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f (ς) and (ς f ′(ς))′

f ′(ς) map open unit disc onto region bounded by limaçon are studied.
Coefficients bounds, Fekete Szegö inequalities and the bounds of the third Hankel determinants are
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1. Introduction

One of the most fascinating areas of Complex analysis is the study of geometric characterization of
univalent functions in the open unit disc U. Because of the challenging problem in studying the class
S (1−1) of univalent functions in U as a whole, several subclasses of it emerged. The most studied of
these are the classes CCV , S S T , CCV(β) and S S T (β) (0 ≤ β < 1) of convex functions, starlike functions
and, convex and starlike functions of order β, respectively. Since the image domains of U plays a
significant role in their geometric characterization, various subclasses of S (1−1) have been receiving
attention in different directions and perspectives (see [4, 6, 20, 23, 28, 32, 33, 36–38]). For this reason,
Ma and Minda [17] gave a unified treatment of both S S T and CCV . They considered the class Ψ of
analytic univalent functions ψ(ς) with Reψ(ς) > 0 and for which ψ(U) is symmetric with respect to the
real axis and starlike with respect to ψ(0) such that ψ′(0) > 0. They initiated the following classes of
functions that generalized and unified many renowned subclasses of S (1−1):

S ∗S T (ψ) =

{
f ∈ A :

ς f ′(ς)
f (ς)

≺ ψ(ς)
}

and

CCV(ψ) =

{
f ∈ A :

(ς f ′(ς))′

f ′(ς)
≺ ψ(ς)

}
,

whereA is the class of analytic functions f (ς) of the form

f (ς) = ς +

∞∑
n=2

δnς
n. (1.1)

If

ψ(ς) = 1 +
2
π2

(
log

1 +
√
ς

1 −
√
ς

)2

,

then CCV(ψ) = UCV is the Goodman class of uniformly convex functions [8, 30], which was later
modified and examined by Kanas and Wisniowska [13,14]. Similarly, S Thpl(s) = S ∗

(
1

(1−ς)s

)
, CVhpl(s) =

C
(

1
(1−ς)s

)
(0 < s ≤ 1), are made-known by Kanas and Ebadian [15, 16], respectively. These consist of

functions f ∈ A such that ς f ′(ς)/ f (ς) and (ς f ′(ς))′/ f ′(ς) lie in the domain bounded by the right
branch of a hyperbola

H(s) =

σeiθ ∈ C : σ =
1

(2 cos θ
s )s
, |θ| <

πs
2

 .
More special families of Ma and Minda classes can be found in [3, 9, 10, 24–26, 31, 34, 39].

Recently, Kanas et al [18] introduced novel subclasses S TL(s) and CVL(s) of S S T and CCV ,
respectively. Geometrically, they consist of functions f (ς) ∈ A such that ς f ′(ς)/ f (ς) and
(ς f ′(ς))′/ f ′(ς) lie in the region bounded by the limaçon defined as

∂Ls(U) =
{
u + iv : [(u − 1)2 + v2 − s4]2 = 4s2[(u − 1 + s2)2 + v2]

}
, s ∈ [−1, 1] − {0} (1.2)

as shown in Figure 1 for different values of s. s = 0.35, 0.5, 0.6, 0.71, 0.75 and 1 corresponds to blue,
red, green, gray, yellow and black. Some novel properties of these classes were derived in [18].
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Figure 1. Image representing ∂Ls(U) for different values of s.

Motivated by this present work and other aforementioned articles, the goal in this paper is to
continue with the investigation of some interesting properties of the classes S TL(s) and CVL(s). To
this end, the sharp bounds of the Hankel determinant, subordination conditions as well as some radius
results for these novel classes are investigated.

2. Materials and method

To put our investigations in a clear perspective, some preliminaries and definitions are presented as
follows:

Denoted byW is the class of analytic functions

w(ς) =

∞∑
n=1

wnς
n, ς ∈ U (2.1)

such that w(0) = 0 and |w(ς)| < 1. These functions are known as Schwarz functions. If f (ς) and g(ς)
are analytic functions in U, then f (ς) is subordinate to g(ς) (written as f (ς) ≺ g(ς)) if there exists a
Schwarz function w(ς) ∈ W such that f (ς) = g(w(ς)), ς ∈ U.

Janowski [12] introduced the class P(Aa,Ba), −1≤ Ba < Aa ≤1 of functions p(ς) satisfying the
subordination condition

p(ς) ≺
1 + Aaς

1 + Baς
,

or equivalently, satisfying the inequality∣∣∣∣p(ς) −
1 − AaBar2

1 − Ba2r2

∣∣∣∣ ≤ (Aa − Ba)r
1 − Ba2r2

, |ς| ≤ r (0 < r < 1). (2.2)

As a special cases, P(1,−1) ≡ P and P(1 − 2β,−1) ≡ P(β) (0 ≤ β < 1) are the classes of functions of
positive real part and that whose real part is greater than β, respectively (see [7]).
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Definition 2.1. Noonan and Thomas [22] defined for q ≥ 1, n ≥ 1, the qth Hankel determinant of
f (ς) ∈ S 1−1 of the form (1.1) as follows :

Hq(n) =

∣∣∣∣∣∣∣∣∣∣∣∣
δn δn+1 . . . δn+q−1

δn+1 δn+2 . . . δn+q−2
...

...
...

...

