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1. Introduction

We study the three-dimensional incompressible magnetohydrodynamic (3D MHD) equations (see
e.g. [5]):

(MHD)



ut − 4u + (u · ∇)u − (b · ∇)b + ∇π = 0

bt − 4b + (u · ∇)b − (b · ∇)u = 0

div u = 0 and div b = 0,

u(x, 0) = u0(x), b(x, 0) = b0(x)

in QT := R3 × [0, T ), (1.1)

Here u is the flow velocity vector, b is the magnetic vector and π = p +
|b|2

2
is the scalar pressure. By

suitable weak solutions we mean solutions that solves MHD in the sense of distribution and satisfy the
local energy inequality (see Definition 2.1 in section 2 for details). For a point z = (0, 0) ∈ R3 × (0,T )
by translation, we denote Br(x) := Br = {y ∈ R3 : |y − x| < r},

Qr(z) := Qr = Br × (−r2, 0), r <
√

T .
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We say that solutions u and b are regular at z ∈ R3 × (0,T ) if u and b are bounded for some Qr, r > 0.
Otherwise, it is said that u and b are singular at z. The original paper where the weak solvability
of the various boundary value problems was proved is Ladyženskaja and Solonnikov [9]. As in the
Navier-Stokes equations, regularity problem remains open in dimension three. On the other hand, He
and Xin proved in [8] a suitable weak solution to this equations using the construction arguments of
a solution in [4]. Furthermore, they show that a suitable weak solution, (u, b) become regular in the
presence of a certain type of scaling invariant local integral conditions for velocity and magnetic fields.
Recently, in [14], Phuc give a new regularity condition, that is, u ∈ L∞(−1, 0; L3,q(B1)), a weak solution
to the 3D Navier-Stokes equations are regular for q , ∞ (cf [2]). In this paper, we give a criterion of
local interior regularity as like Phuc’s result for a suitable weak solution to the 3D MHD equations in
Lorentz space which is still unknown (see e.g. [20, 12] for the Naiver-Stokes equations). For proofs,
we prove the ε- regularity criteria for this solution in Lorentz space (below Proposition 2.3)based on the
ε-regularity criteria in Sobolev space. After that, using the standard blow-up argument(or contraction
argument) and the unique continuation for parabolic equation, we show a solution is regular (see e.g.
[1, 3, 6, 7, 13]). In summary, overall, our proof is followed the arguments in [14, 2] which is mainly
contained the arguments for the Naiver-Stokes equations. Now we are ready to state the first part of
our main result.

Theorem 1.1. Let a pair of functions u, b and π have the following differentiability properties:

u, b ∈ L2,∞(Q2) ∩W1,0
2 (Q2), π ∈ L

3
2 (Q2)

Suppose that (u, b, π) satisfy the 3D MHD equations in Q2 in the sense of distributions. Assume, in
addition, that there exists 3 < q < ∞ such that

u, b ∈ L∞(−4, 0; L3,q(B2)).

Then (u, b) is Hölder continuous in the closure of the set Q 1
2
.

2. Preliminaries

In this section we introduce some scaling invariant functionals and suitable weak solutions, and
recall an estimation of the Stokes system.

We first start with some notations. Let Ω be an open domain in R3 and I be a finite time interval.
We denote by Lp,q(R3) with 1 ≤ p, q ≤ ∞ the Lorentz space with the norm [21]

‖ϕ‖Lp,q =
( ∫ ∞

0
tq(m(ϕ, t))q/p dt

t

)1/q
< ∞ for 1 ≤ q < ∞,

where m(ϕ, t) is the Lebesgue measure of the set {x ∈ R3 : |ϕ(x)| > t}, i.e.

m(ϕ, t) := m{x ∈ R3 : |ϕ(x)| > t}.

In particular, when q = ∞,
‖ϕ‖Lp,∞ = sup

t≥0
{t(m(ϕ, t))

1
p } < ∞ .
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The Lorentz space Lp,∞ is also called weak Lp space. The norm is equivalent to the norm

‖ f ‖Lq,∞ = sup
0<|E|<∞

|E|1/q−1
∫

E
| f (x)|dx.

