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Abstract: Kolmogorov-type equations often appear in stochastic analysis and have important
applications in financial derivatives pricing, stochastic control and other fields. In this paper,
we consider an inverse problem of reconstructing drift coefficient in a Kolmogorov-type equation.
Being different from other works, the unknown drift coefficient is related to both temporal and
spatial variables, which makes theoretical analysis rather difficult. Until now, documents dealt with
evolutional inverse drift problems are quite few. Inspired by the Rothe’s idea, we introduce a new
time semi-discrete scheme to find the optimal solution at each time layer. Then we construct an
approximate solution of the unknown drift coefficient and strictly analyze its convergence. After
establishing the necessary conditions for the limit minimizer, we prove the uniqueness and stability
of the global optimal solution.
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1. Introduction

Kolmogorov-type equation is a kind of important partial differential equation in stochastic analysis,
which has significant applications in financial mathematics, stochastic control and other fields. Let’s
consider a one-dimensional process Xt given by the stochastic differential equation

dXt = a(Xt, t)dt + b(Xt, t)dWt, (1.1)

where dWt is increment of standard Brownian motion satisfies

E(dWt) = 0, Var(dWt) = dt,
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and a, b are some smooth real valued functions. Suppose Ps,t(x, y) be the following conditional
expectation

Ps,t(x, y) = E(δy(Xt)| Xs = y)

for s < t. Then, by using the famous Itô and Feynman-Kac formula (see [15, 21]), we deduce that
Ps,t(x, y) satisfies the following Kolmogorov-type equation:

∂

∂s
Ps,t(x, y) + a(s, x)

∂

∂x
Ps,t(x, y) +

1
2

b2(s, x)
∂2

∂x2Ps,t(x, y) = 0. (1.2)

The parameter a in (1.1) is called the drift coefficient, while b is called the diffusion coefficient or
volatility coefficient.

In this paper, we are interested in the Kolmogorov-type inverse problem. Let Q = I × (0,T ], I =

(0, l). We consider the following mathematical model:

Lu = ut − uxx + p(x, t)ux = 0, (x, t) ∈ Q, (1.3)
u(x, 0) = ϕ(x), x ∈ Ī, (1.4)
u(0, t) = u(l, t) = 0, t ∈ (0,T ], (1.5)

where p(x, t) is an unknown coefficient to be identified and ϕ(x) is a given non-trivial smooth function
which satisfies

ϕ ≥ 0, ϕ . 0; ϕ ∈ C2,α(Ī),

for some α > 0. Assume that an additional condition is given as follows:

u(x, t) = g(x, t), (x, t) ∈ Q, (1.6)

where g(x, t) is a given function which may contain measurement error. We would like to determine
the function pair (u, g) simultaneously from (1.3)–(1.5)/(1.6).

The Eq (1.3) belongs to the type of Kolmogorov equation. In fact, by using suitable variable
substitution one can easily arrive at (1.3). The Eq (1.2) is a Cauchy problem on unbounded domain,
while Eqs (1.3)–(1.5) is an initial boundary value problem on bounded domain. But that is not the
point either. If the range of process Xt is bounded, then (1.2) will be transformed into (1.3)–(1.5).

Drift coefficient or drift rate is an important parameter in the process of stock price change. In
financial markets, the stock price movement is determined by the expected drift rate and Brownian
motion. The stochastic characteristics of volatility, expected drift rate and Brownian motion determine
that the motion process of stock price is full of randomness and uncertainty. Simply speaking, Itô
process divides the motion process of stock price into two independent processes: the drift term and
the volatility term. The drift term can be understood as the expected rate of return of the stock price,
while the volatility term is used to measure the variability of variables.

In practical application, it is quite difficult to determine the drift coefficient in advance. In the past,
people usually get a rough estimate of drift rate by experiences. The disadvantages of this method
are obvious and will bring about large errors. It is undoubtedly of great theoretical and practical
significance to calibrate the drift coefficient by indirect means.

In this paper, we investigate the inverse problem of identifying a drift coefficient for the
Kolmogorov-type equation from the knowledge of observation data. Since the unknown drift
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coefficients are related to both temporal and spatial variables, the additional data are given in the
whole region. It seems that such problem is trivial. If the extra condition g(x, t) is given accurately,
one can easily obtain the unknown function p(x, t) from the Eq (1.3):

p(x, t) =
gxx − gt

gx
. (1.7)

But in practice, the formula (1.7) cannot be applicable. First of all, it is difficult to measure such a huge
amount of data in practice. So g(x, t) is only given approximately and may contain errors (see Section
2). Secondly, for the noisy measurement data, the small errors will lead to great changes in the solution
(see [12, 16, 24, 27, 28]). Finally, it is difficult to avoid the case of gx = 0 in (1.7). Therefore, some
regularization technique should be adopted to overcome the ill-posedness of the inverse problem.

Inverse coefficient problems for parabolic equations are well studied in the literature. In [18, 19],
the inverse problem of identifying the implied volatility in the Black-Scholes equation

∂V
∂t

+
1
2
σ2(S )S 2∂

2V
∂S 2 + (r − q)S

∂V
∂S
− rV = 0, (S , t) ∈ [0,∞) × [0,T ),

has been studied by using an optimal control framework. The existence and uniqueness of the
minimizer are proved rigorously and an iterative algorithm is designed to obtain the numerical
solution. In [2], a general inverse source problem is studied carefully and the global uniqueness of the
solution is obtained. Optimization method is applied to identify the convection coefficient in [11],
where the mathematical model is a Cauchy problem of convection-diffusion equations. The inverse
radiative coefficient problem has been widely investigated in [5, 6, 16, 23, 26, 34], where the
temperature distribution function u(x, t) satisfies the following heat conduction equation

ut − ∆u + p(x)u = 0, (x, t) ∈ Q.

In [6, 26], the determination of p(x) is studied by the contraction mapping principle and Hölder space
method, respectively. Moreover, inverse problems on the purely time dependent case, i.e., p = p(t), can
be found in [3, 4, 7, 8]. Numerical treatments for general cases p = p(x, t, u) can be found in [29–31].

For general parabolic equations

∂tu +Au + σ(x)u = f (x, t), (x, t) ∈ Q,

the uniqueness and stability of determining σ(x) is obtained in [17], where A ia a general elliptic
differential operator. In [5,23,34], the optimization method is applied to stabilize the inverse problem,
and the existence of minimizer and the convergence of approximate solution are proved rigorously. The
inverse problem of simultaneously reconstructing the initial value and the radiation coefficient p(x) is
investigated in [33]. For the general case that the unknown coefficient(s) depend(s) on both spatial and
temporal variables, we suggest that readers refer to references, e.g., in [9, 10, 20, 22, 27].

