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1. Introduction

In this work, we consider the even-order neutral differential equation with several delays

(
r (l)

(
ν(n−1) (l)

)α)′
+

k∑
i=1

qi (l) f (u (gi (l))) = 0, (1.1)

where l ≥ l0, ν (l) = u (l) + p (l) u (τ (l)), n ≥ 4 is an even integer, α ∈ Q+
odd := {a/b : a, b ∈ Z+ are odd}

and the following conditions are fulfilled:

(i) r is a differentiable real-valued function and p, τ, qi are continuous real-valued functions on
[l0,∞);
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(ii) r′ (l) ≥ 0, p (l) ∈
[
0, p0

]
, p0 is a constant, τ (l) ≤ l, and liml→∞ τ (l) = ∞;

(iii) gi ∈ C ([l0,∞) ,R) , gi (l) ≤ l, g′i (l) > 0 and liml→∞ gi (l) = ∞;
(iv) f ∈ C (R,R) , f (u) ≥ %uβ for u , 0, % is a positive constant, β is a ratio of odd positive integers;

and ∫ ∞

l0
r−1/α (s) ds < ∞. (1.2)

The function u ∈ C ([lu,∞)) with lu ≥ l0, is said to be a solution of (1.1) if u has the property
v ∈ Cn−1[lu,∞), r

(
ν(n−1)

)α
∈ C1[lu,∞), and satisfies (1.1) on [lu,∞). We consider only those solutions

u of (1.1) which satisfy sup{|u (l)| : l ≥ l} > 0, for all l ≥ lu. As usual, a solution of (1.1) is called
oscillatory if it has arbitrarily large zeros, otherwise, it is called nonoscillatory.

In numerical models of various physical, organic, and intrinsic phenomena, differential equations
(even of the fourth order) are usually experienced. In particular, there are many applications of the
delay differential equation, for example, in elasticity problems, structural deformation principles, or
soil settlement; see [23, 24].

The oscillation and nonoscillation of higher-order functional differential equations have concerned
many authors, see [2–33]. A broad range of methods have been used to investigate the properties of
solutions to various groups of equations. As a matter of fact, equation (1.1) (i.e., half-linear/Emden-
Fowler differential equation) arises in a variety of real-world problems such as in the study of p-Laplace
equations non-Newtonian fluid theory, the turbulent flow of a polytrophic gas in a porous medium, and
so forth; see the following papers for more details [5–7].

Agarwal et al. [2] and Zhang et al. [29] investigated the oscillatory behavior of a higher-order
differential equation (

r (l)
(
u(n−1) (l)

)α)′
+ q (l) uβ (τ (l)) = 0, (1.3)

and considered the both cases (1.2) and ∫ ∞

l0
r−1/α (s) ds = ∞. (1.4)

In particular, assuming that τ (l) < l, α ≥ β and (1.2) holds, the results obtained by Zhang et al. [29]
ensure that every solution u of (1.3) is either oscillatory or satisfies liml→∞ u (l) = 0.
Meng and Xu [16] established oscillation criteria for even-order neutral differential equations(

a (l)
∣∣∣w(n−1) (l)

∣∣∣α−1
w (l)

)′
+ q (l) f (u (σ (l))) = 0, (1.5)

where w (l) = (l) + p (l) u (l − τ) , a′ (l) ≥ 0, f (u) / |u|α−1 u ≥ k > 0, k is a constant and (1.4) holds.
Baculikova et al. [3] considered the equation[

r (l)
(
u(n−1) (l)

)α]′
+ q (l) f (u (τ (l))) = 0

and proved this equation is oscillatory if the first-order equation

y′ (l) + q(l) f
(

δτn−1 (l)

(n − 1)!r
1
α (τ (l))

)
f
(
y

1
α (τ (l))

)
= 0
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is oscillatory when (1.4) holds.
Moaaz et al. [21] investigated the oscillatory behavior of the equation

(a (l) (ν(n−1) (l))α)′ + f (l, u(σ(l))) = 0,

where 0 ≤ p (l) ≤ p0 < ∞, | f (l, u)| ≥ q (l) |u|α and under the condition (1.4).
In this work, based on the Riccati substitution technique and comparison with delay equations of

first-order, we obtain new sufficient conditions for oscillation of (1.1). Unlike most of the previous
related works, we are interested in studying (1.1) in the noncanonical case (1.2). Examples illustrating
our new results are also given.