For a function f (x, t), we denote ‖ f ‖Lp,q
x,t (Ω×I) = ‖ f ‖Lq

t (I;Lp
x (Ω)) = ‖‖ f ‖Lp

x (Ω)‖Lq
t (I) and vector fields u, v

we write (uiv j)i, j=1,2,3 as u ⊗ v. We denote by C = C(α, β, ...) a constant depending on the prescribed
quantities α, β, ..., which may change from line to line. Next we recall suitable weak solutions for the
MHD equations (1.1) in three dimensions.

Definition 2.1. Let I = (0,T ). A triple of (u, b, π) is a suitable weak solution to (1.1) if the following
conditions are satisfied:

(a) The functions u, b : QT → R
3 and π : QT → R satisfy

u, b ∈ L∞
(
I; L2(R3)

)
∩ L2(I; W1,2(R3)

)
, π ∈ L

3
2 (QT ),

(b) (u, b, π) solves the MHD equations in QT in the sense of distributions.
(c) u, b and π satisfy the local energy inequality∫

B
(|u(x, t)|2 + |b(x, t)|2)φ(x, t)dx

+2
∫ t

t0

∫
B
(|∇u(x, t′)|2 + |∇b(x, t′)|2)φ(x, t′)dxdt′

≤

∫ t

t0

∫
B
(|u|2 + |b|2)(∂tφ + ∆φ)dxdt′ +

∫ t

t0

∫
B

(
|u|2 + |b|2 + 2π

)
u · ∇φdxdt′

− 2
∫ t

t0

∫
B
(b · u)(b · ∇φ)dxdt′. (2.1)

for all nonnegative function φ ∈ C∞0 (R3 × R).

The crucial regularity result in [8] and [23] ensures that

Lemma 2.1. There exists ε > 0 such that if (u, b, π) is a suitable weak solution of the 3D MHD
equations and for r > 0,

1
r2

∫
Qz,r

|u(y, s)|3 + |b(y, s)|3 + |π(y, s)|
3
2 dyds < ε,

then z is a regular point.

Before a proof, we know some necessary results, which is crucial role for our analysis (see [2] and
[14]). After then, using these result, we prove Theorem 1.1.

Proposition 2.1. Suppose that the pair of functions (u, b, π) satisfies the 3D MHD equations in Q :=
Q1(0, 0) = B1(0) × (−1, 0) in the sense of distributions and has the following properties

u, b ∈ L∞(−1, 0; L2(B1)) ∩ L2(−1, 0; W1,2(B1)),
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π ∈ L2(−1, 0; L1(B1)).

for some q ∈ (3,∞). Then (u, b, π) forms a suitable weak solution to the 3D MHD equations in Q 5
6

with
a generalized energy equality, u ∈ L4(Q), and π ∈ L2(Q 5

6
). Suppose further that

u ∈ L∞(−1, 0; L3,q(B1)), b ∈ L∞(−1, 0; L3,q(B1)).

In addition, the inequalities
‖u(·, t)‖L3,q(B 3

4
) ≤ ‖u‖L∞(−( 3

4 )2,0; L3,q(B 3
4

)),

and
‖b(·, t)‖L3,q(B 3

4
) ≤ ‖b‖L∞(−( 3

4 )2,0; L3,q(B 3
4

))

hold for all t ∈ (−( 3
4 )2, 0), and the function

t →
∫

B 3
4

u(x, t)w(x)dx

is continuous on [−(3
4 )2, 0] for any w ∈ L

3
2 ,

q
q−1 (B 3

4
). Here, it is clear that q

q−1 = 1 in the case q = ∞.

Proof. By Sobolev’s inequality, we know u ∈ L2(−1, 0; L6(B1)). And also by the assumptions and
interpolative inequality, we have

‖u‖L4(B1) ≤ C‖u‖
1
2
L3,q‖u‖

1
2

L6(B1)
, (2.2)

which implies u ∈ L4(Q1). Similarly, we get b ∈ L4(Q1). Thus by Hölder’s inequality, we obtain

u · ∇u, b · ∇b, u · ∇b, b · ∇u ∈ L
4
3 (Q1). (2.3)

Decompose the pressure so that
π = π1 + π2,

where π1 := RiR j(χBρ(uiu j + bib j)). Here Ri is Riesz operator and we adopt summation convention. It
is not difficult to notice that in Bρ:

∆π2 = 0.