δn+q−1 δn+q−2 . . . δn+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣ (2.3)

This determinant has been studied by many researchers. In particular Babalola [2] obtained the
sharp bounds ofH3(1) for the classes S S T and CCV . By this definition,H3(1) is given as:

H3(1) =

∣∣∣∣∣∣∣∣∣
δ1 δ2 δ3

δ2 δ3 δ4

δ3 δ4 δ5

∣∣∣∣∣∣∣∣∣
= δ3(δ2δ4 − δ

2
3) − δ4(δ4 − δ2δ3) + δ5(δ3 − δ

2
2), δ1 = 1,

and the by triangle inequality,

|H3(1)| ≤ |δ3| |δ2δ4 − δ
2
3| + |δ4| |δ4 − δ2δ3| + |δ5| |δ3 − δ

2
2|. (2.4)

Clearly, one can see that H2(1) = |δ3 − δ
2
2| is a particular instance of the well-known Fekete Szegö

functional |δ3 − µδ
2
2|, where µ is a real number.

Definition 2.2. [18] Let p(ς) = 1 +
∞∑

n=1
cnς

n. Then p ∈ P(Ls) if and only if

p(ς) ≺ (1 + sς)2, 0 < s ≤
1
√

2
, ς ∈ U,

or equivalently, if p(ς) satisfies the inequality

|p(ς) − 1| < 1 − (1 − s)2.

Demonstrated in [18], was the inclusion relation

{w ∈ C : |w − 1| < 1 − (1 − s)2} ⊂ Ls(U) ⊂ {w ∈ C : |w − 1| < (1 + s)2 − 1}. (2.5)

It is worthy of note that the function Ls(ς) = (1 + sς)2 is the analytic characterization of Ls(U) given
by (1.2). Also, Ls(ς) is starlike and convex univalent in U for 0 < s ≤ 1

2 . Furthermore, Ls(ς) ∈ P(β),
where β = (1 − s)2, 0 < s ≤ 1

2 .

Definition 2.3. Let f ∈ A. Then f ∈ S TL(s) if and only if

ς f ′(ς)
f (ς)

∈ P(Ls), 0 < s ≤
1
√

2
.

Also, f ∈ CVL(s) if and only if

z f ′(ς) ∈ S TL(s), 0 < s ≤
1
√

2
.
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Moreover, the integral representation of functions f ∈ S TL(s) is given as

f (ς) = ς exp
(∫ ς

0

p(t) − 1
t

dt
)
, p ∈ P(Ls),

while that of g ∈ CVL(s) is given as

g(ς) =

∫ ς

0

f (t)
t

dt, f ∈ S TL(s).

Furthermore, the extremal functions for each of the classes are given by

Ψs,n(ς) = ς exp
(∫ z

0

Ls(tn) − 1
t

dt
)
, Ψs,n(ς) ∈ S TL(s)

= ς exp
(
2s
n
ςn +

s2

2n
ς2n

)
, n = 1, 2, 3, . . .

= ς +
2s
n
ςn+1 +

(n + 4)s2

2n2 ς2n+1 + . . . .

(2.6)

and for Ks,n(ς) ∈ CVL(s),

Ks,n(ς) =

∫ ς

0

Ψs,n(t)
t

dt, Ψs,n(ς) ∈ S TL(s), n = 1, 2, 3, . . .

= ς +
2s

n(n + 1)
ςn+1 + . . . .

(2.7)

3. A set of lemmas

Lemma 3.1. [1] If w ∈ W is of the form (2.1), then for a real number σ,

|w2 − σw2
1| ≤


−σ, for σ ≤ −1,

1, for − 1 ≤ σ ≤ 1,

σ for σ ≥ 1.

When σ < −1 or σ > 1, equality holds if and only if w(ς) = ς or one of its rotations. If −1 < σ < 1,
then equality holds if and only if w(ς) = ς2 or one of its rotations. Equality holds for σ = −1 if and
only if w(ς) =

ς(x+ς)
1+xς (0 ≤ x ≤ 1) or one of its rotations while for σ = 1, equality holds if and only if

w(ς) = −
ς(x+ς)
1+xς (0 ≤ x ≤ 1) or one of its rotations.

Also, the sharp upper bound above can be improved as follows when −1 ≤ σ ≤ 1:

|w2 − σw2
1| + (1 + σ)|w1|

2 ≤ 1 (−1 < σ ≤ 0)

and
|w2 − σw2

1| + (1 − σ)|w1|
2 ≤ 1 (0 < σ < 1).
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Lemma 3.2. [16] If w ∈ W is of the form (2.1), then for some complex numbers ξ and η such that
|ξ| ≤ 1 and |η| ≤ 1,

w2 = ξ(1 − w2
1)

and
w3 = (1 − w2

1)(1 − |ξ|2)η − w1(1 − w2
1)ξ2.

Lemma 3.3. [19, Theorem 3.4h, p. 132] Let q(ς) be univalent in U and let θ and ϕ be analytic in a
domain D containing q(U) with ϕ(ω) , 0, when ω ∈ q(U). Set
Q(ς) = ςq′(ς) · ϕ(q(ς)), h(ς) = θ(q(ς)) + Q(ς), and suppose that either

(i) h(ς) is convex, or Q(ς) is starlike,
(ii)

Re
ςh′(ς)
Q(ς)

= Re
(
θ′(q(ς))
ϕ(q(ς))

+
ςQ′(ς)
Q(ς)

)
>0.