The following lemmas are needed in the proofs of our results:

Lemma 1.1. [1] Let ψ ∈ Cn([l0,∞) ,R+), ψ(n) be of fixed sign and not identically zero on a subray of
[l0,∞), and ψ(n−1)ψ(n) ≤ 0 for l ≥ l1 ∈ [l0,∞). If liml→∞ ψ (l) , 0, then

ψ ≥
λ

(n − 1)!
ln−1

∣∣∣ψ(n−1)
∣∣∣ ,

for every λ ∈ (0, 1) and l ≥ lλ ∈ [l1,∞).

Lemma 1.2. [20] Assume that s ≥ 0, B ≥ 0 and A > 0. Then

Bs − As(α+1)/α ≤
αα

(α + 1)α+1

Bα+1

Aα
.

Lemma 1.3. [11, Lemma 1.1] Assume that f ∈ Cm ([l0,∞) , (0,∞)) and f (m) is eventually of one sign
for all large l. Then, there exists a nonnegative integer h ≤ m, with m + h even for f (m) ≥ 0, or m + h
odd for f (m) ≤ 0 such that

h > 0 yields f (k) (l) > 0 for k = 0, 1, ..., h − 1,

and
h ≤ m − 1 yields (−1)h+k f (k) (l) > 0 for k = h, h + 1, ...,m − 1,

eventually.

Lemma 1.4. [11] If ϕ ∈ Cm ([l0,∞) , (0,∞)) , ϕ(k) (l) > 0, k = 0, 1, ...,m and ϕ(m+1) (l) < 0. Then,

ϕ (l) ≥
λ

m
lϕ′ (l) ,

for every λ ∈ (0, 1) eventually.

2. Main results

Let us define the following:

η (l) :=
{

cβ−α1 if α ≥ β;
c2 δ

β−α
0 (l) if α < β,
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µ (l) :=

 cβ−α3 if α ≥ β;(
c4

(n−3)!

∫ ∞
l

(% − l)n−3 δ0(%)d%
)β−α

if α < β,

δ0 (l) :=
∫ ∞

l

1
r1/α (ν)

dν, (2.1)

g (l) := min {gi (l) : i = 1, 2, ..., k}

and

Q (l) :=
λ1gn−2 (l)
(n − 2)!

,

where c1, c2, c3 and c4 are any positive constants. It is recognized that the identification of the signs
of the solution derivatives is required and, before studying the oscillation of the delay differential
equations, causes a significant effect.

Lemma 2.1. Assume that u ∈ C ([l0,∞) , (0,∞)) is a solution of (1.1). Then,
(
r (l)

(
ν(n−1) (l)

)α)′
≤ 0,

and one of the next cases holds, for l large enough

(A) ν (l) > 0, ν′ (l) > 0, ν(n−1) (l) > 0 and ν(n) (l) < 0;
(B) ν (l) > 0, ν′ (l) > 0, ν(n−2) (l) > 0 and ν(n−1) (l) < 0;
(C) ν (l) > 0, (−1)k ν(k) (l) > 0 for k = 1, 2, ..., n − 1.

Proof. Assume that u is an eventually positive solution of (1.1). Then, there exists l1 ≥ l0 such that
u (l) , u (τ (l)) and u (g (l)) are positive for all l ≥ l1. Hence, by the definition of ν, we have that ν (l) > 0
for l ≥ l1. It follows from (1.1) that

(
r (l)

(
ν(n−1) (l)

)α)′
≤ 0. Next, using Lemma 1.3 and considering

that n is even, we directly get the cases (A) − (C). �

Lemma 2.2. Assume that u ∈ C ([l0,∞) , (0,∞)) is a solution of (1.1) whose ν satisfies (B). Then(
ν(n−2) (l)

)β−α
≥ η (l), eventually.

Proof. The proof for this lemma is analogous to the proof of Lemma 2.1 in [18]. Hence, we omit it
here. �

Lemma 2.3. Assume that u ∈ C ([l0,∞) , (0,∞)) is a solution of (1.1) whose ν satisfies (C). Then
νβ−α (l) ≥ µ (l), eventually.