In this paper, we would like to discuss the inverse problem mainly from the mathematical analysis
angle. Particularly, we focus on the uniqueness and stability of the minimizer of the optimal control
problem. Local uniqueness of convection coefficient is obtained in [11], where the observation time T
should not be too large. This defect is improved in this paper. We obtain the global uniqueness and
stability of the minimizer, which is extremely important in numerical calculation. To the best of our
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knowledge, this work is the first one concerning global uniqueness and stability of optimal solution in
inverse coefficient problem for Kolmogorov-type equations.

This paper is organized as follows. In Section 2, we introduce an optimal control method and
obtain the semi-discrete approximate solution ph(x, t). Meanwhile, the necessary condition which
must be satisfied by the minimizer is deduced. In Section 3, we establish the uniform estimates for
the approximate solution ph(x, t) and use them to discuss the asymptotic behavior. The necessary
condition of limit minimizer p(x, t) is derived in Section 4. Finally, in Section 5 the global uniqueness
and stability results are proved rigorously.

2. Optimal control problem

The observation data g(x, t) is just an artificial solution that may contain errors. As mentioned in
Section 1, it is impossible to measure the information u(x, t) at every position x and every time t. Let’s
consider the following discrete grid. Assume that the domain Q̄ = [0, l]× [0,T ] is divided into a M×N
mesh with the spatial step size ∆x = l

M in the x-direction and the time step size h = T
N , respectively

(without loss of generality, we assume that the grid nodes are equidistant). Grid points (xi, tn) are
defined by

xi = i∆x, i = 0, 1, 2, · · · ,M,

tn = nh, n = 0, 1, 2, · · · ,N,

in which M and N are two positive integers. In practice, one can only give the observations on a finite
number of discrete points as follows:

u(xi, tn) = g(xi, tn), i = 1, 2, · · · ,M − 1; n = 1, 2, · · · ,N; (xi, tn) ∈ Q̄.

The observation function (1.6) is actually obtained by some interpolation techniques from discrete data
u(xi, tn), e.g., triangular element interpolation. Therefore, it is absurd to try to get p(x, t) directly from
u(xi, tn).

In this paper, we attempt to reconstruct p(x, t) by time semi-discrete scheme. This idea is widely
used in studying the existence of solutions of parabolic equations, e.g., the famous Rothe method
(see [32]). The essence of this method is to do difference with time variable and use the theory of
elliptic equation to solve the difference equation and estimate its solution, then construct the
approximate solution and complete the limit process to the true solution. Similar to the Rothe method,
we first introduce the time semi-discrete scheme, i.e., we find p(x, tn) step by step, where tn = nh,
n = 0, 1, · · · ,N. If p(x, t0), · · · , p(x, tn−1) have been identified, then from the extra condition
u(x, tn) = g(x, tn), we find p(x, tn) such that

Jn(p(x, tn)) = inf
p∈A

Jn(p),

where A is an admissible set and Jn(p) is a control function. Based on the obtained p(x, tn), for any h
we construct an approximate function ph(x, t) defined as follows:

ph(x, t) =

{
p(x, tn), t = tn,

linear, tn−1 ≤ t ≤ tn.
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Finally, considering the limit of ph(x, t) as h→ 0, we get p(x, t).

We first introduce the following Sobolev spaces (see [1]). Denote

Lp(Q) =

{
u :

∫
Q
|u|pdxdt < +∞

}
,

L∞(Q) =
{
u : esssupQ|u| < +∞

}
,

and
Wm,k

p (Q) =
{
u : Dαu, Dr

t u ∈ Lp(Q), for any |α| ≤ m and r ≤ k
}
.

The corresponding norms are given by

‖u‖Lp(Q) =

(∫
Q
|u|pdxdt

) 1
p

,

‖u‖L∞(Q) = esssupQ|u|,

and
‖u‖Wm,k

p (Q) =
∑
|α|≤m

‖Dαu‖Lp(Q) +
∑
r≤k

‖Dr
t u‖Lp(Q),

respectively. As p = 2, Wm,k
p (Q) is abbreviated as Hm,k(Q).

For 0 < α < 1, we introduce the Hölder semi-norm

[u]α,α/2;Q = sup
M,N∈Q,M,N

|u(M) − u(N)|
|d(M,N)|α

,

where d(M,N) is defined as follows:

d(M,N) =
(
|x − y|2 + |t − s|

)1/2

for any two points M(x, t), N(y, s) ∈ Q. Denote Cα,α/2(Q) to represent the function set on Q satisfies
[u]α,α/2;Q < +∞ and define the following norm:

|u|α,α/2;Q = |u|0;Q + [u]α,α/2;Q.

For any non-negative integer k, the function space C2k+α,k+α/2(Q) and the corresponding norm can be
defined analogously.

For the direct problems (1.3)–(1.5), the Schauder theory for parabolic equations [13, 14, 25]
guarantees that there is a unique solution, u(x, t) ∈ C2+α,1+ α

2 (Q̄), for any positive coefficient
p ∈ Cα, α2 (Q̄).

Suppose that the function g(x, t) satisfies the following condition

‖g‖Cα, α2 (Q̄) ≤ C, max
0≤t≤T

‖g(·, t)‖H1(I) ≤ C, (2.1)

where C is a constant. Hereafter, we use C > 0 to denote generic constants which are independent of
h and may change line by line.
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To reconstruct the unknown coefficient, we will introduce the following time semi-discrete cost
functional and time semi-discrete optimal control problem.

Set
0 = t0 < t1 < · · · < tn = T

be a partition of the interval [0,T ] with tn = nh and h = T
N . Let

A =
{
p(x)|p ≤ p(x) ≤ p, p ∈ H1(I)

}
(2.2)

be the admissible set, where p and p are two given positive constants.
Beginning with a given function p0(x) ∈ A with

p0(x) ∈ W1,∞(I),

we introduce the following sequence of optimal control problem Qn:

Problem Qn: Assume that p0, p1, · · · , pn−1 ∈ A are known, find a pn ∈ A such that

Jn(pn) = inf
p∈A

Jn(p), (2.3)

where Jn(p) is the cost functional

Jn(p) =
σ

2

(
1
h
‖p − pn−1‖

2
L2(I) + ‖∇p‖2L2(I)

)
+

1
2h
‖u(·, tn; p) − g(·, tn)‖2L2(I), (2.4)

u(x, t; p) is the solution of (1.3)–(1.5) in [0, tn] corresponding to the coefficient

p̃ =

{ t−tn−1
h p(x) + tn−t

h pn−1(x), tn−1 ≤ t ≤ tn,
t−tk−1

h pk(x) + tk−t
h pk−1(x), tk−1 ≤ t ≤ tk, 1 ≤ k ≤ n − 1,

(2.5)

and σ > 0 is a regularization parameter.
Theorem 2.1. There exists a pn ∈ A such that

Jn(pn) = inf
p∈A

Jn(p).

