.3. Let (M , ϑ,≤) be a partially ordered complete ϑ-metric space and X : M ×M →M ,
B : M →M be two continuous mappings such that X has mixed B-monotone property and

(i) there exist non negative real numbers Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6,Ψ7,Ψ8 and Ψ9 with 0 ≤ Ψ1 + Ψ2 +

Ψ3 + Ψ4 + Ψ5 + Ψ6 + Ψ7 + Ψ8 + Ψ9 < 1 such that

ϑ(X (x, y),X (u, v),X (w, z)) (2.11)

≤Ψ1
ϑ(Bx,Bu,Bw) + ϑ(By,Bv,Bz)

2
+ Ψ2

ϑ(X (x, y),X (u, v),X (w, z)) · ϑ(Bx,Bu,Bw)
1 + ϑ(Bx,Bu,Bw) + ϑ(By,Bv,Bz)

,

+Ψ3
ϑ(X (x, y),X (u, v),X (w, z)) · ϑ(By,Bv,Bz)

1 + ϑ(Bx,Bu,Bw) + ϑ(By,Bv,Bz)
+ Ψ4

ϑ(Bx,Bx,X (x, y)) · ϑ(Bx,Bu,Bw)
1 + ϑ(Bx,Bu,Bw) + ϑ(By,Bv,Bz)

,

+ Ψ5
ϑ(Bx,Bx,X (x, y)) · ϑ(By,Bv,Bz)
1 + ϑ(Bx,Bu,Bw) + ϑ(By,Bv,Bz)

+ Ψ6
ϑ(Bu,Bu,X (u, v)) · ϑ(Bx,Bu,Bw)
1 + ϑ(Bx,Bu,Bw) + ϑ(By,Bv,Bz)

,
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+ Ψ7
ϑ(Bu,Bu,X (u, v)) · ϑ(By,Bv,Bz)
1 + ϑ(Bx,Bu,Bw) + ϑ(By,Bv,Bz)

+ Ψ8
ϑ(Bw,Bw,X (w, z)) · ϑ(Bx,Bu,Bw)
1 + ϑ(Bx,Bu,Bw) + ϑ(By,Bv,Bz)

,

+ Ψ9
ϑ(Bw,Bw,X (w, z)) · ϑ(By,Bv,Bz)
1 + ϑ(Bx,Bu,Bw) + ϑ(By,Bv,Bz)

for all x, y, u, v,w, z ∈M with Bx ≥ Bu ≥ Bw and By ≤ Bv ≤ Bz;

(ii) X (M ×M ) ⊆ B(M );
(iii) B commutes with X .

If there exist x0, y0 ∈ M such that Bx0 ≤ X (x0, y0) and By0 ≥ X (y0, x0), then X and B have a
coupled coincidence point in M ×M .

Proof. Let x0 and y0 be any two elements in M such that Bx0 ≤ X (x0, y0) and By0 ≤ X (y0, x0).
Since X (M ×M ) ⊆ g(M ), we constuct two sequences 〈xκ〉∞κ=1 and 〈yκ〉∞κ=1 in M as follows:

Bxκ+1 = X (xκ, yκ) and Byκ+1 = X (yκ, xκ) for κ ∈ N.

Since X has mixed B-monotone property, we have

Bxκ = X (xκ−1, yκ−1) ≤X (xκ, yκ−1) ≤X (xκ, yκ) = Bxκ+1

and Byκ+1 = X (yκ, xκ) ≤X (yκ−1, xκ) ≤X (yκ−1, xκ−1) = Byκ.