Proof. The proof for this lemma is similar to the proof of Lemma 2.2 in [18]. Hence, we omit it
here. �

Lemma 2.4. Assume that u ∈ C ([l0,∞) , (0,∞)) is a solution of (1.1) whose ν satisfies (C). If

∫ ∞

l0

∫ ∞

l
(ξ − l)n−3

 1
r (ξ)

∫ ξ

l1

k∑
i=1

qi (v) dv

1/α

dξ

 dl = ∞, (2.2)

then liml→∞ u (l) = 0.
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Proof. Let u ∈ C ([l0,∞) , (0,∞)) be a solution of (1.1) and case (C) holds. Then, liml→∞ ν (l) = D. We
claim that D = 0. Indeed, for the sake of a contradiction, suppose that D > 0, there exists a l1 ≥ l0 such
that u (g (l)) ≥ D for l ≥ l1. Integrating (1.1) on [l1, l], we have

r (l)
(
ν(n−1) (l)

)α
= r (l1)

(
ν(n−1) (l1)

)α
−

∫ l

l1

k∑
i=1

qi (v) f (u (gi (v))) dv

≤ −%Dβ

∫ l

l1

k∑
i=1

qi (v) dv,

that is,

ν(n−1) (l) ≤ −%1/αDβ/α

 1
r (l)

∫ l

l1

k∑
i=1

qi (v) dv

1/α

. (2.3)

Integrating (2.3) twice on [l,∞), we have

−ν(n−2) (l) ≤ −%1/αDβ/α

∫ ∞

l

 1
r (ξ)

∫ ξ

l1

k∑
i=1

qi (v) dv

1/α

dξ

and

ν(n−3) (l) ≤ −%1/αDβ/α

∫ ∞

l

∫ ∞

ζ

 1
r (ξ)

∫ ξ

l1

k∑
i=1

qi (v) dv

1/α

dξdζ

≤ −%1/αDβ/α

∫ ∞

l
(ξ − l)

 1
r (ξ)

∫ ξ

l1

k∑
i=1

qi (v) dv

1/α

dξ.

Similarly, by integrating the above inequality (n − 4) times on [l,∞), we get

ν′ (l) ≤ −%1/αDβ/α

∫ ∞

l
(ξ − l)n−3

 1
r (ξ)

∫ ξ

l1

k∑
i=1

qi (v) dv

1/α

dξ.

Integrating this inequality on [l1,∞), we find

ν (l1) ≥ %1/αDβ/α

∫ ∞

l1

∫ ∞

l
(ξ − l)n−3

 1
r (ξ)

∫ ξ

l1

k∑
i=1

qi (v) dv

1/α

dξ

 dl,

which is a contradiction with (2.2). Thus, D = 0; moreover the inequality u ≤ ν implies liml→∞ u (l) =

0. The proof of this lemma is complete. �

Theorem 2.1. Assume that (2.2) holds and p0 < 1. If the first-order delay differential equation

y′ (l) + %

(
λ0gn−1 (l)

(n − 1)!r1/α (g (l))

)β  k∑
i=1

qi (l) (1 − p (gi (l)))β
 yβ/α (g (l)) = 0 (2.4)
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is oscillatory for some and

lim sup
l→∞

∫ l

l0

%η (v) δα0 (v) Qβ (v)
k∑

i=1

qi (v) (1 − p (gi (v)))β −
αα+1r−1/α (v)

(α + 1)α+1 δ0 (v)

 dv = ∞ (2.5)

holds for some λ, λ0, λ1 ∈ (0, 1), then every solution of (1.1) is either oscillatory or converges to zero
as l→ ∞.

Proof. Assume the contrary that there is a nonoscillatory solution u of (1.1). Then, we can assume
u (l) , u (τ (l)) and u (g (l)) are positive for l ≥ l1 ≥ l0. It follows from Lemma 2.1 that the behavior of ν
and its derivatives is possible in three cases. First, suppose that case (A) holds. Based on the definition
of ν, we see that

u (l) = ν (l) − p (l) u (τ (l)) ≥ (1 − p (l)) ν (l) , (2.6)

and so
uβ (gi (l)) ≥ (1 − p (gi (l)))β νβ (gi (l)) , (2.7)

from (iv) and (2.7), we have

f (u (gi (l))) ≥ % (1 − p (gi (l)))β νβ (gi (l)) ,

which with (1.1) gives

(
r (l)

(
ν(n−1) (l)

)α)′
≤ −%

k∑
i=1

qi (l) (1 − p (gi (l)))β νβ (gi (l))

≤ −%νβ (g (l))
k∑

i=1

qi (l) (1 − p (gi (l)))β . (2.8)

From Lemma 1.1, we have

ν (g (l)) ≥
λgn−1 (l)
(n − 1)!

