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Abstract: In this paper, the intraday high-frequency data are used to estimate the volatility function of
daily nonparametric ARCH(1) model. A nonparametric volatility proxy model is proposed to achieve
this objective. Under regular assumptions, the asymptotic distribution of the proposed estimator is
established. The impact of different proxies on the estimation precision is also discussed. Simulation
and empirical studies show that using the intraday high frequency data can significantly improve the
estimation accuracy of the considered model. The idea of this article can be easily extended to other
nonparametric or semiparametric ARCH/GARCH models.
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1. Introduction

Since the autoregressive conditional heteroscedasticity (ARCH) model in Engle [1] and its
generalized version, the generalized autoregressive conditional heteroscedasticity (GARCH) model in
Bollerslev [2] were proposed, scholars have extended them and applied them to the financial market.
See, for example, Nelson [3], Hentschel [4], Kliippelberg et al. [5], Pan et al. [6], Zou et al. [7],
Tetsuya [8], Davide [9], Samuel [10], Zhang et al. [11] and Linton et al. [12]. To avoid the
misspecification problem for volatility function, nonparametric ARCH or GARCH models have been
widely studied since the work of Engle and Ng [13]. See, for example, Hardle and Tsybakov [14],
Bithlmann and McNeil [15], Yang [16], Giordano and Parrella [17], Chen et al. [18] and the
references therein. With the popularity of electronic trading systems, intraday high frequency data
become easily available. Such data are valuable in modeling and parameter estimation. Visser [19]
utilized the intraday high frequency data to improve the estimation of daily GARCH model. The
framework was further extended to the estimation of GJR-GARCH model and robust estimation of
GARCH model (Huang et al. [20], Wang et al. [21]). Deng [22] utilized the intraday high frequency
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data to study the parameter test of daily GARCH model. Existent results following Visser [19] mainly
focus on parametric GARCH type models, which may cause misspecification problem for practical
data. An alternative perspective to study the volatility is from a nonparametric way.

The main goal of this paper is to use the intraday high frequency data to improve the estimation of
daily nonparametric ARCH model. For simplicity, we focus on the nonparametric ARCH (1) model.
Giordano and Parrella [17] showed GARCH (1, 1) model can be well approximated by a nonparametric
ARCH (1) model, implying this model could be adequate in many situations. Moreover, the idea of
this article can be easily extended to other nonparametric or semiparametric ARCH/GARCH models.

The rest of the paper is organized as follows. Section 2 introduces the models and estimators.
Section 3 derives the asymptotic results. Section 4 investigates the estimation performance based on
simulation studies. Empirical study is provided in Section 5. A concluding remark is given in Section
6. The appendix shows the proofs of theorems.

2. Model and estimation

2.1. Nonparametric volatility proxy model

Let Y, be the daily returns of a certain asset. The nonparametric ARCH (1) model, denoted as
NARCH(1), has the form
Y, = gl/z(Yz—l)ft» (2.1)

where g(Y;_1) is the unknown volatility function depending on Y;_;. The errors &, are independent and
identically distributed random noises such that E(&;) = 0 and E (ftz) = 1, and they are independent of
Y, for s < t. Model (2.1) can be rewritten as

Y2 = g(Yiy) + (Yo )(E = 1), 2.2)
It follows that
E(Y2|Y, =y) = g(), Var(Y|Y,y =y) = g*(y)(my — 1) and my = EE. (2.3)

According to the equation E(YtzlY,_l =y) = g(y) in (2.3), the unknown function g(y) can be estimated
by many nonparametric regression techniques such as kernel regression, local polynomial regression
and spline method.

To introduce intraday high frequency data, following Visser [19], we provide the following
nonparametric scaling model by normalizing the trading day into the unit time interval:

Y(u) = g"2(Y-)Ew), 0 <u <1, (2.4)

where Y,(1) denotes the continuous-time intraday log-return process. On different days, the standard
noise processes &(u) and &(u), k # [, are assumed to be independent and to follow the same probability
distribution. Through standardization, when u = 1, we have

EE) =1, Y, =Y(1), &=&Q). (2.5)
Let H, = H(Y,(u)) be a function of Y,(u) with the property of positive homogeneity, given by

H, = H(aY,(uw)) = aH(Y,(u)) >0, for a>0. (2.6)
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In this paper a proxy is a positive statistic that satisfies the conditions in (2.6), which can be easily
satisfied. An example is the daily realized volatility of the form