If p(ς) is analytic in U with p(0) = q(0), p(U) ⊂ D and

θ(p(ς)) + ςp′(ς)ϕ(p(ς)) ≺ θ(q(ς)) + ςq′(ς)ϕ(q(ς)) = h(ς), (3.1)

then p(ς) ≺ q(ς), and q(ς) is the best dominant in the sense that p ≺ t ⇒ q ≺ t for all t.

Lemma 3.4. [29] Let h(ς) = 1 +
∞∑

n=1
cnς

n, G(ς) = 1 +
∞∑

n=1
dnς

n and h(ς) ≺ G(ς). If G(ς) is univalent in

U and G(U) is convex, then |cn| ≤ |d1|, for all n ≥ 1.

Lemma 3.5. [11] Let w ∈ W. If |w(ς)| attains its maximum value on the circle |ς| = r at a point
ς0 ∈ U, then we have ς0w′(ς0) = kw(ς0), where k ≥ 1.

Throughout this work f (ς) is taken to be of the form (1.1) while w(ς) is of the form (2.1). In the
next sections, the main results are presented.

4. Coefficient results

In this section, we assume 0 < s ≤ 1
2 . First, we establish a few auxiliary results whose applications

will be needed hereafter.

Lemma 4.1. Let f ∈ S TL(s). Then

|δn| ≤
(2s)n−1

(n − 1)!
, n ≥ 2. (4.1)

Proof. From the definition of f ∈ S TL(s), we have

ς f ′(ς)
f (ς)

= p(ς), p ∈ P(Ls), (4.2)

where
p(ς) := 1 + c1ς + c2ς

2 + c3ς
3 + . . . . (4.3)
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Comparing the coefficients of ςn in (4.2), it follows that

(n − 1)δn = cn−1 + δ2cn−2 + δ3cn−3 + · · · + δn−1c1. (4.4)

It is obvious from Lemma 3.4 and the fact that Ls(ς) is convex for 0 < s ≤ 1
2 that

|cn| ≤ 2s, n ≥ 1. (4.5)

Using this result in (4.4), we obtain

|δn| ≤
2s

n − 1

n−1∑
m=1

|δm| , δ1 = 1, n ≥ 2. (4.6)

We need to show (4.1) by Mathematical induction. For this reason, assume (4.1) is true and proceed to
prove

|δn+1| ≤
(2s)n

(n)!
, n ≥ 2.

From (4.6),

|δ2| =|c1| ≤ (2s)1 ,

|δ3| ≤
2s
2

(1 + |δ2|) ≤
(2s)2

2!
,

|δ4| ≤
2s
2

(1 + |δ2| + |δ3|) ≤
(2s)3

3!
,

and finally,

|δn+1| ≤
2s
n

(
1 + (2s)1 +

(2s)2

2!
+

(2s)3

3!
+ · · · +

(2s)n−1

(n − 1)!

)
=

(2s)n

n!
.

Therefore,

|δn+1| ≤
(2s)n

(n)!
, n ≥ 2.

Hence, by Mathematical induction, we have the desired result. �

In view of Theorem 4.1 and the definition of functions in CVL(s), we are led to the following result.

Lemma 4.2. Let f ∈ CVL(s). Then

|δn| ≤
(2s)n−1

(n)!
, n ≥ 2.

Lemma 4.3. Let f ∈ S TL(s). Then

|δ2δ4 − δ
2
3| ≤

19s4

12
.

The bound 19s4

12 is sharp for the function

Ψs,1(ς) = ς + 2sς2 +
5
2

s2ς3 +
7
3

s3ς4 + . . . . (4.7)
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Proof. For f ∈ S TL(s),
ς f ′(ς)

f (ς)
= (1 + sw(ς))2, (4.8)

where w ∈ W. Comparing coefficients of ς, ς2 and ς3 in (4.8), we arrive at

δ2 = 2sw1, δ3 = s
(
w2 +

5
2

sw2
1

)
and δ4 =

2
3

sw3 +
8
3

s2w1w2 +
7
3

s3w3
1. (4.9)

By Lemma 3.1, we obtain

|δ2δ4 − δ
2
3| =

4s2

3

∣∣∣∣∣∣w1(1 − w2
1)
(
1 − |ξ|2

)
η − (1 − w2

1)(3 − w2
1)ξ2 +

1
4

sw2
1ξ(1 − w2

1) −
19
16

s2w4
1

∣∣∣∣∣∣ .
Let x = w1, ξ = y with 0 ≤ x ≤ 1 and |y| ≤ 1. Then the triangle inequality gives

|δ2δ4 − δ
2
3| ≤ F (x, |y|),

where

F (x, |y|) =
4s2

3

(
x(1 − x2)(1 − |y|2) + (1 − x2)(3 − x2)|y|2 +

1
4

sx2|y|(1 − x2) +
19
16

s2x4
)
,

and
∂F
∂|y|

=
4s2

3

(
2(1 − x2)(3 − x2 − x)|y| +

1
4

sx2(1 − x2)
)
> 0.