By Calderón-Zygmund estimate we have

‖π1‖L2(B1) ≤ C(‖u‖2L4(B1) + ‖b‖2L4(B1)), (2.4)

and thus (2.4), it holds

‖π2‖L2(−1,0;L∞(B 5
6

)) ≤ C‖π2‖L2(−1,0;L1(B1)) = C‖π − π1‖L2(−1,0;L1(B1))

≤ C‖π‖L2(−1,0;L1(B1)) + C(‖u‖2L4(Q) + ‖b‖2L4(Q)). (2.5)

Estimates (2.4) and (2.4) imply that the pressure π ∈ L2(Q 5
6
). With the energy class, estimate (2.2),

(2.3) and (2.5), and the local interior regularity of Stokes systems , we have

(‖u‖L4(Q 3
4

) + ‖b‖L4(Q 3
4

))+

AIMS Mathematics Volume 6, Issue 3, 2440–2453.



2444

(‖ut‖L
4
3 (Q 3

4
)
+ ‖bt‖L

4
3 (Q 3

4
)
+ (‖∇2u‖

L
4
3 (Q 3

4
)
+ ‖∇2b‖

L
4
3 (Q 3

4
)
+ ‖∇π‖

L
4
3 (Q 3

4
)
< ∞.

It then follows that
u, b ∈ C(−(

3
4

)2, 0; L
4
3 (B 3

4
))

and thus the function
gϕ(t) :=

∫
B3/4

u(x, t)ϕ(x)dx

is continuous on [−(3
4 )2, 0] for any ϕ ∈ C∞0 (B 3

4
). This yields∣∣∣∣ ∫

B3/4

u(x, t)ϕ(x)dx
∣∣∣∣ ≤ C‖ϕ‖

L
3
2 ,

q
q−1 (B 3

4
)
‖u‖L∞(−( 4

3 )2,0;L3,q(B 3
4

)).

Thus by the density of C∞0 (B 3
4
) in L

3
2 ,

q
q−1 (B 3

4
) we see that

‖u‖L3,q(B 3
4

) ≤ C‖u‖L∞(−( 4
3 )2,0;L3,q(B 3

4
)), t ∈ [−(

3
4

)2, 0].

Then it can be seen, again by density, that the function gϕ above is actually continuous on [−( 3
4 )2, 0]

for any ϕ ∈ L
3
2 ,

q
q−1 (B 3

4
). Finally, using u ∈ L4(B1) and a standard mollification in R3+1 combined with a

truncation in time of test functions, we obtain the local generalized energy equality in Q 5
6
. �

2.1. Some estimates

For simplicity, we write
Φ(r) := Au(r) + Ab(r) + Eu(r) + Eb(r).

where
Au(r) := sup

t−r2≤s<t

1
r

∫
Br

|u(y, s)|2dy, Eu(r) :=
1
r

∫
Qr

|∇u(y, s)|2dyds,

Ab(r) := sup
t−r2≤s<t

1
r

∫
Br

|b(y, s)|2dy, Eb(r) :=
1
r

∫
Qr

|∇b(y, s)|2dyds,

Also, we introduce following the scale invariant functional : for 0 < r < 1,

Cu
∞(r) =

1
r2

∫ 0

−r2
‖u(y, s)‖3L3,∞(Br)ds, Cb

∞(r) =
1
r2

∫ 0

−r2
‖b(y, s)‖3L3,∞(Br)ds.

D∞(r) =
1
r2

∫ 0

−r2
‖π(y, s)‖

3
2

L
3
2 ,∞(Br)

ds.

Now, we begin with stating a well known algebraic Lemma, whose proof is omitted but found in
[4].

Lemma 2.2. Let I(s) be a bounded non negative function in the interval [R1,R2]. Assume that for every
s, ρ ∈ [R1,R2] and s < ρ we have

I(s) ≤ [A(ρ − s)−α + B(ρ − s)−β + C] + θI(ρ)

with A, B,C ≥ 0, α > β > 0 and θ ∈ [0, 1). Then there holds

I(R1) ≤ c(α, θ)[A(R2 − R1)−α + B(R2 − R1)−β + C].

AIMS Mathematics Volume 6, Issue 3, 2440–2453.
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Lemma 2.3. Let (u, b, π) be a suitable weak solution to 3D MHD equations. Then for 0 < r the
following holds

Φ(
r
2

) ≤ C(Cu
∞(r)

2
3 + Cb

∞(r)
2
3 + Cu

∞(r)
4
3 + Cb

∞(r)
4
3 + D∞(r)

2
3 ).