H, =RV = \/Z(Fz,k — Tri-1)?, (2.7)
T

where r,; denotes the return over the k-th intraday interval in day 7. According to (2.4), homogeneity
implies H(Y,(u)) = g'>(Y,_))H(&,(u)). Denote

H, = HY,(w)), Zn; = H(& W), pon = EZI2{,,

Emr = Zui/ \ons gu(y) = gOV)Hom, (2.8)
then we have the following nonparametric volatility proxy model:
H, = 8" (Yi-Dém, (2.9)

where E(H,zlYt_l) = gu(Y,.1) and Ef,zﬂ = 1. Note that the above equation can not only use the
information of high frequency data, but also retain the volatility function of NARCH(1) model except
for a certain constant, gy(y) = g(y)uop. When H, = |Y,(1)| = |V, E(HtZIYt_l) = gu(Y,_1) reduces to
E(YtzlYt_l) = g(Y;-1), which means that only daily information Y, is adopted for estimation.
Consequently, (2.9) includes the traditional daily model (2.1) as a special case.

2.2. Volatility function estimation

n n

In practice, {Y;}_, is observable and {H,}_, can be calculated based on discrete intraday high
frequency sequence. Let K(.) be a given kernel function, and % be the bandwidth. We firstly define
certain symbols as follows:

V2 H% 1 Vl_y
vl LB ey |
Vn H,2l 1 Vn—l_y

W = diag(: Ky(Vi =), -+ , Kp(Viies =)}, Ki(u) = K(%) and E; = (1,0). Recall gy (y) = E(H}|Y,-; =
y) and g(y) = E(Y?|Y,_; = y). Then, according to Yang[16], the local linear estimator of gy (y) is given
by

gu(y) = E\(ZTWZ)"'ZTWY, (2.10)
and the local linear estimator of g(y), denoted as g(y), can be obtained by setting H; = |Y,(1)| = |Y/]

in (2.10). Note uz, = gu(y)/g(y) is an unknown parameter depending on H,. Based on (2.10), an
estimator for yyz, is

N 1 < 2u¥m)
y = - . 2.11)
H n-1§ )

Then the final estimator for volatility function g(y) that takes the intraday high frequency information
into account is given by

8(y)==——. (2.12)
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3. Asymptotic theory

Before the statements of the limiting theory, we need to define some symbols and list certain
assumptions. Let ||K|2 = [ K*(w)du, u(K) = [ p"K(u)du,

g :(,Uo(K) 11 (K) ), g1 :( Soo Soi )’

ui(K)  pa(K) S Su
1
Ki(u) = Z S i K@), Ags = f Ki(uwudu, 1=0,1. (3.1
=0
Throughout this section, we assume (Y7, V,),---,(Y,-1,V,) is a stationary @ mixing sequence with

mixing coefficient a(k). The following assumptions are needed for our theoretical development, which
have been used in Fan and Yao [23] and Yang [16].
Assumptions:

A1l The kernel function K is bounded with a bounded support.

A2 The conditional density fy, y,v, v.,, 00, Yilvi, Viz1) < A < 00, VI > 1.

A3 For a mixing sequences, we assume that for some 6 > 2 anda > 1 -2/6, X, *[a(])]
EIVol* < 00, fygv,(olvi) < Az < oo,

A4 For @ mixing sequences, there exists a sequence of positive integers satisfying s, — oo and
s, = o{(nhy,)"?} such that (n/h,)"?a(s,) = 0asn — .

A5 The random variable &y, has a continuous density function, which is positive everywhere and
mf = Ef;‘h < 00,

A6 The random variable Y, has a stationary density ¢(y). gg(y) and ¢(y) have Lipschitz continuous
2th derivatives. Further, infyc4¢(y) > 0, where A is a compact subset of R with nonempty interior.

1-2/8 & oo,

Theorem 1. Under assumptions AI1-A6, for any fixed y € A, as nh — oo, nh> = O(1),