The proof of this theorem is similar to that in [11].
Such a pn is called an optimal control of problem Qn. From theorem 2.1, the functions

p0, p1, · · · , pN ∈ A are well defined when p0 ∈ A is known. For (x, t) ∈ Q̄, let

ph(x, t) =
t − tn−1

h
pn(x) +

tn − t
h

pn−1(x), tn−1 ≤ t ≤ tn, n = 1, · · · ,N.

which is called the discrete reconstruction of the unknown coefficient. Then recovering p(x, t) is
reduced to investigating the behavior of the discrete reconstruction ph(x, t) as h→ 0.

Now we derive the necessary condition for the optimal control problem Qn as follows:
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Theorem 2.2. Assume that p0 ∈ A is given. Let pn ∈ A be an optimal control of problem Qn, n =

1, · · · ,N and uh(x, t) be the solution of (1.3)–(1.5) in [0,T ] corresponding to the coefficient p̃ = ph(x, t).
Then for any ω ∈ A, we have

σ

∫ l

0

[ pn − pn−1

h
(ω − pn) + ∇pn · ∇(ω − pn)

]
dx +

1
h

∫ tn

tn−1

∫ l

0

t − tn−1

h
(pn − ω)uh

xv
hdxdt ≥ 0, (2.6)

where vh(x, t) satisfies the following equation:
−vh

t − vh
xx − (ph(x, t)vh)x = 0, (x, t) ∈ (0, l) × [tn−1, tn],

vh(0, t) = vh(l, t) = 0,
vh(x, tn) = uh(x, tn) − g(x, tn).

(2.7)

Proof. Let pn ∈ A be an optimal control of problem Qn. Note that A is a convex set, for any ω ∈ A,

pλ = (1 − λ)pn + λω ∈ A, λ ∈ [0, 1].

Hence for any ω ∈ A, the function j(λ) = Jn(pλ) is well defined and reaches its minimum at λ = 0.
Then we have

j′(0) =
d

dλ
Jn(pλ)

∣∣∣∣∣
λ=0
≥ 0,

i.e., for any ω ∈ A,

d
dλ

∫ l

o

[
σ(
|pλ(x) − pn−1(x)|2

h
+ |∇pλ(x)|2) +

1
h
|u(x, tn; pλ) − g(x, tn)|2

]
dx

∣∣∣∣∣∣
λ=0

≥ 0, (2.8)

where u(x, t; pλ) is the solution of (1.3)–(1.5) corresponding to

p̃ =

{ t−tn−1
h pλ(x) + tn−t

h pn−1(x), tn−1 ≤ t ≤ tn,
t−tk−1

h pk(x) + tk−t
h pk−1(x), tk−1 ≤ t ≤ tk, 1 ≤ k ≤ n − 1.

Set

ξ(x, t) =
du(x, t; pλ)

dλ

∣∣∣∣∣∣
λ=0

.

We derive from (2.8) the following inequality

σ

∫ l

0

[ pn − pn−1

h
(ω − pn) + ∇pn · ∇(ω − pn)

]
dx +

1
h

∫ l

0
(uh(x, tn) − g(x, tn))ξ(x, tn)dx ≥ 0. (2.9)

By direct differentiation to λ on both side of (1.3)–(1.5) in which p is replaced by pλ, it can be seen
that ξ(x, t) is the solution of the following initial-boundary value problem of parabolic equation:

Lξ = ξt − ξxx + ph(x, t)ξx = t−tn−1
h (pn − ω)uh

x, (x, t) ∈ I × [tn−1, tn],
ξ(0, t) = ξ(l, t) = 0, (x, t) ∈ ∂I × (tn−1, tn],
ξ(x, tn−1) = 0, x ∈ I.

(2.10)

AIMS Mathematics Volume 6, Issue 4, 3432–3454.



3439

Suppose vh(x, t) is the solution to the following problem:
L∗vh = −vh

t − vh
xx − (ph(x, t)vh)x = 0, (x, t) ∈ (0, l) × [tn−1, tn],

vh(0, t) = vh(l, t) = 0,
vh(x, tn) = uh(x, tn) − g(x, tn),

(2.11)

where L∗ is the adjoint operator of the operator L.
From (2.10), (2.11) and the Green formula, we have

0 =

∫ tn

tn−1

∫ l

0
ξL∗vhdxdt

= −

∫ l

0
ξ(x, tn)[uh(x, tn) − g(x, tn)]dx +

∫ tn

tn−1

∫ l

0
vhLξdxdt

= −

∫ l

0
ξ(x, tn)[uh(x, tn) − g(x, tn)]dx +

∫ tn

tn−1

∫ l

0

t − tn−1

h
(pn − ω)uh

xv
hdxdt. (2.12)

Combining (2.9) and (2.12), we get

σ

∫ l

0

[ pn − pn−1

h
(ω − pn) + ∇pn · ∇(ω − pn)

]
dx +

1
h

∫ tn

tn−1

∫ l

0

t − tn−1

h
(pn − ω)uh

xv
hdxdt ≥ 0,

for any ω ∈ A.
This completes the proof of theorem 2.2. �

3. Uniform estimates

We will derive some uniform estimates for the sequence of discrete optimal controls p0, p1, · · · , pN

and the discrete reconstruction of unknown coefficient ph(x, t) as h→ 0.
In this paper, C will be denoted different constants which is independent of parameters h and σ.

Lemma 3.1. Let uh(x, t) be the solution to the following problem:

ut − uxx + p̃(x, t)ux = 0, (x, t) ∈ Q, (3.1)
u(x, 0) = ϕ(x), x ∈ I, (3.2)
u(0, t) = u(l, t) = 0, t ∈ (0,T ], (3.3)

with p̃(x, t) = ph(x, t). Then there exists a constant C, such that

‖uh‖L∞(Q) +

∫ T

0

∫ l

0
(
∣∣∣uh

t

∣∣∣2 +
∣∣∣uh

xx

∣∣∣2)dxdt + max
0≤t≤T

∫ l

0

∣∣∣uh
x

∣∣∣2 dx ≤ C. (3.4)

The proof of this lemma is standard (see [13]). For the sake of completeness, we give a brief proof
of Lemma 1.

Proof. Multiplying uh
t on both sides of Eq (3.1) and integrating by parts, we have∫ t

0

∫ l

0

(
uh

t

)2
dxdt −

∫ t

0

∫ l

0
uh

t uh
xxdxdt +

∫ t

0

∫ l

0
uh

t phuh
xdxdt

AIMS Mathematics Volume 6, Issue 4, 3432–3454.
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=

∫ t

0

∫ l

0

(
uh

t

)2
dxdt +

∫ t

0

∫ l

0
uh

txu
h
xdxdt +

∫ t

0

∫ l

0
uh

t phuh
xdxdt

=

∫ t

0

∫ l

0

(
uh

t

)2
dxdt +

1
2

∫ t

0

∫ l

0

[(
uh

x

)2
]

t
dxdt +

∫ t

0

∫ l

0
uh

t phuh
xdxdt

=

∫ t

0

∫ l

0

(
uh

t

)2
dxdt +

1
2

∫ l

0

(
uh

x(·, t)
)2

dx −
1
2

∫ l

0
ϕ2

xdx +

∫ t

0

∫ l

0
uh

t phuh
xdxdt

= 0.