ν(n−1) (g (l)) , (2.9)

for every λ ∈ (0, 1) . From (2.9) and (2.8), we obtain

(
r (l)

(
ν(n−1) (l)

)α)′
≤ −%

(
λgn−1 (l)
(n − 1)!

)β (
ν(n−1) (g (l))

)β k∑
i=1

qi (l) (1 − p (gi (l)))β .

Let y (l) = r (l)
(
ν(n−1) (l)

)α
. Clearly, y is a positive solution of the first-order delay differential inequality

y′ (l) + %

(
λgn−1 (l)

(n − 1)!r1/α (g (l))

)β  k∑
i=1

qi (l) (1 − p (gi (l)))β
 yβ/α (g (l)) ≤ 0. (2.10)

It follows from [22, Theorem 1] that the corresponding differential equation (2.4) also has a positive
solution for all λ0 ∈ (0, 1), which is a contradiction.
Next, we assume that the case (B) holds. We define the function Φ by

Φ (l) =
r (l)

(
ν(n−1) (l)

)α(
ν(n−2) (l)

)α . (2.11)

AIMS Mathematics Volume 6, Issue 4, 3272–3287.
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Then Φ (l) < 0 for l ≥ l1. Since r (l)
(
ν(n−1) (l)

)α
is decreasing, we get

r1/α (s) ν(n−1) (s) ≤ r1/α (l) ν(n−1) (l) , s ≥ l ≥ l1. (2.12)

Multiplying (2.12) by r−1/α (s) and integrating it on [l,∞), we obtain

0 ≤ ν(n−2) (l) + r1/α (l) ν(n−1) (l) δ0 (l) ,

that is,

−
r1/α (l) ν(n−1) (l) δ0 (l)

ν(n−2) (l)
≤ 1.

From (2.11), we see that
− Φ (l) δα0 (l) ≤ 1. (2.13)

Differentiating (2.11), we have

Φ′ (l) =

(
r (l)

(
ν(n−1) (l)

)α)′(
ν(n−2) (l)

)α −
αr (l)

(
ν(n−1) (l)

)α+1(
ν(n−2) (l)

)α+1 ,

which, in view of (1.1) and (2.11), becomes

Φ′ (l) = −

∑k
i=1 qi (l) f (u (gi (l)))(

ν(n−2) (l)
)α −

αΦ(α+1)/α (l)
r1/α (l)

. (2.14)

Since ν′ (l) > 0, we get that (2.8) holds. Hence, (2.14) becomes

Φ′ (l) ≤ −
−%νβ (g (l))

∑k
i=1 qi (l) (1 − p (gi (l)))β(
ν(n−2) (l)

)α −
αΦ(α+1)/α (l)

r1/α (l)
. (2.15)

From Lemma 1.1, we find

ν (g (l)) ≥
λgn−2 (l)
(n − 2)!

ν(n−2) (g (l)) ,

for all sufficiently large l and for every λ ∈ (0, 1). Then, (2.15) become

Φ′ (l) ≤ −%Qβ (l)

 k∑
i=1

qi (l) (1 − p (gi (l)))β
 (ν(n−2) (g (l))

)β−α (
ν(n−2) (g (l))

)α(
ν(n−2) (l)

)α
−
αΦ(α+1)/α (l)

r1/α (l)
.

Since l ≥ g (l) and ν(n−2) (l) is decreasing, we have

Φ′ (l) ≤ −%η (l) Qβ (l)

 k∑
i=1

qi (l) (1 − p (gi (l)))β
 − αΦ(α+1)/α (l)

r1/α (l)
. (2.16)

Multiplying (2.16) by δα0 (l) and integrating it on [l1, l], we get

0 ≥ Φ (l) δα0 (l) − Φ (l1) δα0 (l1) +

∫ l

l1

αδα−1
0 (v)

r1/α (v)
Φ (v) dv +

∫ l

l1

αδα0 (v)
r1/α (v)

Φ(α+1)/α (v) dv

AIMS Mathematics Volume 6, Issue 4, 3272–3287.
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+

∫ l

l1

%η (v) δα0 (v) Qβ (v)
k∑

i=1

qi (v) (1 − p (gi (v)))β
 dv.