Vih(@u(y) - gu(y) — Pbu(y)) — NO, Vi (y))

where bu(y) = Aoag'y (0)/2! and Vy(y) = IK IR — Dg2 ()¢~ ().
Theorem 2. Under assumptions AI-A6, if h ~ n™" for some r € (1/4,1), then as n — oo, ({17, —

fiz,) = 0,(n"*) and
. - D -
Vh(z() - g) = *b(y) — N(O, V(x),
where b(y) = Noag*(y)/2! and V(y) = (m] = DIIK;I38*0¢™ ()-
Remark. In Theorem I, when H, = |Y,|, ¢y(y) and gn(y) become g(y) and g(y) respectively. Based
on Theorem 2, the revised estimator g(y) retains the same bias term with g(y) while the asymptotic
variance terms are different. The impact of H, lies in the quantity (m% — 1), and smaller ml! will cause

lower asymptotic variance of g(y) and hence will lead to a more precise estimator.
In practice, m? = ¢ - EH}/(EH?)* and ¢ = [E(g(Y,-1))]*/E[g*(Y,-1)]. Let

my* = EH} /(EH})*. (3.2)
Then we can choose the optimal proxy H, according to the value of mJ™*.
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4. Simulation

In this section, we assess the finite-sample performance of the proposed estimator g(y). To simulate
Y, and Y,(u), we first need to simulate the intraday noise process &,(u). Following Visser [19], &,(u) was
simulated by the following two processes:

dy,(u) = =6(y,(u) — p)du + o, dB (w), 4.1)
dé(u) = " “dBP(u), u € [0,1]. (4.2)

The Brownian motions Bﬁl) and B§2> are uncorrelated, £(0) = 0 and y(0) is sampled from N(u, o2).
We divide the unit time interval [0, 1] into 240 small intervals and set 6 = 1/2, o, = 1/4, u = —1/16,
g(y) = 0.1 +0.5y%. For each day, we consider three settings for the proxy H, in (2.9): 5-minute realized
volatility (denoted as HS, ), 30-minute realized volatility (denoted as H30,), and |Y;|. Here, the realized
volatility is computed according to (2.7).

To get the estimator g(y) based on (2.12), the bandwidth is simply set as 1.06 * std(Y;) * n~!/3, the
kernel function is K(x) = 0.75(1 — x?),.. The sample sizes of n = 200, 400, 800 are considered, and
the replication time is set to be 100. For each proxy HS,;, H30, and |Y;|, according to the 20% and
80% percentiles of the simulated Y,_;, the subset A in Theorem 1 is given as [-0.45, 0.45], and the grid
point vector is U = [-0.45 : 0.025 : 0.45]. For each sample size and each proxy, the 100 replicated
estimated curves g(U;) are plotted in subplot of Figure 1 (green curve), together with the true function
curve in bold black line for comparisons. From left to right, the three columns correspond to the cases
with n = 200, 400 and 800, respectively. In the first column, subplots of (a;)(i = 1,2,3) are the
estimation results corresponding the proxy HS5,, H30, and |Y;| respectively. Similarly, subplots of (b;)
and (¢;)(i = 1,2, 3) are the estimation results for n = 400 and 800 respectively. Subplots (ay), (b4) and
(c4) are the box plots of mf “1in (3.2) for H5,, H30; and |Y;| under different sample sizes.

It is found that the estimator under the proxy HS, performs best among the three proxies
considered for each sample size, especially for the case with a small sample size. This is consistent
with the box plots of mf* in subplots (ay), (b4) and (c4), where the estimated values under H5, are
generally smaller than the others. The estimator under the proxy H30, shows more precise estimation
than that of proxy |Y;|. When the sample size increases, each proxy shows better fitting performance,
justifying the asymptotic normality in Theorem 2. According to the simulation results, it is shown that
introducing the intraday high frequency data can significantly improve the estimation accuracy of
NARCH(1) model.
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Figure 1. Subplots of (a;), (b;) and (¢;)(i = 1,2, 3) are the estimated curves for g(U;) (green
lines) and true function curve of g(U;) (bold black line) for different sample size and different
proxy. Subplots (ay4), (bs) and (c4) are the box plots of mf* in (3.2) for HS,, H30; and |Y;|
(from left to right in each subplot) under different sample size.

5. Empirical study

In this section, based on NARCH(1) model, the proposed method is applied to estimate the volatility
function of CSI (China Shanghai-Shenzhen) 300 index, which consist of the 300 largest and most liquid
Chinese A-share stocks. The data span the period from 01 Sep 2017 to 12 July 2019, which consist
of 466 daily observations. There are 241 price observations in each day based on the intrady sampling
frequency of 1 minute. Denote P,(u) as the ¢-th intraday price sequence. We can calculate the intraday
log-return as

Y, (u) = 100[logP,(u) — logP,_1(1)], u € [0, 1]. 5.1
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For each day, we first consider 11 different volatility proxies: 1-minute realized volatility HI up to
10-minute realized volatility H10, and daily absolute return |Y;|. Here, the 1-minute proxy is computed
as

H1, = [Z290Y, ) ~ Vi) P, (5.2)

where Y,(u;) denotes the k-th observation of intraday sequence Y,(u). The formulas of other proxies
are similar. According to (3.2), the estimated values of m,* for proxies HI-H10 and |Y,| are: (3.9324,
1.6049, 1.6864, 1.7488, 1.8208, 1.8264, 1.7181, 1.7436, 1.7882, 1.7999, 5.5620), with H2 the smallest.
To compare the impact of frequency, we consider H1, H2, H10 and |Y;| for our studies.

