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Abstract: In this paper, the intraday high-frequency data are used to estimate the volatility function of
daily nonparametric ARCH(1) model. A nonparametric volatility proxy model is proposed to achieve
this objective. Under regular assumptions, the asymptotic distribution of the proposed estimator is
established. The impact of different proxies on the estimation precision is also discussed. Simulation
and empirical studies show that using the intraday high frequency data can significantly improve the
estimation accuracy of the considered model. The idea of this article can be easily extended to other
nonparametric or semiparametric ARCH/GARCH models.
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1. Introduction

Since the autoregressive conditional heteroscedasticity (ARCH) model in Engle [1] and its
generalized version, the generalized autoregressive conditional heteroscedasticity (GARCH) model in
Bollerslev [2] were proposed, scholars have extended them and applied them to the financial market.
See, for example, Nelson [3], Hentschel [4], Klüppelberg et al. [5], Pan et al. [6], Zou et al. [7],
Tetsuya [8], Davide [9], Samuel [10], Zhang et al. [11] and Linton et al. [12]. To avoid the
misspecification problem for volatility function, nonparametric ARCH or GARCH models have been
widely studied since the work of Engle and Ng [13]. See, for example, Härdle and Tsybakov [14],
Bühlmann and McNeil [15], Yang [16], Giordano and Parrella [17], Chen et al. [18] and the
references therein. With the popularity of electronic trading systems, intraday high frequency data
become easily available. Such data are valuable in modeling and parameter estimation. Visser [19]
utilized the intraday high frequency data to improve the estimation of daily GARCH model. The
framework was further extended to the estimation of GJR-GARCH model and robust estimation of
GARCH model (Huang et al. [20], Wang et al. [21]). Deng [22] utilized the intraday high frequency
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data to study the parameter test of daily GARCH model. Existent results following Visser [19] mainly
focus on parametric GARCH type models, which may cause misspecification problem for practical
data. An alternative perspective to study the volatility is from a nonparametric way.

The main goal of this paper is to use the intraday high frequency data to improve the estimation of
daily nonparametric ARCH model. For simplicity, we focus on the nonparametric ARCH (1) model.
Giordano and Parrella [17] showed GARCH (1, 1) model can be well approximated by a nonparametric
ARCH (1) model, implying this model could be adequate in many situations. Moreover, the idea of
this article can be easily extended to other nonparametric or semiparametric ARCH/GARCH models.

The rest of the paper is organized as follows. Section 2 introduces the models and estimators.
Section 3 derives the asymptotic results. Section 4 investigates the estimation performance based on
simulation studies. Empirical study is provided in Section 5. A concluding remark is given in Section
6. The appendix shows the proofs of theorems.

2. Model and estimation

2.1. Nonparametric volatility proxy model

Let Yt be the daily returns of a certain asset. The nonparametric ARCH (1) model, denoted as
NARCH(1), has the form

Yt = g1/2(Yt−1)ξt, (2.1)

where g(Yt−1) is the unknown volatility function depending on Yt−1. The errors ξt are independent and
identically distributed random noises such that E(ξt) = 0 and E(ξ2

t ) = 1, and they are independent of
Ys for s ≤ t. Model (2.1) can be rewritten as

Y2
t = g(Yt−1) + g(Yt−1)(ξ2

t − 1). (2.2)

It follows that

E(Y2
t |Yt−1 = y) = g(y), Var(Y2

t |Yt−1 = y) = g2(y)(m4 − 1) and m4 = Eξ4
t . (2.3)

According to the equation E(Y2
t |Yt−1 = y) = g(y) in (2.3), the unknown function g(y) can be estimated

by many nonparametric regression techniques such as kernel regression, local polynomial regression
and spline method.

To introduce intraday high frequency data, following Visser [19], we provide the following
nonparametric scaling model by normalizing the trading day into the unit time interval:

Yt(u) = g1/2(Yt−1)ξt(u), 0 ≤ u ≤ 1, (2.4)

where Yt(u) denotes the continuous-time intraday log-return process. On different days, the standard
noise processes ξk(u) and ξl(u), k , l, are assumed to be independent and to follow the same probability
distribution. Through standardization, when u = 1, we have

Eξ2
t (1) = 1, Yt = Yt(1), ξt = ξt(1). (2.5)

Let Ht ≡ H(Yt(u)) be a function of Yt(u) with the property of positive homogeneity, given by

Ht = H(αYt(u)) = αH(Yt(u)) > 0, f or α > 0. (2.6)
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In this paper a proxy is a positive statistic that satisfies the conditions in (2.6), which can be easily
satisfied. An example is the daily realized volatility of the form

Ht = RV =

√∑
k

(rt,k − rt,k−1)2, (2.7)

where rt,k denotes the return over the k-th intraday interval in day t. According to (2.4), homogeneity
implies H(Yt(u)) = g1/2(Yt−1)H(ξt(u)). Denote