This means that F (x, |y|) is increasing on the interval [0, 1]. So,

F (x, |y|) ≤
4s2

3

(
(1 − x2)(12 + x2(s − 4)) +

19
16

s2x4
)

:=F (x) ,

where
F ′(x) = 2x(s + 8) + 19s2x3 > 0 ,

which implies that F (x) is an increasing function of x on [0, 1]. Consequently,

|δ2δ4 − δ
2
3| ≤

4s2

3
F (1) =

19s4

12
.

�

Lemma 4.4. Let f ∈ CVL(s). Then

|δ2δ4 − δ
2
3| ≤

s2

9
.

The bound s2

9 is sharp for the function

Ks,2(ς) = ς +
s
3
ς3 +

3s2

20
ς5 + . . . . (4.10)
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Proof. From the definition of f ∈ CVL(s) and (4.9), it is easy to see that

|δ2δ4 − δ
2
3| =

∣∣∣∣∣∣16 s2w1w3 +
1
9

s3w2
1w2 −

1
9

s2w2
2 −

1
9

s4w4
1

∣∣∣∣∣∣ .
The rest of the proof follows as in Theorem 4.3. �

Lemma 4.5. Let f ∈ S TL(s). Then

|δ2δ3 − δ4| ≤
2s
3
.

The bound 2s
3 is best possible for the function

Ψs,3(ς) = ς +
2
3

sς4 +
7
18

s2ς7 + . . . . (4.11)

Proof. From (4.9), a computation gives

δ2δ3 − δ4 = 2s2w1

(
w2 −

7
6

sw2
1

)
−

8
3

s2w1

(
w2 −

15
8

sw2
1

)
−

2
3

sw3.

Employing Lemma 3.2, we write the expression for w3, and applying the triangle inequality together
with Lemma 3.1, we obtain

|δ2δ3 − δ4| ≤
14s2

3
+

2s
3

[
(1 − x2)(1 − |y|2) + x(1 − x2)|y|2

]
, (4.12)

where we have taken w1 = x, ξ = y with 0 ≤ x ≤ 1 and |y| ≤ 1. Let H(x, |y|) represents the right side
of (4.12). Then

∂H(x, |y|)
∂|y|

= −
4s
3

(1 − x2)(1 − x) ≤ 0.

Thus,
H(x, |y|) ≤ H(x, 0) := H(x),

where

H(x) =
14s2x

3
+

2(1 − x2)s
3

and H ′(x) =
2s
3

(7s − 2x).

It is clear thatH(x) attains its maximum value at x = 7s
2 . Thus,H(x) ≤ H

(
7s
2

)
= 2s

3 . Consequently,

|δ2δ3 − δ4| ≤
2s
3
.

�

Lemma 4.6. Let f ∈ CVL(s). Then
|δ2δ3 − δ4| ≤

s
6
.

This bound cannot be improved since the function

Ks,3(ς) = ς +
1
6

sς4 +
1
18

s2ς7 + . . . (4.13)

attains the equality.
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Proof. Using the definition of f ∈ CVL(s) and (4.9), we find

δ2δ3 − δ4 =
1
4

s3w3
1 −

1
3

s2w1w2 −
1
6

sw3.

Let w1 = x (0 ≤ x < 1) and ξ = y with |y| ≤ 1. Then applying Lemma 3.2 and following the procedure
of proof as in Theorem 4.5, we arrive at the desired result. �

5. Fekete Szegö inequality for the classes S TL(s) and CVL(s)

Lemma 5.1. Let f ∈ S TL(s). Then for a real number µ,

|δ3 − µδ
2
2| ≤


s2(5−8µ)

2 , for µ ≤ 5s−2
8s ,

s, for 5s−2
8s ≤ µ ≤

5s+2
8s ,

s2(8µ−5)
2 , for µ ≥ 5s+2

8s .

It is asserted also that

|δ3 − µδ
2
2| +

(
µ −

5s − 2
8s

)
|δ2|

2 ≤ s ,
5s + 2

8s
< µ ≤

5
8

and

|δ3 − µδ
2
2| −

(
µ −

5s + 2
8s

)
|δ2|

2 ≤ s ,
5
8
< µ <

5s + 2
8s

.

These inequalities are sharp for the functions

λΨs,1(λς), for µ ∈ (−∞, 5s−2
8s ) ∪ (5s+2

8s ,∞),

λΨs,2(λς), for 5s−2
8s ≤ µ ≤

5s+2
8s ,

λPx(λς), for µ = 5s−2
8s ,

λQx(λς), for µ = 5s+2
8s ,

where |λ| = 1 and

ςP′x(ς)
Px(ς)

= Ls

(
ς(x + ς)
1 + xς

)
,

ςQ′x(ς)
Qx(ς)

= Ls

(
−
ς(x + ς)
1 + xς

)
, 0 ≤ x ≤ 1.

Proof. From (4.9), we have ∣∣∣∣δ3 − δ
2
2

∣∣∣∣ = s
∣∣∣∣∣w2 −

s(8µ − 5)
2

w2
1

∣∣∣∣∣ .
Then using Lemma 3.1 with σ =

s(8µ−5)
2 , we obtain the required result. �

For µ = 1 in Theorem 5.1, we deduce the following sharp result.

Corollary 5.1. Let f ∈ S TL(s). Then
|δ3 − δ

2
2| ≤ s.
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Lemma 5.2. Let f ∈ CVL(s). Then for a real number µ,

|δ3 − µδ
2
2| ≤


s2(5−6µ)

6 , for µ ≤ 5s−2
6s ,

s
3 , for 5s−2

6s ≤ µ ≤
5s+2

6s ,

s2(6µ−5)
6 , for µ ≥ 5s+2

6s .