To estimate the volatility function for the considered data, according to the 20% and 80% percentiles
of Y,_, we set the subset A in Theorem 1 as [—0.9,0.9] and the grid point vector as U = [-0.9 : 0.05 :
0.9]. In terms of (2.8), the ratio gy (Y;-1)/g(Y,—1) equals to a constant u,5 and this property is justified
by plotted {g5(U;)/2(U;)} in Figure 2, where all the ratios nearly remain constant. This implies that
the proposed method is reasonable and adequate for the considered data set. From Figure 3, it is seen
the volatility function estimators for g(Y,_;) show significant differences among considered proxies.
According to estimated values of m!'*, the proxy H2 is supposed to obtain the most precise estimation.
From Figure 3, the volatility function under H2 shows an asymmetric behavior: the function values for
Y;-1 < 0 are larger than those when Y,_; > 0. The function shape is also analogous to that of Giordano
and Parrella[17] where the volatility of Dow Jones index is studied. Based on the popular view that
negative returns usually cause larger volatility, it can be found that the curves estimated by proxy H2
and H10 are similar and more reasonable than other two curves based on H1 and |Y;|. The above results
could be explained as follows. H1 may contain much noise causing inefficiency of the proxy, while
|Y;—1| makes no use of intraday information and could be inadequate compared to proxies H2 and H10.

1.5

—6— H1
H2
—*— H10
Y
l S —
g_
=
5
I
(=)
0.5}
0 . . .
-1 -0.5 0 0.5 1

Figure 2. Time series plots of {g5(U;)/g(U;)} for H1, H2, H10 and |Y;|.
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Figure 3. Time series plots of {g(Y,_;)} for H1, H2, H10 and |Y;|.

6. Conclusions

In this article, an approach is given to utilize the intraday high-frequency data for the estimation of
daily nonparametric ARCH(1) model, which has been widely used to forecast the volatility of
financial market. The method has potential applications in estimating volatility function of financial
asset where the mixed-frequency data are available. Both the theoretical and simulation results show
that introducing the intraday high frequency data can significantly improve the estimation precision of
daily nonparametric ARCH(1) model, compared to the cases where only daily data is used. The idea
of this article is of certain novelty and can provide insights motivating future research on daily
nonparametric or semiparametric ARCH/GARCH model estimation by taking the intraday
high-frequency data into account.

Appendix

The proof of Theorem 1 is routine and hence omitted. Detailed proof can be found in Yang [16] and
Fan and Yao [23] . Next we give simple deduction for Theorem 2. Based on (2.11),

1 1
A2y~ Hzy = > 2n(Yir) — g (Y.
Hzy = Hzy no12 §(Yt_1){gH( 1) — (Y1)}

1 o gV |, i
n-1 ; §(Yz-1)g(Y1_1){g(Y"1) -gY )y =h + L.

The above two terms are analogous to the term /3 in page 383 of Yang [16]. Based on Assumptions
A1-A6, when h ~ n™" for some r € (1/4, 1), following the steps showing I3 = 0,(n"'/?) in Yang [16],
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we can prove that both I; and I, are 0,(n""/?) and hence fiz, — uz, = 0,(n""/?). According to (2.10),

1
Vahiz(y) — g»)) = Vnh

Hzy

) n
- Vnh{ AgH(y [z, — 1z, 1} = I + 1y,
HzyMzy

[8u(y) — gaOWM]}

Further, using the conclusion iz, — iz, = 0,(n"'/?), one can show Iy = (1/uz,) Vnh{gu(y) — gu(y)} +
0,(1) and I = 0,(1). Consequently,

1
Vnhi{g(y) — )} = — Vnh{gu() — gu()} + 0,(1),

Zy

and Theorem 2 holds from the asymptotic normality of gy (y) in Theorem 1.
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