Now using (2.11) with x = xκ, y = yκ, u = w = xκ−1 and v = z = yκ−1, we get

ϑ(Bxκ+1,Bxκ,Bxκ) = ϑ(X (xκ, yκ),X (xκ−1, yκ−1),X (xκ−1, yκ−1))

≤Ψ1
ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)

2

+ Ψ2
ϑ(X (xκ, yκ),X (xκ−1, yκ−1),X (xκ−1, yκ−1)) · ϑ(Bxκ,Bxκ−1,Bxκ−1)

1 + ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)
,

+ Ψ3
ϑ(X (xκ, yκ),X (xκ−1, yκ−1),X (xκ−1, yκ−1)) · ϑ(Byκ,Byκ−1,Byκ−1)

1 + ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)

+ Ψ4
ϑ(Bxκ,Bxκ,X (xκ, yκ)) · ϑ(Bxκ,Bxκ−1,Bxκ−1)

1 + ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)
,

+ Ψ5
ϑ(Bxκ,Bxκ,X (xκ, yκ)) · ϑ(Byκ,Byκ−1,Byκ−1)

1 + ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)

+ Ψ6
ϑ(Bxκ−1,Bxκ−1,X (xκ−1, yκ−1)) · ϑ(Bxκ,Bxκ−1,Bxκ−1)

1 + ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)
,

+ Ψ7
ϑ(Bxκ−1,Bxκ−1,X (xκ−1, yκ−1)) · ϑ(Byκ,Byκ−1,Byκ−1)

1 + ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)

+ Ψ8
ϑ(Bxκ−1,Bxκ−1,X (xκ−1, yκ−1)) · ϑ(Bxκ,Bxκ−1,Bxκ−1)

1 + ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)
,

+ Ψ9
ϑ(Bxκ−1,Bxκ−1,X (xκ−1, yκ−1)) · ϑ(Byκ,Byκ−1,Byκ−1)

1 + ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)

=Ψ1
ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)

2
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+ Ψ2
ϑ(Bxκ+1,Bxκ,Bxκ) · ϑ(Bxκ,Bxκ−1,Bxκ−1)

1 + ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byn−1)
,

+ Ψ3
ϑ(Bxκ+1,Bxκ,Bxκ) · ϑ(Byκ,Byκ−1,Byκ−1)

1 + ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)

+ Ψ4
ϑ(Bxκ,Bxκ,Bxκ+1) · ϑ(Bxκ,Bxκ−1,Bxκ−1)

1 + ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)
,

+ Ψ5
ϑ(Bxκ,Bxκ,Bxκ+1) · ϑ(Byκ,Byκ−1,Byκ−1)

1 + ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)

+ Ψ6
ϑ(Bxκ−1,Bxκ−1,Bxκ) · ϑ(Bxκ,Bxκ−1,Bxκ−1)

1 + ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)
,

+ Ψ7
ϑ(Bxκ−1,Bxκ−1,Bxκ) · ϑ(Byκ,Byκ−1,Byκ−1)

1 + ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)

+ Ψ8
ϑ(Bxκ−1,Bxκ−1,Bxκ) · ϑ(Bxκ,Bxκ−1,Bxκ−1)

1 + ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)
,

+ Ψ9
ϑ(Bxκ−1,Bxκ−1,Bxκ) · ϑ(Byκ,Byκ−1,Byκ−1)

1 + ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)

≤Ψ1
ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)

2
+ Ψ2ϑ(Bxκ+1,Bxκ,Bxκ) + Ψ3ϑ(Bxκ+1,Bxκ,Bxκ) + Ψ4ϑ(Bxκ+1,Bxκ,Bxκ)
+ Ψ5ϑ(Bxκ+1,Bxκ,Bxκ) + Ψ6ϑ(Bxκ−1,Bxκ−1,Bxκ) + Ψ7ϑ(Bxκ−1,Bxκ−1,Bxκ)
+ Ψ8ϑ(Bxκ−1,Bxκ−1,Bxκ) + Ψ9ϑ(Bxκ−1,Bxκ−1,Bxκ)

so that

ϑ(Bxκ+1,Bxκ,Bxκ) ≤
Ψ1
2 + Ψ6 + Ψ7 + Ψ8 + Ψ9

[1 − (Ψ2 + Ψ3 + Ψ4 + Ψ5)]
ϑ(Bxκ,Bxκ−1,Bxκ−1) (2.12)

+
Ψ1

2[1 − (Ψ2 + Ψ3 + Ψ4 + Ψ5)]
ϑ(Byκ,Byκ−1,Byκ−1)