It is asserted also that

|δ3 − µδ
2
2| +

(
µ −

5s − 2
6s

)
|δ2|

2 ≤
s
3
,

5s − 2
6s

< µ ≤
5
6

and

|δ3 − µδ
2
2| −

(
µ −

5s + 2
6s

)
|δ2|

2 ≤
s
3
,

5
6
< µ <

5s + 2
6s

.

These inequalities are sharp for the functions

λKs,1(λς), for µ ∈ (−∞, 5s−2
6s ) ∪ ( 5s+2

6s ,∞),

λKs,2(λς), for 5s−2
6s ≤ µ ≤

5s+2
6s ,

λPx(λς), for µ = 5s−2
6s ,

λQx(λς), for µ = 5s+2
6s ,

where |λ| = 1 and

(ςP′x(ς))′

P′x(ς)
= Ls

(
ς(x + ς)
1 + xς

)
,

(ςQ′x(ς))′

Q′x(ς)
= Ls

(
−
ς(x + ς)
1 + xς

)
, 0 ≤ x ≤ 1.

Proof. Using the definition of CVL(s) and (4.9), we get∣∣∣∣δ3 − δ
2
2

∣∣∣∣ =
s
3

∣∣∣∣∣w2 −
s(6µ − 5)

2
w2

1

∣∣∣∣∣ .
Then using Lemma 3.1 with σ =

s(6µ−5)
2 , we obtain the desired result. �

For µ = 1 in Theorem 5.2, we deduce the following sharp result.

Corollary 5.2. Let f ∈ CVL(s). Then
|δ3 − δ

2
2| ≤

s
3
.

Theorem 5.3. Let f ∈ S TL(s). Then

|H3(1)| ≤
s2

36
(2s + 1)(57s3 + 12s2 + 46s + 34)

Proof. The proof is immediate from (2.4), Lemma 4.1, Lemma 4.3, Lemma 4.5 and Corollary 5.1. �

Theorem 5.4. Let f ∈ CVL(s). Then

|H3(1)| ≤
s2

540
(2s + 1)(12s2 + 6s + 33)

Proof. The proof is straightforward from (2.4), Lemma 4.2, Lemma 4.4, Lemma 4.6 and Corollary 5.2.
�
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6. S TL(s) and CVL(s) radii

Theorem 6.1. The CVL(s)-radius for the class S S T (β) (where β = (1 − s)2) is given by

R1 =


1

2+2s−s2+
√

s4−4s3+6s2−4s+7
, for s ,

√
2−1
√

2
,

1
5 , for s =

√
2−1
√

2
.

(6.1)

This radius is sharp for the functions given by

f0(ς) =


z

(1−z)2s(2−s) , for s ,
√

2−1
√

2
,

z
1−z , for s =

√
2−1
√

2
.

(6.2)

Proof. Let f ∈ S S T (β). Then
ς f ′(ς)

f (ς)
∈ P(β), β = (1 − s)2.

This means that there exists w ∈ W such that

ς f ′(ς)
f (ς)

= 1 +
2(1 − β)w(ς)

1 − w(ς)
,

Let
ς f ′(ς)

f (ς)
= p(ς). (6.3)

Then by Schwarz lemma,

|p(ς) − 1| ≤
2(1 − β)r

1 − r
. (6.4)

It follows from logarithmic differentiation of (6.3) that∣∣∣∣∣ (ς f ′(ς))′

f ′(ς)
− 1

∣∣∣∣∣ ≤ |p(ς) − 1| +
∣∣∣∣∣ςp′(ς)

p(ς)

∣∣∣∣∣ .
It is known from [27] that for p ∈ P(β),∣∣∣∣∣ςp′(ς)

p(ς)

∣∣∣∣∣ ≤ 2(1 − β)r
(1 − r)(1 + (1 − 2β)r)

.

Using this result together with (6.4), we write∣∣∣∣∣ (ς f ′(ς))′

f ′(ς)
− 1

∣∣∣∣∣ ≤ 2r(1 − β)(2 + (1 − 2β)r)
(1 − r)(1 + (1 − 2β)r)

.

We need to show that ∣∣∣∣∣ (ς f ′(ς))′

f ′(ς)
− 1

∣∣∣∣∣ ≤ 1 − β.

However, it holds if
3(1 − 2β)r2 + 2(2 + β)r − 1 ≤ 0.
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Let T (r) = 3(1 − 2β)r2 + 2(2 + β)r − 1. Then T (0) = −1 < 0 and T (1) = 6 − 4β > 0 such that
T (0)T (1) < 0. Thus, there exists R1 ∈ [0, 1] such that

3(1 − 2β)R2
1 + 2(2 + β)R1 − 1 = 0. (6.5)

Therefore, 3(1 − 2β)r2 + 2(2 + β)r − 1 ≤ 0 for all r < R1 and R1 is the smallest roots of (6.5) given by
(6.1).

For sharpness, we consider the functions f0(ς) defined by (6.2). At the point z = R1, we have∣∣∣∣∣∣ (ς f ′0(ς))′

f ′0(ς)
− 1

∣∣∣∣∣∣ = 1 − (1 − s)2.