Using the bound of ph and the Cauchy inequality, we obtain∫ t

0

∫ l

0

(
uh

t

)2
dxdt +

1
2

∫ l

0

(
uh

x(·, t)
)2

dx

≤ p
∫ t

0

∫ l

0

∣∣∣uh
t

∣∣∣ · ∣∣∣uh
x

∣∣∣ dxdt +
1
2

∫ l

0
ϕ2

xdx

≤
1
2

∫ t

0

∫ l

0

(
uh

t

)2
dxdt +

p2

2

∫ t

0

∫ l

0

∣∣∣uh
x

∣∣∣2 dxdt +
1
2

∫ l

0
ϕ2

xdx,

i.e., ∫ t

0

∫ l

0

(
uh

t

)2
dxdt +

∫ l

0

(
uh

x(·, t)
)2

dx ≤ p2
∫ t

0

∫ l

0

∣∣∣uh
x

∣∣∣2 dxdt +

∫ l

0
ϕ2

xdx.

Then, using the Gronwall inequality, one can easily get∫ T

0

∫ l

0

(
uh

t

)2
dxdt + max

0≤t≤T

∫ l

0

∣∣∣uh
x

∣∣∣2 dx ≤ ep2T
∫ l

0
ϕ2

xdx ≤ C.

The rest of (3.4) can be proved similarly. �

Lemma 3.2. Let pλ = (1−λ)pn+λpn−1, 0 ≤ λ ≤ 1 and uλ(x, t) = u(x, t, pλ) be the solution of (3.1)–(3.3)
in [0, tn] with

p̃ =

{ t−tn−1
h pλ(x) + tn−t

h pn−1(x), tn−1 ≤ t ≤ tn,
t−tk−1

h pk(x) + tk−t
h pk−1(x), tk−1 ≤ t ≤ tk, 1 ≤ k ≤ n − 1.

(3.5)

Then there exists a constant C, such that

‖uλ‖L∞(I×[tn−1,tn]) + max
tn−1≤t≤tn

∫ l

0

∣∣∣uλx∣∣∣2 dx ≤ C, (3.6)

and ∫ tn

tn−1

∫ l

0
(
∣∣∣uλt ∣∣∣2 +

∣∣∣uλxx

∣∣∣2)dxdt + max
0≤t≤T

∫ l

0

∣∣∣uλx∣∣∣2 dx ≤ C
∫ tn

tn−1

∫ l

0

∣∣∣uh
x

∣∣∣2 dxdt. (3.7)

Proof. Because the proof of (3.6) is similar to that of (3.4), here we only prove (3.7).
Let ω = uλ − uh. Then from (3.1)–(3.3), we can verify that ω satisfies

ωt − ωxx + p̃(x, t)ωx = (ph − p̃)uh
x, (x, t) ∈ (0, l) × [tn−1, tn], (3.8)

ω(0, t) = ω(l, t) = 0, t ∈ (tn−1, tn], (3.9)
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ω(x, tn−1) = 0, x ∈ I. (3.10)

Multiplying Eq (3.8) both sides with ωxx and integrating over (0, l)× [tn−1, t], t ∈ [tn−1, tn], we obtain
that ∫ t

tn−1

∫ l

0
ω2

xxdxdt +
1
2

∫ t

tn−1

∫ l

0
(ω2

x)tdxdt

=

∫ t

tn−1

∫ l

0
p̃ωxωxxdxdt +

∫ t

tn−1

∫ l

0
( p̃ − ph)uh

xωxxdxdt

≤

∫ t

tn−1

∫ l

0

(
1
4
|ωxx|

2 + C| p̃|2|ωx|
2
)

dxdt +

∫ t

tn−1

∫ l

0

(
1
4
|ωxx|

2 + C| p̃ − ph|2
∣∣∣uh

x

∣∣∣2) dxdt

=
1
2

∫ t

tn−1

∫ l

0
|ωxx|

2dxdt + C
∫ t

tn−1

∫ l

0
| p̃|2|ωx|

2dxdt + C
∫ t

tn−1

∫ l

0
| p̃ − ph|2

∣∣∣uh
x

∣∣∣2 dxdt, (3.11)

where we have used the ε-Cauchy inequality.
Noting the boundedness of p̃ and ph, we get

1
2

∫ t

tn−1

∫ l

0
ω2

xxdxdt +
1
2

∫ l

0
ω2

x(·, t)dx ≤ C
∫ t

tn−1

∫ l

0
ω2

xdxdt + C
∫ t

tn−1

∫ l

0

∣∣∣uh
x

∣∣∣2 dxdt. (3.12)

Using the Gronwall inequality, we obtain∫ t

tn−1

∫ l

0
ω2

xxdxdt + max
tn−1≤t≤tn

∫ l

0
ω2

xdx ≤ C
∫ t

tn−1

∫ l

0

∣∣∣uh
x

∣∣∣2 dxdt. (3.13)

This and (3.4) give the results (3.7).
This completes the proof of Lemma 3.2. �

Remark 3.1: We would like to give the specific form of Gronwall inequality, and use it to show the
detailed proof of inequality (3.13).
Gronwall inequality: Let G(τ) ≥ 0 be a continuous differentiable function on [0,T ] which satisfies
G(0) = 0. If

dG(τ)
dτ

≤ kG(τ) + F(τ),

where F(τ) ≥ 0 is a non-decreasing integrable function on [0,T ], and k > 0 is a constant, then we
have

dG(τ)
dτ

≤ ekτF(τ),

and
G(τ) ≤ k−1(ekτ − 1)F(τ).

Letting

G(t) =

∫ t

tn−1

∫ l

0
ω2

xdxdt, F(t) = 2C
∫ t

tn−1

∫ l

0

∣∣∣uh
x

∣∣∣2 dxdt,
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then
dG(t)

dt
=

∫ l

0
ω2

x(·, t)dx.

Due to
∫ t

tn−1

∫ l

0
ω2

xxdxdt ≥ 0, we have from (3.12)

dG(t)
dt
≤ 2CG(t) + F(τ).

So, using the Gronwall inequality above, we get

G(t) ≤ (2C)−1(e2Ct−1)F(t) ≤ (2C)−1(e2CT − 1)F(t) ≤ CF(t).

Substituting the above inequality to (3.12), we get (3.13).

Lemma 3.3. Let vλ(x, t) be the solution to the following problem
−vλt − vλxx − ( p̃(x, t)vλ)x = 0, (x, t) ∈ (0, l) × [tn−1, tn],
vλ(0, t) = vλ(l, t) = 0,
vλ(x, tn) = uλ(x, tn) − g(x, tn),

(3.14)

where p̃(x, t) is defined by (3.5). Then there exists a constant C, such that

‖vλ‖L∞((0,l)×[tn−1,tn]) ≤ C. (3.15)

Proof. We claim vλ ∈ H1,1((0, l) × [tn−1, tn]).
Multiplying Eq (3.14) both sides with vλ and integrating over (0, l) × [t, tn], t ∈ [tn−1, tn), we get

−

∫ tn

t

∫ l

0
vλt vλdxdt −

∫ tn

t

∫ l

0
vλxxv

λdxdt −
∫ tn

t

∫ l

0
( p̃vλ)xvλdxdt = 0.