Ht ≡ H(Yt(u)), ZHt ≡ H(ξt(u)), µ2H = EZ2
Ht,

ξHt = ZHt/
√
µ2H, gH(y) = g(y)µ2H, (2.8)

then we have the following nonparametric volatility proxy model:

Ht = g1/2
H (Yt−1)ξHt, (2.9)

where E(H2
t |Yt−1) = gH(Yt−1) and Eξ2

Ht = 1. Note that the above equation can not only use the
information of high frequency data, but also retain the volatility function of NARCH(1) model except
for a certain constant, gH(y) = g(y)µ2H. When Ht = |Yt(1)| = |Yt|, E(H2

t |Yt−1) = gH(Yt−1) reduces to
E(Y2

t |Yt−1) = g(Yt−1), which means that only daily information Yt is adopted for estimation.
Consequently, (2.9) includes the traditional daily model (2.1) as a special case.

2.2. Volatility function estimation

In practice, {Yt}
n
t=1 is observable and {Ht}

n
t=1 can be calculated based on discrete intraday high

frequency sequence. Let K(.) be a given kernel function, and h be the bandwidth. We firstly define
certain symbols as follows:

V =


V2

V3

· · ·

Vn

 =


H2

2
H2

3
· · ·

H2
n

 , Z =


1 V1 − y
1 V2 − y
· · · · · ·

1 Vn−1 − y

 ,
W = diag{ 1n Kh(V1− y), · · · , 1

n Kh(Vn−1− y)}, Kh(u) = 1
h K( u

h ) and E1 = (1, 0). Recall gH(y) = E(H2
t |Yt−1 =

y) and g(y) = E(Y2
t |Yt−1 = y). Then, according to Yang[16], the local linear estimator of gH(y) is given

by
ĝH(y) = E1(ZτWZ)−1ZτWV, (2.10)

and the local linear estimator of g(y), denoted as ĝ(y), can be obtained by setting Ht = |Yt(1)| = |Yt|

in (2.10). Note µZH = gH(y)/g(y) is an unknown parameter depending on Ht. Based on (2.10), an
estimator for µZH is

µ̂ZH =
1

n − 1

n∑
t=2

ĝH(Yt−1)
ĝ(Yt−1)

. (2.11)

Then the final estimator for volatility function g(y) that takes the intraday high frequency information
into account is given by

g̃(y) =
ĝH(y)
µ̂ZH

. (2.12)
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3. Asymptotic theory

Before the statements of the limiting theory, we need to define some symbols and list certain
assumptions. Let ||K||22 =

∫
K2(u)du, µr(K) =

∫
µrK(u)du,

S =

(
µ0(K) µ1(K)
µ1(K) µ2(K)

)
, S −1 =

(
S 00 S 01

S 10 S 11

)
,

K∗λ(u) =

1∑
λ
′
=0

S λλ
′µλ

′

K(u), Λλ,2 =

∫
K∗λ(u)u2du, λ = 0, 1. (3.1)

Throughout this section, we assume (Y1,V2), · · · , (Yn−1,Vn) is a stationary α mixing sequence with
mixing coefficient α(k). The following assumptions are needed for our theoretical development, which
have been used in Fan and Yao [23] and Yang [16].

Assumptions:

A1 The kernel function K is bounded with a bounded support.
A2 The conditional density fY0,Yl |V1,Vl+1(y0, yl|v1, vl+1) ≤ A1 < ∞,∀l ≥ 1.
A3 For α mixing sequences, we assume that for some δ > 2 and a > 1 − 2/δ,

∑
l la[α(l)]1−2/δ < ∞,

E|V0|
δ < ∞, fY0 |V1(y0|v1) ≤ A2 < ∞.

A4 For α mixing sequences, there exists a sequence of positive integers satisfying sn → ∞ and
sn = o{(nhn)1/2} such that (n/hn)1/2α(sn)→ 0 as n→ ∞.

A5 The random variable ξHt has a continuous density function, which is positive everywhere and
mH

4 = Eξ4
Ht < ∞.

A6 The random variable Yt has a stationary density ϕ(y). gH(y) and ϕ(y) have Lipschitz continuous
2th derivatives. Further, infy∈Aϕ(y) > 0, where A is a compact subset of R with nonempty interior.

Theorem 1. Under assumptions A1–A6, for any fixed y ∈ A, as nh→ ∞, nh5 = O(1),

√
nh(ĝH(y) − gH(y) − h2bH(y))

D
−→ N(0,VH(y))

where bH(y) = Λ0,2g(2)
H (y)/2! and VH(y) = ||K∗0 ||

2
2(mH

4 − 1)g2
H(y)ϕ−1(y).