Proof. Without loss of generally, consider z0 to be the origin. Let 0 < r
2 ≤ s < ρ ≤ r < 1. Let

η1 ∈ C∞0 (B(ρ)) such that 0 ≤ η1 ≤ 1 in R3 and η1 = 1 on B(s). Furthermore for |α| ≤ 2:

|∇αη1| ≤
C

(ρ − s)α
.

Let η2 ∈ C∞0 (−ρ2, ρ2) such that 0 ≤ η2 ≤ 1 in R and η1 = 1 on [−s2, s2].

|η′1| ≤
C

(ρ2 − s2)
≤

C
r(ρ − s)

≤
C

(ρ − s)2 .

Let φ(x, t) := η(t)η2(x). Hence:

|∇φ| ≤
C

ρ − s
, |∇2φ| ≤

C
(ρ − s)2 , |φt| ≤

C
(ρ − s)2 .

From the local energy inequality, we are known∫
Br

(|u(x, t)|2 + |b(x, t)|2)φ(x, t)dx + 2
∫ 0

−ρ2

∫
Br

(|∇u(x, t′)|2 + |∇b(x, t′)|2)φ(x, t′)dxdt′

≤

∫ 0

−ρ2

∫
Bρ

(|u|2 + |b|2)(∂tφ + ∆φ)dxdt′

+

∫ 0

−ρ2

∫
Bρ

(
|u|2 + |b|2

)
u · ∇φdxdt′ + 2

∫ 0

−ρ2

∫
Bρ
πu · ∇φdxdt′ − 2

∫ 0

−ρ2

∫
Bρ

(b · u)(b · ∇φ)dxdt′, (2.6)

:= E1 + E2 + E3 + E4

for all t ∈ I = (−1, 0) and for all non-negative functions φ ∈ C∞0 (R3 × R). Let us treat the term E1 first.
By O’Neil’s inequality in space, the property of φ, and then Hölder in time, we have

E1 ≤

∫ 0

−ρ2
(‖u‖2L3,∞(Bρ) + ‖b‖2L3,∞(Bρ))‖∆φ + ∂tφ‖L3,1(Bρ)ds

≤
Cρ

(ρ − s)2

∫ 0

−ρ2
(‖u‖2L3,∞(Bρ) + ‖b‖2L3,∞(Bρ))ds

≤
Cρ

5
3

(ρ − s)2

[( ∫ 0

−ρ2
‖u‖3L3,∞(Bρ)ds

) 2
3

+
( ∫ 0

−ρ2
‖b‖3L3,∞(Bρ)ds

) 2
3
]
. (2.7)

Lorentz spaces is characterization as interpolation space between L2 and L6 as follows:

L3,1(Ω) = (L2(Ω), L6(Ω)) 1
2 ,1

(2.8)
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Before the term E3 is estimated, we note that

‖u · ∇φ‖L3,1(Bρ) ≤ ‖u · ∇φ‖
1
2
L2(Bρ)‖u · ∇φ‖

1
2

L6(Bρ)
≤ ‖u · ∇φ‖

1
2
L2(Bρ)‖∇(u · ∇φ)‖

1
2
L2(Bρ)

≤
C‖u‖L2(Bρ)

(ρ − s)
3
2

+
C‖u‖

1
2
L2(Bρ)‖∇u‖

1
2
L2(Bρ)

ρ − s
, (2.9)

where we use the interpolation (2.8), Sobolev embedding and the property of φ. Set I(ρ) = ρΦ(ρ).
Using O’Neil inequality and the estimate (2.9), the term E3 is estimated as follows: for ρ ≤ r,

E3 ≤

∫ 0

−ρ2
‖u · ∇φ‖L3,1(Bρ)‖π‖L

3
2 ,∞(Bρ)

ds ≤
[ C

(ρ − s)
3
2

( ∫ 0

−ρ2
‖u‖3L2(Bρ)ds

) 1
3

+
C

ρ − s

( ∫ 0

−ρ2
‖u‖

3
2
L2(Bρ)‖u‖

3
2
L2(Bρ)ds

) 1
3
]
×

( ∫ 0

−ρ2
‖π‖

3
2

L
3
2 ,∞(Bρ)

ds
) 2

3

≤ C
( r

2
3 I(ρ)

1
2

(ρ − s)
3
2

+
r

1
6

ρ − s
I(ρ)