Setting A = δα0 (s) /r1/α (s), B = δα−1
0 (s) /r1/α (s) and ϑ = −Φ (s), and using Lemma 1.2, we get

∫ l

l1

%η (v) δα0 (v) Qβ (v)
k∑

i=1

qi (v) (1 − p (gi (v)))β −
αα+1r−1/α (v)

(α + 1)α+1 δ0 (v)

 dv ≤
Φ (l1)
δ−α0 (l1)

+ 1,

due to (2.13), that contradicts (2.5).
Finally, suppose that (C) holds. From Lemma 2.4, one can see that liml→∞ u (l) = 0, which is a
contradiction.
This complete the proof. �

Theorem 2.2. Suppose that the first-order delay differential equation (2.4) is oscillatory for some
λ0 ∈ (0, 1) and (2.5) holds for some λ1 ∈ (0, 1). If

τ (gi (l)) = gi (τ (l)) , τ′ (l) ≥ τ0 > 0, g (l) ≤ τ (l) ,

and

lim sup
l→∞

%δαn−2 (l)
k∑

i=1

µ (gi (l))
∫ l

l1
Ωi (v) dv > κ

1 +
pβ0
τ0

 , (2.17)

then every solution of (1.1) is oscillatory, where Ωi (l) = min {qi (l) , qi (τ (l))} ,

δk+1 (l) :=
∫ ∞

l
δk (%) d% for k = 0, 1, ..., n − 3,

and κ = 1 if β ∈ (0, 1]; otherwise, κ = 2β−1.

Proof. Assume that there is a nonoscillatory solution u of (1.1). Then, we can assume u (l) , u (τ (l)) and
u (g (l)) are positive for l ≥ l1 ≥ l0. It follows from Lemma 2.1 that the behavior of ν and its derivatives
is possible in three cases.
The proof of the case where (A) or (B) holds is the same as that of Theorem 2.1.
Suppose that (C) holds. Since

(
r (l)

(
ν(n−1) (l)

)α)′
≤ 0, we have that

r (ζ)
(
ν(n−1) (ζ)

)α
− r (l)

(
ν(n−1) (l)

)α
≤ 0 for all ζ ≥ l,

or

ν(n−1) (ζ) ≤ r1/α (l) ν(n−1) (l)
1

r1/α (ζ)
.

Integrating this inequality from l to ∞ and making use of the fact that ν(n−2) is a positive decreasing
function, we arrive at

− ν(n−2) (l) ≤ r1/α (l) ν(n−1) (l)
∫ ∞

l

1
r1/α (%)

d% = r1/α (l) ν(n−1) (l) δ0 (l) . (2.18)
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Taking into account the behavior of derivatives of ν and integrating (2.18) (n − 2) times from l to ∞,
we see that

(−1)k+1 ν(k) (l) ≤ r1/α (l) ν(n−1) (l) δn−k−2 (l) , (2.19)

for k = 0, 1, ..., n − 3. From (1.1), we get

(
r (l)

(
ν(n−1) (l)

)α)′
+ %

k∑
i=1

qi (l) uβ (gi (l)) ≤ 0 (2.20)

and
1

τ′ (l)

(
r (τ (l))

(
ν(n−1) (τ (l))

)α)′
+ %

k∑
i=1

qi (τ (l)) uβ (gi (τ (l))) ≤ 0,

that is,
pβ0
τ0

(
r (τ (l))

(
ν(n−1) (τ (l))

)α)′
+ %

k∑
i=1

qi (τ (l)) pβ0uβ (gi (τ (l))) ≤ 0. (2.21)

From (2.20) and (2.21), we find

0 ≥
(
r (l)

(
ν(n−1) (l)

)α)′
+

pβ0
τ0

(
r (τ (l))

(
ν(n−1) (τ (l))

)α)′
+%

k∑
i=1

qi (l) uβ (gi (l)) + %

k∑
i=1

qi (τ (l)) pβ0uβ (gi (τ (l)))

≥
(
r (l)

(
ν(n−1) (l)

)α)′
+

pβ0
τ0

(
r (τ (l))

(
ν(n−1) (τ (l))

)α)′
+%

k∑
i=1

Ωi (l)
(
uβ (gi (l)) + pβ0uβ (gi (τ (l)))

)
≥

(
r (l)

(
ν(n−1) (l)

)α)′
+

pβ0
τ0

(
r (τ (l))

(
ν(n−1) (τ (l))

)α)′
+%

k∑
i=1

Ωi (l)
1
κ

(u (gi (l)) + p (gi (l)) u (τ (gi (l))))β

=

r (l)
(
ν(n−1) (l)

)α
+

pβ0
τ0

r (τ (l))
(
ν(n−1) (τ (l))

)α′

+
%

κ

k∑
i=1

Ωi (l) νβ (gi (l)) .