�

Theorem 6.2. Let f ∈ S TL(s). Then f ∈ CCV for all z in the disc |ς| < R2, where R2 is the positive
roots of the equation

s3x5 − 3s2x4 + (3 − s2)sx3 − (1 − 3s2)x2 − (3s + 2)x + 1 = 0. (6.6)

Proof. For f ∈ S TL(s),
ς f ′(ς)

f (ς)
= (1 + sw(ς))2,

where w ∈ W. Therefore

Re
(ς f ′(ς))′

f ′(ς)
≥Re(1 + sw(ς))2 − 2r

∣∣∣∣∣ w′(ς)
1 + sw(ς)

∣∣∣∣∣
≥(1 − sr)2 −

2r(1 − |w(ς)|2)
(1 − r2)(1 − sr)

,

where we have used the extension of Schwarz lemma (see [21]). Thus,

Re
(ς f ′(ς))′

f ′(ς)
≥

(1 − sr)3(1 − r2) − 2r
(1 − sr)(1 − r2)

> 0

if (1 − sr)3(1 − r2) − 2r > 0. Let T (r) = (1 − sr)3(1 − r2) − 2r. Then T (0) = 1 > 0 and T (1) = −2 < 0
with T (0)T (1) < 0. Therefore, there exists R2 ∈ [0, 1] such that (1 − sR2)3(1 − R2

2) − 2R2 = 0. Hence,
(1 − sr)3(1 − r2) − 2r > 0 holds for all r < R2, where R2 is the smallest positive roots of (6.6). �

Theorem 6.3. Let p ∈ P. Then p ∈ P(Ls) for all z in the disc

|ς| <
2s − s2

2 + 2s − s2 , 0 < s ≤

√
2

2
. (6.7)

Proof. Let p ∈ P. Then ∣∣∣∣∣∣p(ς) −
1 + r2

1 − r2

∣∣∣∣∣∣ < 2r
1 − r2 , r ∈ (0, 1).

We want to prove that
|p(ς) − 1| ≤ 1 − (1 − s)2.
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Now,

|p(ς) − 1| ≤

∣∣∣∣∣∣p(ς) −
1 + r2

1 − r2

∣∣∣∣∣∣ +
2r2

1 − r2

≤
2r

1 − r2 +
2r2

1 − r2

=
2r

1 − r
<1 − (1 − s)2

if (6.7) is satisfied. To show that the radius cannot be improved, we consider the function

p0(ς) =
1 + ς

1 − ς
.

Then for ς = 2s−s2

2+2s−s2 , ∣∣∣p0(ς) − 1
∣∣∣ =

∣∣∣∣∣ 2ς
1 − ς

∣∣∣∣∣ = 2s − s2,

which shows that equality is attained for (6.7). �

Corollary 6.1. The S TL(s)-radius and CVL(s)-radius for the classes of starlike and convex functions
are given by (6.7).

7. Some properties of the function Ls(ς)

Theorem 7.1. If p(ς) is analytic in U with p(0) = 1 and satisfies the condition

Re
(
ςp′(ς)
p(ς)

)
<

2s
s − 1

, (7.1)

or

Re
(
ςp′(ς)
p(ς)

)
>

2s
s + 1

, (7.2)

then p(ς) ≺ (1 + sς)2 for −1 < s < 0.

Proof. Let p(ς) be defined by
p(ς) = (1 + sw(ς))2 (7.3)

Clearly, w(ς) is analytic in U with w(0) = 0. To prove our result, it is required to show that |w(ς)| < 1
for all ς ∈ U. From (7.3), a simple calculation gives

ςp′(ς)
p(ς)

=
2sςw′(ς)
1 + sw(ς)

.

Suppose there exists a point ς0 ∈ U such that

max
|ς|≤|ς0 |

|w(ς)| = |w(ς0)| = 1.
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Then by Lemma 3.5, w(ς0) = eiθ and ς0w′(ς0) = kw(ς0). Thus,

Re
(
ς0 p′(ς0)

p(ς0)

)
=Re

(
2sς0w′(ς0)
1 + sw(ς0)

)
=2k

(
1 − Re

(
1

1 + seiθ

))
> − 2k

( s
1 − s

)
≥

2s
s − 1

.

This contradicts (7.1). Therefore, there exists no ς0 ∈ U such that |w(ς0)| = 1. Thus |w(ς)| < 1 in U, so
that p(ς) ≺ (1 + sς)2 for −1 < s < 0.

Similarly,

Re
(
ς0 p′(ς0)

p(ς0)

)
=2k

(
1 − Re

(
1

1 + seiθ

))
<2k

( s
1 + s

)
≤

2s
s + 1

,

which contradicts the assumption (7.2). Hence, the proof is completed. �

Following the discussion demonstrated by Sharma et al in [35] for Theorem 3, we present the
following results.

Theorem 7.2. Let −1 < Ba < Aa ≤ 1, 0 < s ≤ 1
√

2
and p(ς) =

1+Aaς
1+Baς

. Then p ∈ P(Ls) if and only if

1 − 2s + s2 ≤
1 − Aa
1 − Ba

≤
1 + Aa
1 + Ba

≤ 1 + 2s − s2 (7.4)

or, equivalently, if and only if

Aa ≤


2s − s2 + (1 − s)2Ba, for Ba(Ba − Aa) ≤ 0,

2s − s2 + (1 + 2s − s2)Ba, for Ba(Ba − Aa) ≥ 0.
(7.5)

Proof. The proof follows the techniques presented in [35, Theorem 3] �

For Ba = 0,Aa = 0 and Ba = −Aa, we give the following consequences of Theorem 7.2.