Integrating by parts and using the boundary conditions, we have

1
2

∫ l

0
|vλ|2dx +

∫ tn

t

∫ l

0
|vλx |

2dxdt

= −

∫ tn

t

∫ l

0
(p̃vλ)vλxdxdt +

1
2

∫ tn

t

∫ l

0
|uλ(·, tn) − g(·, tn)|2dxdt

≤
1
2

∫ tn

t

∫ l

0
|vλx |

2dxdt +
1
2

∫ tn

t

∫ l

0
p̃2|vλ|2dxdt +

∫ tn

t

∫ l

0
(|uλ(·, tn)|2 + |g(·, tn)|2)dxdt

≤
1
2

∫ tn

t

∫ l

0
|vλx |

2dxdt +
p2

2

∫ tn

t

∫ l

0
|vλ|2dxdt + C,

where we have used the bound of p̃, lemmas 3.1, 3.2, and the Cauchy inequality. Then we get

1
2

∫ l

0
|vλ|2dx +

1
2

∫ tn

t

∫ l

0
|vλx |

2dxdt ≤
p2

2

∫ tn

t

∫ l

0
|vλ|2dxdt + C.

Using the Gronwall inequality, we get
∫ tn

tn−1

∫ l

0
|vλx |

2dxdt ≤ C. Similarly, we can prove
∫ tn

tn−1

∫ l

0
|vλt |

2dxdt ≤
C. So, vλ ∈ H1,1((0, l)× [tn−1, tn]) and the conclusion can be obtained immediately from the embedding
theorem. �
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Theorem 3.4. Let pn ∈ A be an optimal control of problem Qn. Then there exists a constant C, such
that

N∑
n=1

∫ l

0

|pn − pn−1|
2

h
dx + max

1≤n≤N

∫ l

0
|∇pn|

2dx ≤ C. (3.16)

Proof. As pn is the minimizer of Jn, we have

Jn(pn) ≤ Jn(pn−1). (3.17)

From (3.17) one can derive

σ

∫ l

0

(
|pn − pn−1|

2

h
+ |∇pn|

2 − |∇pn−1|
2
)

dx ≤
1
h

∫ l

0
[|u(x, tn; pn−1)−g(x, tn)|2− |u(x, tn; pn)−g(x, tn)|2]dx,

(3.18)
where u(x, tn; pn−1) is the solution of (3.1)–(3.3) corresponding to the coefficient

p̃ =

{
pn−1(x), tn−1 ≤ t ≤ tn,
t−tk−1

h pk(x) + tk−t
h pk−1(x), tk−1 ≤ t ≤ tk, 1 ≤ k ≤ n − 1.

Summing up (3.18) from n = 1 to k, we have

σ

k∑
n=1

∫ l

0

|pn − pn−1|
2

h
dx + σ

∫ l

0
|∇pk|

2dx

≤ σ

∫ l

0
|∇p0|

2dx +

k∑
n=1

1
h

∫ l

0
[|u(x, tn; pn−1) − g(x, tn)|2 − |u(x, tn; pn) − g(x, tn)|2]dx. (3.19)

From the definition of pλ and uλ in lemma 3.2, we obtain

|u(x, tn; pn−1) − g(x, tn)|2 − |u(x, tn; pn) − g(x, tn)|2 =

∫ 1

0

d|uλ(x, tn) − g(x, tn)|2

dλ
dλ

= 2
∫ 1

0
(uλ(x, tn) − g(x, tn))

duλ(x, tn)
dλ

dλ.

By the same argument used in theorem 2.2, we deduce that∫ l

0
(uλ(x, tn) − g(x, tn))

duλ(x, tn)
dλ

dx =

∫ tn

tn−1

∫ l

0

t − tn−1

h
(pn − pn−1)uλxvλdxdt. (3.20)

Hence the right side of (3.18) can be estimated by

1
h

∫ l

0
[|u(x, tn; pn−1) − g(x, tn)|2 − |u(x, tn; pn) − g(x, tn)|2]dx

=
2
h

∫ 1

0

∫ l

0

∫ tn

tn−1

t − tn−1

h
(pn − pn−1)uλxvλdtdxdλ

≤ 2
∫ 1

0
dλ

∫ l

0

∫ tn

tn−1

|pn − pn−1|

h

∣∣∣uλx∣∣∣ ∣∣∣vλ∣∣∣ dtdx
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≤
σ

2

∫ l

0

∫ tn

tn−1

|pn − pn−1|
2

h2 dtdx +
2
σ

∫ 1

0
dλ

∫ l

0

∫ tn

tn−1

∣∣∣uλx∣∣∣2 ∣∣∣vλ∣∣∣2 dtdx

≤
σ

2

∫ l

0

|pn − pn−1|
2

h
dx +

2
σ

max
0≤λ≤1

∫ l

0

∫ tn

tn−1

∣∣∣uλx∣∣∣2 ∣∣∣vλ∣∣∣2 dtdx. (3.21)

Combining (3.19) and (3.21) and using lemmas 3.1, 3.2, 3.3, we get

k∑
n=1

∫ l

0

|pn − pn−1|
2

h
dx +

∫ l

0
|∇pk|

2dx

≤ C
∫ l

0
|∇p0|

2dx + C max
0≤λ≤1

∫ l

0

∫ tn

tn−1

∣∣∣uλx∣∣∣2 ∣∣∣vλ∣∣∣2 dtdx

≤ C,

for 1 ≤ k ≤ N.
This completes the proof of theorem 3.4. �

Based on the theorem 3.4 one can easily obtain the following theorem.
Theorem 3.5. For ph we have the following estimate∫ T

0

∫ l

0

∣∣∣ph
t

∣∣∣2 dxdt + max
0≤t≤T

∫ l

0

∣∣∣ph
x

∣∣∣2 dx ≤ C. (3.22)

Theorem 3.6. There exists a constant C, such that

‖ph‖
C

1
2 ,

1
4 (Q̄)
≤ C. (3.23)

Proof. From the definition of the admissible set and the estimates in theorem 3.4 and 3.5, we have

max
0≤t≤T

‖ph(x, t)‖H1(0,l) ≤ C.

Using Soblev’s embedding theorem, there exists a constant C such that∣∣∣ph(x, t) − ph(y, t)
∣∣∣ ≤ C|x − y|

1
2 ,

for any t ∈ [0,T ].
To obtain the t-Hölder estimate for the function ph(x, t), we assume that for any given points

(x, s), (x, t) ∈ Q, without loss of generality, the rectangle

D = {(ξ, τ)|x ≤ ξ ≤ x +
√

t − s, s ≤ τ ≤ t} ⊂ Q.