By integrating this inequality from l1 to l, we get

r (l)
(
ν(n−1) (l)

)α
+

pβ0
τ0

r (τ (l))
(
ν(n−1) (τ (l))

)α
≤ r (l1)

(
ν(n−1) (l1)

)α
+

pβ0
τ0

r (τ (l1))
(
ν(n−1) (τ (l1))

)α
−
%

κ

∫ l

l1

k∑
i=1

Ωi (v) νβ (gi (v)) dv
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≤ −
%

κ

k∑
i=1

νβ (gi (l))
∫ l

l1
Ωi (v) dv.

Since
(
r (l) ν(n−1) (l)

)′
≤ 0, we arrive at

1 +
pβ0
τ0

 r (l)
(
ν(n−1) (l)

)α
≤ −

%

κ

k∑
i=1

να (gi (l)) νβ−α (gi (l))
∫ l

l1
Ωi (v) dv

≤ −
%

κ
να (l)

k∑
i=1

µ (gi (l))
∫ l

l1
Ωi (v) dv,

which, with Lemma 2.3, gives1 +
pβ0
τ0

 r (l)
(
ν(n−1) (l)

)α
≤ −

%

κ
να (l)

k∑
i=1

µ (gi (l))
∫ l

l1
Ωi (v) dv. (2.22)

Combining [(2.19), k = 0] and (2.22), we have that1 +
pβ0
τ0

 ≥ %

κ
δαn−2 (l)

k∑
i=1

µ (gi (l))
∫ l

l1
Ωi (v) dv

which is a contradicts with (2.17). This completes the proof. �

In the following theorem, we set new conditions for testing the oscillation of (1.1) when n = 4,
which apply in the ordinary case.

Theorem 2.3. Assume that n = 4, α = β = 1, p0 < 1 and (2.2) hold. Suppose also that

lim sup
l→∞

∫ l

l0

(
%λ1g2 (s)

∑k
i=1 qi (s) (1 − p (gi (s)))

2!
δ (s) −

1
4r (s) δ (s)

)
ds = ∞, (2.23)

for some constant λ1 ∈ (0, 1). Assume further that there exist two positive functions ρ (l) , ϑ (l) ∈
C1 [l0,∞), such that∫ ∞

l0

%ρ (s)
(
g (s)

s

)3/λ k∑
i=1

qi (s) (1 − p (gi (s))) −
1
2

(ρ′ (s))2

ρ (s)
r (s)
λ2s2

 ds = ∞ (2.24)

and ∫ ∞

l0

%ϑ (ζ)
∫ ∞

ζ

 1
r (v)

∫ ∞

v

k∑
i=1

qi (s) (1 − p (gi (s)))
(
g (s)

s

)1/λ

ds

 dv −
(ϑ′ (ζ))2

4ϑ (ζ)

 dζ = ∞ (2.25)

where λ2 ∈ (0, 1) . Then every solution of (1.1) is oscillatory or tends to zero as l→ ∞.
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Proof. Assume that Eq (1.1) has a positive solution u (l) . It follows from (1.1) and Lemma 2.1 that
there exist four possible cases for the behavior of ν and its derivatives:

(i) : ν′ (l) > 0, ν′′ (l) > 0, ν′′′ (l) > 0 and ν(4) (l) ≤ 0;
(ii) : ν′ (l) > 0, ν′′ (l) < 0, ν′′′ (l) > 0 and ν(4) (l) ≤ 0;

(iii) : ν′ (l) < 0, ν′′ (l) > 0 and ν′′′ (l) < 0 ;
(iv) : ν′ (l) > 0, ν′′ (l) > 0 and ν′′′ (l) < 0.

Let (i) hold. Now, we define

φ (l) = ρ (l)
r (l) ν′′′ (l)
ν (l)

.

Then clearly φ (l) is positive for l ≥ l1 and satisfies

φ′ (l) =
ρ′ (l)
ρ (l)

φ (l) + ρ (l)
(
(r (l) ν′′′ (l))′

ν (l)
−

r (l) ν′′′ (l) ν′ (l)
ν2 (l)

)
. (2.26)

From (1.1) and (2.26), we have

φ′ (l) =
ρ′ (l)
ρ (l)

φ (l) − ρ (l)
∑k

i=1 qi (l) f (u (gi (l)))
ν (l)

− ρ (l)
r (l) ν′′′ (l) ν′ (l)

ν2 (l)
, (2.27)

by using (2.8) and (2.27), we get

φ′ (l) ≤
ρ′ (l)
ρ (l)