Similarly,

ϑ(Byκ+1,Byκ,Byκ) ≤
Ψ1
2 + Ψ6 + Ψ7 + Ψ8 + Ψ9

[1 − (Ψ2 + Ψ3 + Ψ4 + Ψ5)]
ϑ(Byκ,Byκ−1,Byκ−1) (2.13)

+
Ψ1

2[1 − (Ψ2 + Ψ3 + Ψ4 + Ψ5)]
ϑ(Bxκ,Bxκ−1,Bxκ−1)

Adding (2.12) and (2.13), we have

ϑ(Bxκ+1,Bxκ,Bxκ) + ϑ(Byκ+1,Byκ,Byκ) (2.14)

≤
Ψ1 + Ψ6 + Ψ7 + Ψ8 + Ψ9

1 − (Ψ2 + Ψ3 + Ψ4 + Ψ5)
[ϑ(Bxκ,Bxκ−1,Bxκ−1) + ϑ(Byκ,Byκ−1,Byκ−1)].

Let ∆κ = ϑ(Bxκ+1,Bxκ,Bxκ) + ϑ(Byκ+1,Byκ,Byκ) and c =
Ψ1 + Ψ6 + Ψ7 + Ψ8 + Ψ9

1 − (Ψ2 + Ψ3 + Ψ4 + Ψ5)
where 0 ≤ c <

1 inview of choice of Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6,Ψ7,Ψ8 and Ψ9.

AIMS Mathematics Volume 6, Issue 4, 3562–3582.



3575

Now the inequality (2.14) becomes as follows
∆κ ≤ c.∆κ−1 for n ∈ N,
Consequently ∆κ ≤ c∆κ−1 ≤ c2∆κ−2 ≤ ... ≤ cκ∆0.
If ∆0 = 0, we have ϑ(Bx1,Bx0,Bx0) + ϑ(By1,By0,By0) = 0,
or ϑ(X (x0, y0),Bx0,Bx0) + ϑ(X (y0, x0),By0,By0) = 0 which implies that X (x0, y0) = Bx0 and
X (y0, x0) = By0.
That is, (x0, y0) is a coupled coincidence point of X and B.
Suppose that ∆0 > 0.
Now using rectangle inequality of ϑ-metric repeatedly and inequality ∆κ ≤ cκ∆0, we have

ϑ(Bxη,Bxκ,Bxκ) + ϑ(Byη,Byκ,Byκ) ≤ [ϑ(Bxκ+1,Bxκ,Bxκ) + ϑ(Bxη,Bxκ+1,Bxκ+1)]
+ [ϑ(Byκ+1,Byκ,Byκ) + ϑ(Byη,Byκ+1,Byκ+1)]

≤[ϑ(Bxκ+1,Bxκ,Bxκ) + ϑ(Bxκ+2,Bxκ+1,Bxκ+1) + ϑ(Bxη,Bxκ+2,Bxκ+2)]
[ϑ(Byκ+1,Byκ,Byκ) + ϑ(Byκ+2,Byκ+1,Byκ+1) + ϑ(Byη,Byκ+2,Byκ+2)]

...

≤[ϑ(Bxκ+1,Bxκ,Bxκ) + ϑ(Bxκ+2,Bxκ+1,Bxκ+1) + · · · + ϑ(Bxη,Bxη−1,Bxη−1)]
[ϑ(Byκ+1,Byκ,Byκ) + ϑ(Byκ+2,Byκ+1,Byκ+1) + · · · + ϑ(Byη,Byη−1,Byη−1)]

=∆κ + ∆κ+1 + ∆κ+2 + · · · + ∆η−1

≤[cκ + cκ+1 + · · · + cη−1]∆0

≤cκ ·
1

1 − c
∆0 for η > κ

or
ϑ(Bxη,Bxκ,Bxκ) + ϑ(Byη,Byκ,Byκ) ≤ cκ ·

1
1 − c

∆0 for η > κ. (2.15)