Theorem 2. Under assumptions A1–A6, if h ∼ n−r for some r ∈ (1/4, 1), then as n → ∞, (µ̂ZH −

µZH ) = op(n−
1
2 ) and

√
nh(g̃(y) − g(y) − h2b̃(y))

D
−→ N(0, Ṽ(x)),

where b̃(y) = Λ0,2g2(y)/2! and Ṽ(y) = (mH
4 − 1)||K∗0 ||

2
2g2(y)ϕ−1(y).

Remark. In Theorem 1, when Ht = |Yt|, ĝH(y) and gH(y) become ĝ(y) and g(y) respectively. Based
on Theorem 2, the revised estimator g̃(y) retains the same bias term with ĝ(y) while the asymptotic
variance terms are different. The impact of Ht lies in the quantity (mH

4 − 1), and smaller mH
4 will cause

lower asymptotic variance of g̃(y) and hence will lead to a more precise estimator.
In practice, mH

4 = c · EH4
t /(EH2

t )2 and c = [E(g(Yt−1))]2/E[g2(Yt−1)]. Let

mH∗
4 = EH4

t /(EH2
t )2. (3.2)

Then we can choose the optimal proxy Ht according to the value of mH∗
4 .
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4. Simulation

In this section, we assess the finite-sample performance of the proposed estimator g̃(y). To simulate
Yt and Yt(u), we first need to simulate the intraday noise process ξt(u). Following Visser [19], ξt(u) was
simulated by the following two processes:

dγt(u) = −δ(γt(u) − µ)du + σγdB(2)
t (u), (4.1)

dξt(u) = eγt(u)dB(1)
t (u), u ∈ [0, 1]. (4.2)

The Brownian motions B(1)
t and B(2)

t are uncorrelated, ξt(0) = 0 and γ(0) is sampled from N(µ, σ2
r ).

We divide the unit time interval [0, 1] into 240 small intervals and set δ = 1/2, σγ = 1/4, µ = −1/16,
g(y) = 0.1 + 0.5y2. For each day, we consider three settings for the proxy Ht in (2.9): 5-minute realized
volatility (denoted as H5t ), 30-minute realized volatility (denoted as H30t), and |Yt|. Here, the realized
volatility is computed according to (2.7).

To get the estimator g̃(y) based on (2.12), the bandwidth is simply set as 1.06 ∗ std(Yt) ∗ n−1/5, the
kernel function is K(x) = 0.75(1 − x2)+. The sample sizes of n = 200, 400, 800 are considered, and
the replication time is set to be 100. For each proxy H5t, H30t and |Yt|, according to the 20% and
80% percentiles of the simulated Yt−1, the subset A in Theorem 1 is given as [−0.45, 0.45], and the grid
point vector is U = [−0.45 : 0.025 : 0.45]. For each sample size and each proxy, the 100 replicated
estimated curves g̃(Ui) are plotted in subplot of Figure 1 (green curve), together with the true function
curve in bold black line for comparisons. From left to right, the three columns correspond to the cases
with n = 200, 400 and 800, respectively. In the first column, subplots of (ai)(i = 1, 2, 3) are the
estimation results corresponding the proxy H5t, H30t and |Yt| respectively. Similarly, subplots of (bi)
and (ci)(i = 1, 2, 3) are the estimation results for n = 400 and 800 respectively. Subplots (a4), (b4) and
(c4) are the box plots of mH∗

4 in (3.2) for H5t, H30t and |Yt| under different sample sizes.

It is found that the estimator under the proxy H5t performs best among the three proxies
considered for each sample size, especially for the case with a small sample size. This is consistent
with the box plots of mH∗

4 in subplots (a4), (b4) and (c4), where the estimated values under H5t are
generally smaller than the others. The estimator under the proxy H30t shows more precise estimation
than that of proxy |Yt|. When the sample size increases, each proxy shows better fitting performance,
justifying the asymptotic normality in Theorem 2. According to the simulation results, it is shown that
introducing the intraday high frequency data can significantly improve the estimation accuracy of
NARCH(1) model.
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Figure 1. Subplots of (ai), (bi) and (ci)(i = 1, 2, 3) are the estimated curves for g̃(Ui) (green
lines) and true function curve of g(Ui) (bold black line) for different sample size and different
proxy. Subplots (a4), (b4) and (c4) are the box plots of mH∗

4 in (3.2) for H5t, H30t and |Yt|

(from left to right in each subplot) under different sample size.