Corollary 7.1. .

(i) p(ς) = 1 + Aaς ∈ P(Ls)⇐⇒ 0 < Aa ≤ 2s − s2.
(ii) p(ς) = 1/(1 + Baς) ∈ P(Ls)⇐⇒ (s2 − 2s)/(1 + 2s − s2) ≤ Ba < 0.

(iii) p(ς) = (1 + Aaς)/(1 − Aaς) ∈ P(Ls)⇐⇒ 0 < Aa ≤ (2s − s2)/(2 + 2s − s2).
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Corollary 7.2. Let −1 < Ba < Aa ≤ 1 and consider

ς f ′(ς)
f (ς)

=
1 + Aaς

1 + Baς
and

(ς f ′(ς))′

f ′(ς)
=

1 + Aaς

1 + Baς
.

Then f ∈ S TL(s) and f ∈ CVL(s), respectively if and only if conditions (7.4) or (7.5) is satisfied

Applying Corollary 7.1 along with the integral representation for the classes S TL(s) and CVL(s),
respectively, we present the following examples.

Example 7.3. .
(i) For 0 < Aa ≤ 2s − s2,

f1(ς) = ς exp(Aaς) ∈ S TL(s) and f2(ς) =
exp(Aaς) − 1

Aa
∈ CVL(s).

(ii) For s2−2s
1+2s−s2 ≤ Ba < 0,

f3(ς) =
ς

1 + Baς
∈ S TL(s) and f4(ς) =

1
Ba

log(1 + Baς) ∈ CVL(s).

(iii) For 0 < Aa ≤ 2s−s2

2+2s−s2 ,

f5(ς) =
ς

(1 − Aaς)2 ∈ S TL(s) and f6(ς) =
ς

1 − Aaς
∈ CVL(s).

8. Sufficient conditions and related results

Theorem 8.1. Let −1 ≤ Ba < Aa ≤ 1, 0 < s ≤ 1
2 and p(ς) be analytic in U with p(0) = 1 such that

1 + ρςp′(ς) ≺
1 + Aaς

1 + Baς
(ρ ∈ R\{0} , ς ∈ U). (8.1)

If

|ρ| ≥
Aa − Ba

2s(1 − s)(1 − |Ba|)
, (8.2)

then p ∈ P(Ls).

Proof. Let q(ς) = (1 + sς)2, 0 < s ≤ 1
2 . Then q(ς) is convex univalent in U. Consider the functions

φ(ω) = ρ and θ(ω) = 1. These functions are both analytic in a domain containing q(U) with φ(ω) , 0.
A computation shows that

Q(ς) = ρςq′(ς) = 2ρsς(1 + sς) and h(ς) = 1 + ρςq′(ς) = 1 + 2ρsς(1 + sς).

Further,

Re
ςQ′(ς)
Q(ς)

≥
1 − 2s
1 − s

> 0

and
Re
ςh′(ς)
Q(ς)

= Re
ςQ′(ς)
Q(ς)

> 0.
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Using Lemma 3.3, the subordination condition

1 + ρςp′(ς) ≺ 1 + ρςq′(ς)

implies p(ς) ≺ q(ς). To complete the proof, it suffices to prove that the circular disc 2.2 is contained in
the region bounded by the curve h(eiθ) (θ ∈ [0, 2π)). To this end, we must show that∣∣∣∣∣∣h(eiθ) −

1 − AaBa
1 − B2

a

∣∣∣∣∣∣ ≥ Aa − Ba1 − B2
a

.

Now, ∣∣∣∣∣∣h(eiθ) −
1 − AaBa

1 − B2
a

∣∣∣∣∣∣ =

∣∣∣∣∣∣2ρseiθ(1 + seiθ) +
Ba(Aa − Ba)

1 − B2
a

∣∣∣∣∣∣
≥2s|ρ|(1 − s) −

|Ba|(Aa − Ba)
1 − |Ba|2

.

Thus,

2s|ρ|(1 − s) −
|Ba|(Aa − Ba)

1 − |Ba|2
≥
Aa − Ba
1 − |Ba|2

if (8.2) is satisfied. �

Theorem 8.2. Let 0 < s ≤ 1
2 and p(ς) be analytic in U with p(0) = 1 such that

1 + ρςp′(ς) ≺ (1 + sς)2 (ρ ∈ R\{0} , ς ∈ U). (8.3)

If

|ρ| ≥
2 + s

2(1 − s)
, (8.4)

then p ∈ P(Ls).

Proof. Following the same arguments as in the proof of Theorem 8.1, we arrive at where to show that

(1 + sς)2 ≺ 1 + 2ρsς(1 + sς) := h(ς).

To achieve this, it is enough to show that the domain bounded by the limaçon is inside the region
bounded by the curve h(eiθ) (θ ∈ [0, 2π)). As a result, we need to find ρ for which

|h(eiθ) − 1| ≥ (1 + s)2 − 1.