Since 0 ≤ c < 1, cκ → 0 as κ → ∞.
Now applying limit as κ → ∞ with η > κ in the inequality (2.15), we have
ϑ(Bxη,Bxκ,Bxκ) + ϑ(Byη,Byκ,Byκ) ≤ 0 which follows that 〈xκ〉∞κ=1 and 〈yκ〉∞κ=1 are ϑ−cauchy
sequences in M .
Since (M , ϑ) is a partially ordered complete ϑ-metric space, there exist r, s ∈ M such that xκ → r
and yκ → s.
Now we prove that (r, s) is a coupled coincidence point of X and B.
Since X commutes with B, we have

X (Bxκ,Byκ) = B(X (xκ, yκ)) = B(Bxκ+1)
and

X (Byκ,Bxκ) = B(X (yκ, xκ)) = B(Byκ+1)

Since X and B are continuous, we have

lim
κ→∞

X (Bxκ,Byκ) = lim
κ→∞

B(Bxκ+1) = Br

and
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lim
κ→∞

X (Byκ,Bxκ) = lim
κ→∞

B(Byκ+1) = Bs

Since ϑ is continuous in all its variables, we have

ϑ(X (r, s),Br,Bs) = ϑ(lim
κ→∞

X (Bxκ,Byκ),Br,Br) = ϑ(Br,Br,Br),

so that
ϑ(X (r, s),Br,Bs) = 0

which implies that X (r, s) = Br.
Similarly, it can be proved that X (s, r) = Bs.
Hence (s, r) is a coupled coincidence point of X and B. �

Taking α = 0, L = 0 and B is an identity mapping in Theorem 2.1, we get

Corollary 2.1. Let (M , ϑ,≤) be a partially ordered complete ϑ-metric space and X : M ×M →M
be a continuous mapping such that X has mixed monotone property and there exist β, γ ∈ [0, 1) with
β + γ < 1 such that

ϑ(X (x, y),X (u, v),X (w, z)) ≤ βϑ(x, u,w) + γϑ(y, v, z). (2.16)

If there exist x0, y0 ∈ M such that x0 ≤ X (x0, y0) and y0 ≥ X (y0, x0), then X has a coupled fixed
point in M ×M .

3. An application to system of nonlinear integral equations

Consider the following system of nonlinear integral equations:

f (s) = q(s) +

∫ a

0
λ(s, t)[X1(t, f (t)) + X2(t, g(t))]dt, (3.1)

g(s) = q(s) +

∫ a

0
λ(s, t)[X1(t, g(t)) + X2(t, f (t))]dt,

s ∈ [0, L], L > 0.

Let M = C ([0, L],R) be the class of all real valued continuous functions on [0, L].
Define

ϑ(a, b, c) =sup{|a(s) − b(s)| /s ∈ [0, L]}x + sup{|b(s) − c(s)| /s ∈ [0, L]}
+ sup{|c(s) − a(s)| /s ∈ [0, L]}

and the partial ordered relation on M as

a ≤ b⇔ a(s) ≤ b(s) for all a, b ∈M and s ∈ [0, L]. (3.2)

Then (M , ϑ,≤) is a partially ordered complete ϑ-metric space. We make the following assumptions:

(a) The mappings X1 : [0, L] × R → R, X2 : [0, L] × R → R, q : [0, L] → R and λ : [0, L] × R →
[0,∞) are continuous;
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(b) there exist c > 0 and β, γ ∈ [0, 1) with β + γ < 1 such that

0 ≤X1(s, b) −X1(s, a) ≤ cβ(b − a)
0 ≤X2(s, a) −X2(s, b) ≤ cγ(b − a)

for all a, b ∈ R with b ≥ a and s ∈ [0, L];
(c) c sup{

∫ L

0
λ(s, t)dt : s ∈ [0, L]} < 1;

(d) there exists u0 and v0 in M such that

u0(s) ≥ q(s) +

∫ L

0
λ(s, t)[X1(t, u0(t)) + X2(t, v0(t))]dt,

v0(s) ≤ q(s) +

∫ L

0
λ(s, t)[X1(t, v0(t)) + X2(t, u0(t))]dt.