Then we have ∫ t

s

∫ x+
√

t−s

x
ph
τ(ξ, τ)dξdτ =

∫ x+
√

t−s

x
(ph(ξ, t) − ph(ξ, s))dξ

= (ph(x̂, t) − ph(x̂, s))
√

t − s,
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where x̂ = x + θ
√

t − s, 0 ≤ θ ≤ 1.
By theorem 3.5, we derive that

|ph(x̂, t) − ph(x̂, s)| = (t − s)−
1
2

∫ t

s

∫ x+
√

t−s

x
ph
τ(ξ, τ)dξdτ

≤ (t − s)−
1
2

∫ t

s

∫ x+
√

t−s

x
dξdτ


1
2 (∫ T

0

∫ l

0

∣∣∣ph
t

∣∣∣2 dxdt
) 1

2

≤ (t − s)
3
4−

1
2

(∫ T

0

∫ l

0

∣∣∣ph
t

∣∣∣2 dxdt
) 1

2

≤ C(t − s)
1
4 .

Then we have

|ph(x, t) − ph(x, s)| ≤ |ph(x, t) − ph(x̂, t)| + |ph(x̂, t) − ph(x̂, s)| + |ph(x̂, s) − ph(x, s)|
≤ C(t − s)

1
4 .

This completes the proof of the theorem 3.6. �

Theorem 3.7. Let vh(x, t) be the solution of Eq (2.7). Then there exists a constant C which is
independent of h, such that ∫ tn

tn−1

∫ l

0

∣∣∣vh
t

∣∣∣2 dxdt + max
tn−1≤t≤tn

∫ l

0

∣∣∣vh
x

∣∣∣2 dx ≤ C, (3.24)

and
‖vh‖

C
1
2 ,

1
4 ([0,l]×[tn−1,tn])

≤ C. (3.25)

The proof of (3.24) is standard. The estimate (3.25) can be derived by the same argument used in
theorem 3.6.

4. Necessary condition

In this section, we will discuss the limiting behavior of the discrete reconstruction ph(x, t) of the
unknown coefficient as h→ 0.

Let
Ã = {p(x, t)|p ≤ p(x, t) ≤ p, p ∈ H1(Q) ∩ L∞([0,T ],H1(0, l))},

and

p̄h(x, t) =

{
p0(x), t = t0,

pk(x), tk−1 ≤ t ≤ tk, 1 ≤ k ≤ n.

From the estimates in theorem 3.4, 3.5, and 3.6 we have the following convergence results.
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Theorem 4.1. There exists a subsequence of ph(x, t) and a function p ∈ Ã, such that

ph → p, weakly in H1(Q),
ph → p, in C(Q̄), (4.1)
p̄h → p, in L2(Q),
∇ p̄h → ∇p, weakly in L2(Q).

Proof. From the definition of p̄h(x, t), we have

max
0≤t≤T

∫ l

0
|∇ p̄h|2dx ≤ C.

So we only need to prove that ph and p̄h converge to the same function.
From theorem 3.4, we obtain∫ T

0

∫ l

0
|ph − p̄h|2dxdt =

N∑
n=1

∫ tn

tn−1

∫ l

0

(tn − t)2

h2 (pn − pn−1)2dxdt

=
h2

3

N∑
n=1

∫ l

0

|pn − pn−1|
2

h
dx

≤ Ch2.

This implies the result. �

Function p(x, t) = lim
h→0

ph(x, t) is the reconstruction of the unknown coefficient. We call it the
limiting optimal control of our problem. Now we derive the necessary condition for p(x, t).

Theorem 4.2. Let p(x, t) be the limiting optimal control and u(x, t) be the solution to the following
problem:

Lu = ut − uxx + p(x, t)ux = 0, (x, t) ∈ Q, (4.2)
u(x, 0) = ϕ(x), x ∈ I, (4.3)
u(0, t) = u(l, t) = 0, t ∈ (0.T ]. (4.4)

Then, for any ω ∈ Ã, we have∫
Q

[
pt(ω − p) + ∇p · ∇(ω − p) +

1
2σ

(u − g)ux(p − ω)
]

dxdt ≥ 0. (4.5)

Proof. Note that ‖ph‖
C

1
2 ,

1
4 (Q)
≤ C. Without loss of generality, we can assume α ≤ 1

2 . Then Schauder’s
theory guarantees that

‖uh‖C2+α,1+ α2 (Q) ≤ C, (4.6)

and

uh → u in C2,1(Q̄).
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Firstly we prove (4.5) for ω ∈ Ã
⋂

C∞(Q̄).
Let ω be a function in Ã

⋂
C∞(Q̄), then ω(x, tn) ∈ A, n = 1, · · · ,N. Thus from the necessary

condition (2.6) of optimal control problem Qn, we get∫ l

0

[
pn(x) − pn−1(x)

h
(ω(x, tn) − pn(x)) + ∇pn(x) · ∇(ω(x, tn) − pn(x))

+
1
σh

∫ tn

tn−1

t − tn−1

h
uh

x(x, t)vh(x, t)dt(pn(x) − ω(x, tn))
]
dx ≥ 0, (4.7)

1 ≤ n ≤ N, and vh(x, t) be the solution of (2.7). From the definition of ph and p̄h, it follows that∫ l

0

∫ tn

tn−1

[
ph

t (x, t)(ω(x, tn) − p̄h(x, t)) + ∇p̄h(x, t) · ∇(ω(x, tn) − p̄h(x, t))

+
t − tn−1

σh
uh

x(x, t)vh(x, t)( p̄h(x, t) − ω(x, tn))
]
dtdx ≥ 0.

Therefore, we obtain∫ l

0

∫ tn

tn−1

[
ph

t (x, t)(ω(x, t) − p̄h(x, t)) + ∇ p̄h(x, t) · ∇(ω(x, t) − p̄h(x, t))

+
t − tn−1

σh
uh

x(x, t)vh(x, t)( p̄h(x, t) − ω(x, t))
]
dtdx ≥ En, (4.8)

where

En =

∫ l

0

∫ tn

tn−1

[
ph

t (x, t)(ω(x, t) − ω(x, tn)) + ∇p̄h(x, t) · ∇(ω(x, t) − ω(x, tn))

+
t − tn−1

σh
uh

x(x, t)vh(x, t)(ω(x, tn) − ω(x, t))
]
dtdx.

Let

I1 =

∫ l

0

∫ tn

tn−1

ph
t (x, t)(ω(x, t) − ω(x, tn))dtdx,

I2 =

∫ l

0

∫ tn

tn−1

∇ p̄h(x, t) · ∇(ω(x, t) − ω(x, tn))dtdx,

I3 =

∫ l

0

∫ tn

tn−1

t − tn−1

σh
uh

x(x, t)vh(x, t)(ω(x, tn) − ω(x, t))]dtdx.

Thus, we have
En = I1 + I2 + I3.