Now,

|h(eiθ) − 1| =2|ρ|s|1 + seiθ|

≥2|ρ|s(1 − s)
≥2s + s2

if
|ρ| ≥

2 + s
2(1 − s)

. (8.5)

�
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Theorem 8.3. Let −1 ≤ Ba < Aa ≤ 1, 0 < s ≤ 1
√

2
and p(ς) be analytic in U with p(0) = 1 such that

1 + ρςp′(ς) ≺ (1 + sς)2 (ρ ∈ R\{0} , ς ∈ U).

If

|ρ| ≥
(2s + s2)(1 + |Ba|)2

Aa − Ba
, (8.6)

then
p(ς) ≺

1 + Aaς

1 + Baς
.

Proof. Let q(ς) =
1+Aaς
1+Baς

. We have that q(ς) is convex univalent in U. Therefore, following the method
of proof in Theorem 8.1, we arrive at where to show that

(1 + sς)2 ≺ 1 + ρ
(Aa − Ba)ς
(1 + Baς)2 := h(ς).

For this, we need to establish that the region bounded by the limaçon lies inside the domain bounded
by the curve h(eiθ) (θ ∈ [0, 2π). A simple observation of (2.5) suggests it suffices to show

|h(eiθ) − 1| ≥ (1 + s)2 − 1.

Now,

|h(eiθ) − 1| =|ρ|
Aa − Ba
|1 + Baς|2

≥|ρ|
Aa − Ba

(1 + |Ba|)2 .

But
Aa − Ba

(1 + |Ba|)2 ≥ (1 + s)2 − 1

provided (8.6) holds. This completes the proof. �

Theorem 8.4. Let 0 < s ≤ 1
√

2
and p(ς) be analytic in U with p(0) = 1 such that

1 + ρ
ςp′(ς)
p(ς)

≺ (1 + sς)2 (ρ ∈ R\{0} , ς ∈ U). (8.7)

If

|ρ| ≥
(2 − s)(1 + s)

2
, (8.8)

then
p(ς) ≺ (1 + sς)2.

Proof. Let q(ς) = (1+ sς)2. Then q(ς) is convex univalent in U. The function φ(ω) = ρ/ω and θ(ω) = 1
are analytic in the domain containing q(U). Set

Q(ς) = ςq′(ς)φ(q(ς)) = ρ
ςq′(ς)
q(ς)

= 2ρ
sς

1 + sς
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and
h(ς) = θ(q(ς)) + Q(ς) = 1 + ρ

ςq′(ς)
q(ς)

= 1 + 2ρ
sς

1 + sς
.

Then
Re
ςh′(ς)
Q(ς)

= Re
ςQ′(ς)
Q(ς)

>
1

1 + s
> 0.

From Lemma 3.3, the differential subordination

1 + ρ
ςp′(ς)
p(ς)

≺ 1 + ρ
ςq′(ς)
q(ς)

, ς ∈ U

implies p(ς) ≺ q(ς). To finalize the proof, we need to prove

(1 + sς)2 ≺ 1 + 2ρ
sς

1 + sς
, (8.9)

which is equivalent to showing
Ls(U) ⊂ h(U).

It is easy to see that the transformation h(ς) = 1 + ρ ςq′(ς)
q(ς) maps U onto the discD(a, r), where

a =
1 − (1 + 2|ρ|)s2

1 − s2 < 1 and r =
2|ρ|s

1 − s2 .

Therefore (8.9) holds if and only if

1 −
1 − (1 + 2|ρ|)s2

1 − s2 <
2|ρ|s

1 − s2 ,

which implies

|ρ| >
(1 + s)(2 − s)

2
.

�

We choose to omit the proof of the next theorem since it follows the same argument as in
Theorem 8.3.

Theorem 8.5. Let −1 ≤ Ba < Aa ≤ 1, 0 < s ≤ 1
√

2
and p(ς) be analytic in U with p(0) = 1 such that

1 + ρ
ςp′(ς)
p(ς)

≺ (1 + sς)2 (ρ ∈ R\{0} , ς ∈ U).

If

|ρ| ≥
(1 + |Aa|)(1 + |Ba|)(2s + s2)

Aa − Ba
, (8.10)

then
p(ς) ≺

1 + Aaς

1 + Baς
ς ∈ U.

Remark 8.1.
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(i) If we put p(ς) = ς f ′(ς)/ f (ς) and p(ς) = (ς f ′(ς))′/ f ′(ς) in
Theorem 8.1-8.5, we obtain the conditions on ρ for which the respective subordination conditions
(8.1), (8.3) and (8.7) imply f ∈ S TL(s) and f ∈ CVL(s).

(ii) We note that our condition 0 < s ≤ 1
2 cannot be relaxed in Theorem 8.1 and Theorem 8.2.

Otherwise, starlikeness of Q will not be achieved. As such, the proof of the theorems will be
extremely difficult to obtain via Lemma 3.3.

9. Conclusion

The Ma and Minda classes of functions are the comprehensive generalization of the classes S S T and
CCV . These classes are vital in (GFT) because of their importance in science and technology. To this
end, continuous studies of their subfamily, which are related to Limaçon domain were investigated.
Coefficients bounds, Fekete Szegö inequality as well as the upper bounds of the third Hankel
determinants for these subclasses were derived. Finally, the techniques of differential subordination
were also used to obtain some restrictions for which analytic functions belonged to these families. In
addition, to have more new theorems under present examinations, new generalization and applications
can be explored with some positive and novel outcomes in various fields of science, especially, in
applied mathematics. These new surveys will be presented in future research work being processed by
authors of the present paper.
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