Then the system (3.1) has a solution in M ×M where M = C ([0, L],R). To achieve this, define
X : M ×M →M as

X ( f , g)(s) = q(s) +

∫ L

0
λ(s, t)[X1(t, f (t)) + X2(t, g(t))]dt for all f , g ∈M and s ∈ [0, L]. (3.3)

Using condition (b), it can be shown that X has mixed monotone property. Now for x, y, u, v,w, z ∈M
with x ≥ u ≥ w, y ≤ v ≤ z,

ϑ(X (x, y),X (u, v),X (w, z)) = sup{|X (x, y)(s) −X (u, v)(s)| /s ∈ [0, L]}
+ sup{|X (u, v)(s) −X (w, z)(s)| /s ∈ [0, L]} + sup{|X (w, z)(s) −X (x, y)(s)| /s ∈ [0, L]}

= sup{

∣∣∣∣∣∣
∫ L

0
λ(s, t)[X1(t, x(t)) + X2(t, y(t))]dt −

∫ L

0
λ(s, t)[X1(t, u(t)) + X2(t, v(t))]dt

∣∣∣∣∣∣ /s ∈ [0, L]}

+ sup{

∣∣∣∣∣∣
∫ L

0
λ(s, t)[X1(t, u(t)) + X2(t, v(t))]dt −

∫ L

0
λ(s, t)[X1(t,w(t)) + X2(t, z(t))]dt

∣∣∣∣∣∣ /s ∈ [0, L]}

+ sup{

∣∣∣∣∣∣
∫ L

0
λ(s, t)[X1(t,w(t)) + X2(t, z(t))]dt −

∫ L

0
λ(s, t)[X1(t, x(t)) + X2(t, y(t))]dt

∣∣∣∣∣∣ /s ∈ [0, L]}

≤ sup{

∣∣∣∣∣∣
∫ L

0
[X1(t, x(t)) −X1(t, u(t))]

∣∣∣∣∣∣ |λ(s, t)| dt/s ∈ [0, L]}

+ sup

∣∣∣∣∣∣
∫ L

0
[X2(t, y(t)) −X2(t, v(t))]

∣∣∣∣∣∣ |λ(s, t)| dt/s ∈ [0, L]}

+ sup{

∣∣∣∣∣∣
∫ L

0
[X1(t, u(t)) −X1(t,w(t))]

∣∣∣∣∣∣ |λ(s, t)| dt/s ∈ [0, L]}

+ sup

∣∣∣∣∣∣
∫ L

0
[X2(t, v(t)) −X2(t, z(t))]

∣∣∣∣∣∣ |λ(s, t)| dt/s ∈ [0, L]}

+ sup{

∣∣∣∣∣∣
∫ L

0
[X1(t,w(t)) −X1(t, x(t))]

∣∣∣∣∣∣ |λ(s, t)| dt/s ∈ [0, L]}
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+ sup

∣∣∣∣∣∣
∫ L

0
[X2(t, z(t)) −X2(t, y(t))]