By the smoothness of ω, there exists a constant C which is independent of h, such that

|ω(x, t) − ω(x, tn)| = |ωt(x, tn − θ(tn − t))(tn − t)| ≤ Ch,
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where 0 ≤ θ ≤ 1. Then, for the item I1, we have the following estimate

|I1| ≤ Ch
∫ l

0

∫ tn

tn−1

∣∣∣ph
t (x, t)

∣∣∣ dtdx

≤ Ch
(∫ l

0

∫ tn

tn−1

∣∣∣ph
t (x, t)

∣∣∣2 dtdx +

∫ l

0

∫ tn

tn−1

dtdx
)

≤ Ch
∫ l

0

∫ tn

tn−1

∣∣∣ph
t (x, t)

∣∣∣2 dtdx + Ch2.

So, for I2 we have a similar estimate by the same argument of I1,

|I2| ≤ Ch2
∫ l

0
|∇pn|

2dx + Ch2.

For item I3, by lemma 3.1 and theorem 3.7, we have the following estimate

|I3| ≤
Ch
σ

∫ l

0

∫ tn

tn−1

t − tn−1

h
uh

xv
hdtdx

≤
Ch
σ

∫ l

0

∫ tn

tn−1

t − tn−1

h
dtdx

≤ Ch2.

Therefore, for En, we derive that

|En| ≤ Ch2 + Ch
∫ l

0

∫ tn

tn−1

∣∣∣ph
t (x, t)

∣∣∣2 dtdx + Ch2
∫ l

0
|∇pn|

2dx.

One can easily see that
N∑

n=1

|En| ≤ Ch. (4.9)

From (4.8) and (4.9), we have

σ

∫ l

0

∫ T

0

[
ph

t (x, t)(ω(x, t) − p̄h(x, t)) + ∇ p̄h(x, t) · ∇(ω(x, t) − p̄h(x, t))
]
dtdx

+

N∑
n=1

∫ l

0

∫ tn

tn−1

t − tn−1

h
uh

x(x, t)vh(x, t)( p̄h(x, t) − ω(x, t))dtdx ≥ −Ch. (4.10)

By noting that
vh(x, tn) = uh(x, tn) − g(x, tn),

we obtain

|vh(x, t) − (uh(x, t) − g(x, t))| ≤ |vh(x, t) − vh(x, tn)| + |(uh(x, tn) − g(x, tn)) − (uh(x, t) − g(x, t))|
≤ Ch

α
2 ,
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where we have used (2.1), (4.6) and theorem 3.7.
Hence∣∣∣∣∣∣∣

N∑
n=1

∫ l

0

∫ tn

tn−1

t − tn−1

h
uh

x(x, t)
[
vh(x, t) − (uh(x, t) − g(x, t))

]
( p̄h(x, t) − ω(x, tn))dtdx

∣∣∣∣∣∣∣ ≤ Ch
α
2 . (4.11)

From (4.10) and (4.11), we obtain that

σ

∫ l

0

∫ T

0

[
ph

t (x, t)(ω(x, t) − p̄h(x, t)) + ∇ p̄h(x, t) · ∇(ω(x, t) − p̄h(x, t))
]
dtdx

+

N∑
n=1

∫ l

0

∫ tn

tn−1

t − tn−1

h
(uh(x, t) − g(x, t))uh

x(x, t)( p̄h(x, t) − ω(x, t))dtdx ≥ −Ch
α
2 . (4.12)

Note that ∫ tn

tn−1

(
t − tn−1

h
−

1
2

)
dt = 0.

By the direct calculation, we have∫ tn

tn−1

t − tn−1

h
f h(t)dt −

1
2

∫ tn

tn−1

f h(t)dt =

∫ tn

tn−1

(
t − tn−1

h
−

1
2

)
( f h(t) − f h(tn))dt, (4.13)

where

f h(t) =

∫ l

0
(uh(x, t) − g(x, t))uh

x(x, t)( p̄h(x, t) − ω(x, t))dx.

It can be seen that
f h(t) ∈ C

α
2 [tn−1, tn].

Hence we have, from (4.13)∣∣∣∣∣∣
∫ tn

tn−1

t − tn−1

h
f h(t)dt −

1
2

∫ tn

tn−1

f h(t)dt

∣∣∣∣∣∣ ≤ ‖ f h‖C
α
2 [tn−1,tn]h

1+ α
2 . (4.14)

From (4.14) we obtain that∣∣∣∣∣∣
∫ l

0

∫ tn

tn−1

t − tn−1

h
(uh(x, t) − g(x, t))uh

x(x, t)(p̄h(x, t) − ω(x, t))dtdx

−
1
2

∫ l

0

∫ tn

tn−1

(uh(x, t) − g(x, t))uh
x(x, t)(p̄h(x, t) − ω(x, t))dtdx

∣∣∣∣∣∣ ≤ Ch1+ α
2 . (4.15)

Summing up (4.15) from n = 1 to N, we have∣∣∣∣∣∣ N∑
n=1

∫ l

0

∫ tn

tn−1

t − tn−1

h
(uh(x, t) − g(x, t))uh

x(x, t)( p̄h(x, t) − ω(x, t))dtdx

−
1
2

∫
Q

(uh(x, t) − g(x, t))uh
x(x, t)( p̄h(x, t) − ω(x, t))dtdx

∣∣∣∣∣∣ ≤ Ch
α
2 . (4.16)
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Combining (4.12) and (4.16), one can easily obtain∫
Q

[
ph

t (ω − p̄h) + ∇ p̄h · ∇(ω − p̄h) +
1

2σ
(uh − g)uh

x( p̄h − ω)
]

dtdx ≥ −Ch
α
2 . (4.17)

Letting h→ 0, we deduce that, from theorem 4.1 and (4.17)∫
Q

[
pt(ω − p) + ∇p · ∇ω +

1
2σ

(u − g)ux(p − ω)
]

dxdt − lim sup
h→0

∫
Q
|∇ p̄h|2dtdx ≥ 0. (4.18)

By the property of weak convergence, we have

lim inf
h→0

∫
Q
|∇ p̄h|2dxdt ≥

∫
Q
|∇p|2dxdt.

Then from (4.18), we deduce that∫
Q

[
pt(ω − p) + ∇p · ∇(ω − p) +

1
2σ

(u − g)ux(p − ω)
]

dxdt ≥ 0, (4.19)

for any ω ∈ Ã
⋂

C∞(Q̄).
The necessary condition (4.19) remains true for any ω ∈ Ã by the approximation argument.
This completes the proof of theorem 4.2.

�

Corollary 4.3. If ϕ(x) ∈ H1(I), then necessary condition (4.5) remains true for any ω ∈ Ã.
Corollary 4.4. Let p(x, t) be the limiting optimal control and u(x, t) be the solution of (4.2)–(4.4).
Then, for any ω ∈ Ã, we have∫ s

0

∫ l

0

[
pt(ω − p) + ∇p · ∇(ω − p) +

1
2σ

(u − g)ux(p − ω)
]

dxdt ≥ 0, (4.20)

for any s ∈ [0,T ].