φ (l) − ρ (l)
%ν (g (l))

∑k
i=1 qi (l) (1 − p (gi (l)))

ν (l)
− ρ (l)

r (l) ν′′′ (l) ν′ (l)
ν2 (l)

. (2.28)

Now, it follows from Lemmas 1.1 and 1.4 that

ν′ (l) ≥
λ2l2

2
ν′′′ (l) (2.29)

and
ν (g (l))
ν (l)

≥

(
g (l)

l

)3/λ

, (2.30)

respectively. Substituting (2.29) and (2.30) into (2.28), we get

φ′ (l) ≤
ρ′ (l)
ρ (l)

φ (l) − %ρ (l)
(
g (l)

l

)3/λ k∑
i=1

qi (l) (1 − p (gi (l))) −
λ2l2

2
ρ (l) r (l) (ν′′′ (l))2

ν2 (l)
,

from the definition of φ (l), we obtain

φ′ (l) ≤
ρ′ (l)
ρ (l)

φ (l) − %ρ (l)
(
g (l)

l

)3/λ k∑
i=1

qi (l) (1 − p (gi (l))) −
λ2l2

2ρ (l) r (l)
φ2 (l) .

Set A = λ2l2/2ρ (l) r (l), B = ρ′ (l) /ρ (l) and s = φ (s). Using Lemma 1.2, we have

φ′ (l) ≤ −%ρ (l)
(
g (l)

l

)3/λ k∑
i=1

qi (l) (1 − p (gi (l))) +
1
2

(ρ′ (l))2

ρ (l)
r (l)
λ2l2 , (2.31)
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integrating (2.31) from l1 to l, we have∫ l

l1

%ρ (s)
(
g (s)

s

)3/λ k∑
i=1

qi (s) (1 − p (gi (s))) −
1
2

(ρ′ (s))2

ρ (s)
r (s)
λ2s2

 ds ≤ φ (l1) ,

which contradicts (2.24).
Assume that case (ii) holds. Define the function ϕ (l) by

ϕ (l) = ϑ (l)
ν′ (l)
ν (l)

.

Then clearly ϕ (l) is positive for l ≥ l1 and satisfies

ϕ′ (l) =
ϑ′ (l)
ϑ (l)

ϕ (l) + ϑ (l)
(
ν′′ (l)
ν (l)

−
(ν′ (l))2

ν2 (l)

)
,

from the definition of ϕ (l), we obtain

ϕ′ (l) =
ϑ′ (l)
ϑ (l)

ϕ (l) + ϑ (l)
ν′′ (l)
ν (l)

−
ϕ2 (l)
ϑ (l)

. (2.32)

Now integrating (1.1) from l to∞, we have

− r (l) ν′′′ (l) = −

∫ ∞

l

k∑
i=1

qi (s) f (u (gi (s))) ds, (2.33)

by using (2.8) and (2.33), we get

− r (l) ν′′′ (l) ≤ −%
∫ ∞

l

k∑
i=1

qi (s) (1 − p (gi (s))) ν (g (l)) ds. (2.34)

From Lemma 1.4, we get
ν (l) ≥ lλν′ (l) ,

that is,
ν (g (l))
ν (l)

≥

(
g (l)

l

)1/λ

. (2.35)

Combining (2.35) and (2.34), we get

−r (l) ν′′′ (l) ≤ −%ν (l)
∫ ∞

l

k∑
i=1

qi (s) (1 − p (gi (s)))
(
g (s)

s

)1/λ

ds,

that is

−ν′′′ (l) ≤ −%
ν (l)
r (l)

∫ ∞

l

k∑
i=1

qi (s) (1 − p (gi (s)))
(
g (s)

s

)1/λ

ds,
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integrating the above inequality from l to∞, we have

ν′′ (l) ≤ −%ν (l)
∫ ∞

l

 1
r (v)

∫ ∞

v

k∑
i=1

qi (s) (1 − p (gi (s)))
(
g (s)

s

)1/λ

ds

 dv.

Combining above inequality with (2.32), we obtain

ϕ′ (l) ≤ −%ϑ (l)
∫ ∞

l

 1
r (v)

∫ ∞

v

k∑
i=1

qi (s) (1 − p (gi (s)))
(
g (s)

s

)1/λ

ds

 dv +
ϑ′ (l)
ϑ (l)

ϕ (l) −
ϕ2 (l)
ϑ (l)

.