5. Empirical study

In this section, based on NARCH(1) model, the proposed method is applied to estimate the volatility
function of CSI (China Shanghai-Shenzhen) 300 index, which consist of the 300 largest and most liquid
Chinese A-share stocks. The data span the period from 01 Sep 2017 to 12 July 2019, which consist
of 466 daily observations. There are 241 price observations in each day based on the intrady sampling
frequency of 1 minute. Denote Pt(u) as the t-th intraday price sequence. We can calculate the intraday
log-return as

Yt(u) = 100[logPt(u) − logPt−1(1)], u ∈ [0, 1]. (5.1)
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For each day, we first consider 11 different volatility proxies: 1-minute realized volatility H1 up to
10-minute realized volatility H10, and daily absolute return |Yt|. Here, the 1-minute proxy is computed
as

H1t =

√
Σ240

k=1[Yt(uk) − Yt(uk−1)]2, (5.2)

where Yt(uk) denotes the k-th observation of intraday sequence Yt(u). The formulas of other proxies
are similar. According to (3.2), the estimated values of mH∗

4 for proxies H1-H10 and |Yt| are: (3.9324,
1.6049, 1.6864, 1.7488, 1.8208, 1.8264, 1.7181, 1.7436, 1.7882, 1.7999, 5.5620), with H2 the smallest.
To compare the impact of frequency, we consider H1, H2, H10 and |Yt| for our studies.

To estimate the volatility function for the considered data, according to the 20% and 80% percentiles
of Yt−1, we set the subset A in Theorem 1 as [−0.9, 0.9] and the grid point vector as U = [−0.9 : 0.05 :
0.9]. In terms of (2.8), the ratio gH(Yt−1)/g(Yt−1) equals to a constant µ2H and this property is justified
by plotted {ĝH(Ui)/ĝ(Ui)} in Figure 2, where all the ratios nearly remain constant. This implies that
the proposed method is reasonable and adequate for the considered data set. From Figure 3, it is seen
the volatility function estimators for g(Yt−1) show significant differences among considered proxies.
According to estimated values of mH∗

4 , the proxy H2 is supposed to obtain the most precise estimation.
From Figure 3, the volatility function under H2 shows an asymmetric behavior: the function values for
Yt−1 < 0 are larger than those when Yt−1 > 0. The function shape is also analogous to that of Giordano
and Parrella[17] where the volatility of Dow Jones index is studied. Based on the popular view that
negative returns usually cause larger volatility, it can be found that the curves estimated by proxy H2
and H10 are similar and more reasonable than other two curves based on H1 and |Yt|. The above results
could be explained as follows. H1 may contain much noise causing inefficiency of the proxy, while
|Yt−1| makes no use of intraday information and could be inadequate compared to proxies H2 and H10.
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Figure 2. Time series plots of {ĝH(Ui)/ĝ(Ui)} for H1, H2, H10 and |Yt|.
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Figure 3. Time series plots of {g̃(Yt−1)} for H1, H2, H10 and |Yt|.

6. Conclusions

In this article, an approach is given to utilize the intraday high-frequency data for the estimation of
daily nonparametric ARCH(1) model, which has been widely used to forecast the volatility of
financial market. The method has potential applications in estimating volatility function of financial
asset where the mixed-frequency data are available. Both the theoretical and simulation results show
that introducing the intraday high frequency data can significantly improve the estimation precision of
daily nonparametric ARCH(1) model, compared to the cases where only daily data is used. The idea
of this article is of certain novelty and can provide insights motivating future research on daily
nonparametric or semiparametric ARCH/GARCH model estimation by taking the intraday
high-frequency data into account.

Appendix

The proof of Theorem 1 is routine and hence omitted. Detailed proof can be found in Yang [16] and
Fan and Yao [23] . Next we give simple deduction for Theorem 2. Based on (2.11),

µ̂ZH − µZH =
1

n − 1

n∑
t=2

1
ĝ(Yt−1)

{ĝH(Yt−1) − gH(Yt−1)}

−
1

n − 1

n∑
t=2

gH(Yt−1)
ĝ(Yt−1)g(Yt−1)

{ĝ(Yt−1) − g(Yt−1)} ≡ I1 + I2.

The above two terms are analogous to the term I3 in page 383 of Yang [16]. Based on Assumptions
A1–A6, when h ∼ n−r for some r ∈ (1/4, 1), following the steps showing I3 = op(n−1/2) in Yang [16],
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we can prove that both I1 and I2 are op(n−1/2) and hence µ̂ZH − µZH = op(n−1/2). According to (2.10),

√
nh{g̃(y) − g(y)} =

√
nh{

1
µ̂ZH

[ĝH(y) − gH(y)]}

−
√

nh{
gH(y)
µ̂ZHµZH

[µ̂ZH − µZH ]} ≡ I3 + I4.

Further, using the conclusion µ̂ZH − µZH = op(n−1/2), one can show I3 = (1/µZH )
√

nh{ĝH(y) − gH(y)} +
op(1) and I4 = op(1). Consequently,

√
nh{g̃(y) − g(y)} =

1
µZH

√
nh{ĝH(y) − gH(y)} + op(1),

and Theorem 2 holds from the asymptotic normality of ĝH(y) in Theorem 1.
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