Proof. Let δ > 0 and ηδ ∈ C1[0,T ] be a cut-off function such that

ηδ(t) =

{
1, 0 ≤ t ≤ s,
0, s + δ ≤ t ≤ T.

Note that Ã is a convex set, for any ω ∈ Ã,

ω̃ = p + ηδ(ω − p) ∈ Ã.

From theorem 4.2 we have∫
Q

[
pt(ω̃ − p) + ∇p · ∇(ω̃ − p) +

1
2σ

(u − g)ux(p − ω̃)
]

dxdt ≥ 0.

Hence ∫
Q

[
pt(ω − p) + ∇p · ∇(ω − p) +

1
2σ

(u − g)ux(p − ω)
]
ηδ(t)dxdt ≥ 0.

Letting δ→ 0, we obtain the result. �
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5. Uniqueness and stability

We will derive the uniqueness and stability of limiting optimal controls in the sense of L2 norm. In
this part to prove the uniqueness and stability of the limiting optimal control p(x, t), we establish the
following estimate firstly.
Theorem 5.1. Suppose that p0(x), p̄0(x), g(x, t), ḡ(x, t) are given functions, p0, p̄0 ∈ A

⋂
W1,∞(Q) and

g, ḡ satisfy condition (2.1). Let p(x, t), p̄(x, t) be the limiting optimal controls corresponding to
(p0, g), ( p̄0, ḡ) respectively. Then there exists a constant C such that

‖p − p̄‖L∞([0,T ],L2(I)) + ‖∇(p − p̄)‖L2(Q) ≤
C
σ

(‖g − ḡ‖L2(Q) + ‖p0 − p̄0‖L2(I)). (5.1)

Proof. Let u(x, t), ū(x, t) be the solution of (4.2)–(4.4) corresponding to p(x, t), p̄(x, t) respectively. It
can be easily verified that W = u − ū satisfies the following equation

Wt −Wxx + p(x, t)Wx = ( p̄ − p)ūx, (x, t) ∈ Q, (5.2)
W(x, 0) = 0, x ∈ I, (5.3)
W(0, t) = W(l, t) = 0, t ∈ (0,T ]. (5.4)

Utilizing the standard energy estimate for parabolic equations, we deduce that

‖W‖L2(Qs) + ‖Wx‖L2(Qs) ≤ C‖ p̄ − p‖L2(Qs), (5.5)

where s ∈ [0,T ],Qs = (0, l) × [0, s].
From (4.20), for any s ∈ [0,T ], we have∫ s

0

∫ l

0

[
pt( p̄ − p) + ∇p · ∇( p̄ − p) +

1
2σ

(u − g)ux(p − p̄)
]

dxdt ≥ 0, (5.6)

and ∫ s

0

∫ l

0

[
p̄t(p − p̄) + ∇ p̄ · ∇(p − p̄) +

1
2σ

(ū − ḡ)ūx(p̄ − p)
]

dxdt ≥ 0. (5.7)

Hence∫ s

0

∫ l

0

[
(p − p̄)(p − p̄)t + |∇(p − p̄)|2

]
dxdt ≤

1
2σ

∫ s

0

∫ l

0
(p − p̄)[(u − g)ux − (ū − ḡ)ūx]dxdt. (5.8)

Therefore, we obtain

σ

∫ l

0
(p − p̄)2(x, s)dx + 2σ

∫ s

0

∫ l

0
|∇(p − p̄)|2dxdt

≤ σ

∫ l

0
(p0 − p̄0)2dx +

∫ s

0

∫ l

0
(p − p̄)2dxdt +

∫ s

0

∫ l

0
[(u − g)ux − (ū − ḡ)ūx]2dxdt. (5.9)

Note that

[(u − g)ux − (ū − ḡ)ūx]2 = [uux − gux − ūūx + ḡūx]2
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= [(uux − ūūx) + (ḡūx − gux)]2

≤ C[(uux − ūūx)2 + (ḡūx − gux)2]
≤ C[(u − ū)2u2

x + ū2(ux − ūx)2 + (ḡ − g)2ū2
x + g2(ūx − ux)2]

≤ C[(g − ḡ)2 + (u − ū)2 + (ux − ūx)2].

Hence∫ s

0

∫ l

0
[(u − g)ux − (ū − ḡ)ūx]2dxdt ≤ C(‖g − ḡ‖2L2(Qs)

+ ‖u − ū‖2L2(Qs)
+ ‖(u − ū)x‖

2
L2(Qs)

). (5.10)

From (5.5), (5.9), and (5.10), we have

σ

∫ l

0
(p − p̄)2(x, s)dx + 2σ

∫ s

0

∫ l

0
|∇(p − p̄)|2dxdt

≤ σ

∫ l

0
(p0 − p̄0)2dx + C

∫ s

0

∫ l

0
(p − p̄)2dxdt + C

∫ s

0

∫ l

0
(g − ḡ)2dxdt. (5.11)

By Gronwall’s inequality, we obtain that∫ l

0
(p − p̄)2(x, s)dx +

∫ s

0

∫ l

0
|∇(p − p̄)|2dxdt ≤

C
σ

(∫ l

0
(p0 − p̄0)2dx +

∫ s

0

∫ l

0
(g − ḡ)2dxdt

)
,

for any s ∈ [0,T ].
This completes the proof of theorem 5.1. �

Corollary 5.2. Based on the uniqueness of the solution p(x, t), by theorem 4.1, we get that the whole
sequence ph(x, t) defined by linear interpolation of minimizers pn(x) of optimal control problems
Qn(n = 0, 1, · · · ,N) converge to the recovered coefficient p(x, t) uniformly on the domain Q̄.

6. Conclusions

In this paper, we reconstruct the drift coefficient p(x, t) for the following Kolmogorov-type equation

ut − uxx + p(x, t)ux = 0,

where u satisfies the homogeneous Dirichlet boundary condition. In an optimal control framework, the
problem is transformed to a sequence of inverse problems Qn (n = 0, 1, · · · ,N). Then the unknown
coefficient is purely space dependent. We establish the existence and the necessary condition of the
minimizer pn(x) for problem Qn. From pn(x) and the using linear interpolation, we construct the
discrete reconstruction ph(x, t). After careful analysis, it is found that there exists a subsequence of
ph(x, t) converging to a function p(x, t), and the corresponding necessary condition of p(x, t) is also
deduced. In the end, the uniqueness and stability of p(x, t) are obtained in the sense of L2 norm, which
indicates that the procedure of recovering p(x, t) from a given function g(x, t) is stable.

In the current paper, we focus on the analysis of drift coefficient, but have no special requirements
for diffusion coefficient or volatility coefficient. In the real market, the volatility coefficient is not
always positive, but only non-negative. In such case, our mathematical model will be transformed
into a degenerate Kolmogorov-type equation. Of course, this type of equation is more difficult than
ordinary one, which is also our research direction in the future.
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