Thus, we have

ϕ′ (l) ≤ −%ϑ (l)
∫ ∞

l

 1
r (v)

∫ ∞

v

k∑
i=1

qi (s) (1 − p (gi (s)))
(
g (s)

s

)1/λ

ds

 dv +
(ϑ′ (l))2

4ϑ (l)
, (2.36)

integrating (2.36) from l1 to l, we have∫ l

l1

%ϑ (ζ)
∫ ∞

ζ

 1
r (v)

∫ ∞

v

k∑
i=1

qi (s) (1 − p (gi (s)))
(
g (s)

s

)1/λ

ds

 dv −
(ϑ′ (ζ))2

4ϑ (ζ)

 dζ ≤ ϕ (l1) ,

which contradicts (2.25).
The proof of the case where (iii) or (iv) holds is the same as that of Theorem 2.2 and Theorem 2.1
respectively.
This completes the proof. �

Example 2.1. Consider the NDDE(
l4 (u (l) + p0u (al))′′′

)′
+ q1u (bl) + q2u (cl) = 0, (2.37)

where a, b ∈ (0, 1) and g1 > g2. Then, we note that

n = 4, r (l) = l4, p (l) = p0, τ (l) = al, q (l) = q1 + q2 and σ (l) = bl.

Therefore, it is easy to verify that

δ0 (l) =
1

3l3 , δ1 (l) =
1

6l2 and δ2 (l) =
1
6l
.

Next, to apply Theorem 2.1. We first check the condition (2.2), (2.4) and (2.5). By substitution and a
simple computation, (2.4) becomes

y′ (l) + % (q1 + q2)
λ0 (1 − p0)

6c
1
l
y (cl) = 0. (2.38)

By applying a well known criterion [12, Theorem 2.1.1] for first-order delay differential equation (2.38)
to be oscillatory, the criterion is immediately obtained.

lim inf
l→∞

∫ l

cl
% (q1 + q2)

λ0 (1 − p0)
6c

1
s

ds >
1
e
,
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that is,

(q1 + q2) ln
(
1
c

)
>

6c
%λ0 (1 − p0) e

. (2.39)

Now, we note that (2.5) reduces to

lim sup
l→∞

∫ l

l0

(
% (q1 + q2) (1 − p0)

λ1c2

6
−

3
4

)
1
v

dv = ∞,

which satisfies if

(q1 + q2) >
18

4%c2 (1 − p0)
, (2.40)

thus, if condition (2.39) and (2.40) hold, then every solution of (2.37) is oscillatory or tends to zero.
On the other hand, by Theorem 2.2, we see that (2.17) becomes

lim sup
l→∞

%

6l

∫ l

l0
(q1 + q2) dv >

(
1 +

p0

a

)
and so

(q1 + q2) >
6
%

(
1 +

p0

a

)
, (2.41)

thus, if (2.39), (2.40) and (2.41) hold, then every solution of (2.37) is oscillatory.

Example 2.2. Consider the NDDEe3l

((
u (l) +

(
1 −

1
l2

)
u (l − a)

)′′′)3′ + q1e3lu3 (l − b) + q2e3lu3 (l − c) = 0, (2.42)

where l ≥ 1, 0 < a < b and b > c. Then, we can clearly note that α = β = 3, n = 4.

r (l) = e3l, p (l) = 1 − 1/l2, τ (l) = l − a, q (l) = (q1 + q2) e3l and σ (l) = l − b.

Therefore, it is easy to verify that
δi (l) = e−l for i = 0, 1, 2.

By substitution and a simple computation, (2.4) becomes

y′ (l) + % (q1 + q2) e3l

(
λ0

(l − b)
3!el−b

)3

y (l − b) = 0. (2.43)

Applying a well-known criterion [12, Theorem 2.1.1], we see that (2.38) is oscillatory. Moreover, (2.5)
reduces to

lim sup
l→∞

∫ ∞

l0
%

(q1 + q2)
λ3

1

23 −

(
3
4

)4 ds = ∞,

which satisfies if (q1 + q2) > 81/32. Thus, every solution of (2.42) is oscillatory or tends to zero if
(q1 + q2) > 81/32.
To apply Theorem 2.2, we see that (2.17) becomes

lim sup
l→∞

%e−3l
∫ l

l0
(q1 + q2) e3(v−a)dv > 23.

that is, (q1 + q2) > 24e3a. Then, every solution of (2.42) is oscillatory if (q1 + q2) > max
{
24e3a, 81/32

}
.
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