∣∣∣∣∣∣ |λ(s, t)| dt/s ∈ [0, L]}

≤ cβ sup{
∫ L

0
|x(t) − u(t)| |λ(s, t)| dt/s ∈ [0, L]} + cγ sup{

∫ L

0
|y(t) − v(t)| |λ(s, t)| dt/s ∈ [0, L]}

+ cβ sup{
∫ L

0
|u(t) − w(t)| |λ(s, t)| dt/s ∈ [0, L]} + cγ sup{

∫ L

0
|v(t) − z(t)| |λ(s, t)| dt/s ∈ [0, L]}

+ cβ sup{
∫ L

0
|w(t) − x(t)| |λ(s, t)| dt/s ∈ [0, L]} + cγ sup{

∫ L

0
|z(t) − y(t)| |λ(s, t)| dt/s ∈ [0, L]}

≤ β
[
sup{|x(s) − u(s)| /s ∈ [0, L]} + sup{|u(s) − w(s)| /s ∈ [0, L]}

+ sup{|w(s) − x(s)| /s ∈ [0, L]}
]
· c sup{

∫ L

0
|λ(s, t)| dt/s ∈ [0, L]}

+ γ
[
sup{|y(s) − v(s)| /s ∈ [0, L]} + sup{|v(s) − z(s)| /s ∈ [0, L]}

+ sup{|z(s) − y(s)| /s ∈ [0, L]}
]
· c sup{

∫ L

0
|λ(s, t)| dt/s ∈ [0, L]}

≤ β
[
sup{|x(s) − u(s)| /s ∈ [0, L]} + sup{|u(s) − w(s)| /s ∈ [0, L]} + sup{|w(s) − x(s)| /s ∈ [0, L]

]
+ γ sup{|y(s) − v(s)| /s ∈ [0, L]} + sup{|v(s) − z(s)| /s ∈ [0, L]} + sup{|z(s) − y(s)| /s ∈ [0, L]

]
= βϑ(x, u,w) + γϑ(y, v, z)

So that

ϑ(X (x, y),X (u, v),X (w, z)) ≤ βϑ(x, u,w) + γϑ(y, v, z)

Hence all the conditions of Corollary 2.1 are satisfied. Therefore, X has a coupled fixed point in
M ×M . In other words, the system (3.1) of nonlinear integral equations has a solution in M ×M .
The aforesaid application is illustrated by the following example:

Example 3.1. Let M = C([0, 1],R), Now consider the integral equation in M as

X ( f , g)(s) =
s3 + 7

4
+

∫ 1

0

t2

24(s + 3)
[ f (t) +

2
g(t) + 3

]dt. (3.4)

Then clearly the above equation is in the form of following equation:

X ( f , g)(s) = q(s) +

∫ L

0
λ(s, t)[X1(t, f (t)) + X2(t, g(t))]dt for all f , g ∈M and s ∈ [0, L],

where q(s) = s3+7
4 , λ(s, t) = t2

24(s+3) , X1(t, s) = s, X2(t, s) = 2
s+3 and L = 1.

That is, (3.4) is a special case of (3.3) in Theorem 3.1.
Here it is easy to verify that the functions q(s), λ(s, t),X1(t, s) and X2(t, s) are continuous.

Moreover, there exist c = 9, β = 1
3 and γ = 1

2 with β + γ < 1 such that

0 ≤X1(s, b) −X1(s, a) ≤ cβ(b − a)
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0 ≤X2(s, a) −X2(s, b) ≤ cγ(b − a)

for all a, b ∈ R with b ≥ a and s ∈ [0, 1].
and

c sup{
∫ L

0
λ(s, t)dt : s ∈ [0, L]} =9 sup{

∫ 1

0

t2

24(s + 3)
dt : s ∈ [0, 1]}.

=9 sup{
1

72(s + 3)
: s ∈ [0, 1]} < 1.

Thus the conditions (a), (b) and (c) of Theorem 3.1 are satisfied.
Now consider u0(s) = 1 and v0(s) = 1. Then we have

q(s) +

∫ 1

0
λ(s, t)[X1(t, v0(t)) + X2(t, u0(t))]dt =

s3 + 7
4

+

∫ 1

0

t2

24(s + 3)
[1 +

2
4

]dt

=
s3 + 7

4
+

1
48(s + 3)

≥ 1

That is, v0 ≤X (v0, u0). Similarly, it can be shown that u0 ≥X (u0, v0).
Thus all the conditions of Theorem 3.1 are satisfied. It follows that the integral Eq (3.4) has a

solution in M ×M with M = C([0, 1],R).

4. Conclusions

Some coupled coincidence point theorems for two mappings established using rational type
contractions in the setting of partially ordered G−metric spaces. By considering G−metric space, we
propose a fairly simple solution for a system of nonlinear integral equations by using fixed point
technique. Moreover, supporting example (exact solution) is provided to strengthen our obtained
results.
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