1
2
)( ∫ 0

−ρ2
‖π‖

3
2

L
3
2 ,∞(Bρ)

ds
) 2

3
. (2.10)

Similarly, we are obtained the following estimate as like E3:∫ 0

−ρ2

∫
Bρ

2|u|2u · ∇φdxdt′ ≤ C
( r

2
3 I(ρ)

1
2

(ρ − s)
3
2

+
r

1
6

ρ − s
I(ρ)

1
2
)( ∫ 0

−ρ2
‖u‖3L3,∞(Bρ)ds

) 2
3
, (2.11)

∫ 0

−ρ2

∫
Bρ

2|b|2u · ∇φdxdt′ ≤ C
( r

2
3 I(ρ)

1
2

(ρ − s)
3
2

+
r

1
6

ρ − s
I(ρ)

1
2
)( ∫ 0

−ρ2
‖b‖3L3,∞(Bρ)ds

) 2
3
. (2.12)

So thus, with the estimates (2.11) and (2.12), the term E2 + E4 is estimated by

E2 + E4 ≤ C
( r

2
3 I(ρ)

1
2

(ρ − s)
3
2

+
r

1
6

ρ − s
I(ρ)

1
2
)[( ∫ 0

−ρ2
‖u‖3L3,∞(Bρ)ds

) 2
3

+
( ∫ 0

−ρ2
‖b‖3L3,∞(Bρ)ds

) 2
3
]
. (2.13)

We combine with the estimate (2.7), (2.10) and (2.13) and Young’s inequality to get

I(ρ) ≤
r

5
3

(ρ − s)2

[( ∫ 0

−ρ2
‖u‖3L3,∞(Bρ)ds

) 2
3

+
( ∫ 0

−ρ2
‖u‖3L3,∞(Bρ)ds

) 2
3
]

+
1
2

I(ρ)

+
( r

4
3

(ρ − s)3 +
r

1
3

(ρ − s)2

)[( ∫ 0

−ρ2
‖u‖3L3,∞(Bρ)ds

) 4
3

+
( ∫ 0

−ρ2
‖b‖3L3,∞(Bρ)ds

) 4
3

+
( ∫ 0

−ρ2
‖π‖

3
2

L
3
2 ,∞(Bρ)

ds
) 4

3
]

Since r
2 ≤ s < ρ ≤ r and by Lemma 2.2, we obtain

Φ(
r
2

) ≤ r−
1
3
[( ∫ 0

−ρ2
‖u‖3L3,∞(Bρ)ds

) 2
3

+
( ∫ 0

−ρ2
‖u‖3L3,∞(Bρ)ds

) 2
3
]

+Cr−
5
3
[( ∫ 0

−ρ2
‖u‖3L3,∞(Bρ)ds

) 4
3

+
( ∫ 0

−ρ2
‖b‖3L3,∞(Bρ)ds

) 4
3

+
( ∫ 0

−ρ2
‖π‖

3
2

L
3
2 ,∞(Bρ)

ds
) 4

3
]
.

�
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2.2. Proof of main theorem

Following the notation in [14], we suppose that z0 := (x0, t0) ∈ Q 1
2
(0, 0) is a singular point. It means

that there exists no neighborhood N of z0 such that (u, b) has a Hölder continuous representative on
N ∩ [B1(0) × (−1, 0]). By Theorem 3.2 [13], there exist c0 > 0 and a sequence of numbers εk ∈ (0, 1)
such that εk → 0 as k → ∞ and

sup
t0−εk≤s≤t0

1
εk

∫
B(x0,εk)

|u(x, s)|2dx + |b(x, s)|2dx ≥ c0, (2.14)

for any k ∈ N. Moreover, by Proposition 2.1, we have in particular

u(·, t0) ∈ L3,q(B3/4(0)), b(·, t0) ∈ L3,q(B3/4(0))

Recall that we can decompose π = π̃+h, where h is harmonic in B1, and π̃ = RiR j[(uiu j +bib j)χB1]. For
each Q = ω × (a, b), where ω ∈ R3 and −∞ < a < b ≤ 0, we choose a large k0 = k0(Q) ≥ 1 so that for
any k ≥ k0 there hold the implications x ∈ ω =⇒ x0 + εkx ∈ B 2

3
, and t ∈ (a, b) =⇒ t0 + εkt ∈ (−( 2

3 )2, 0),
where the sequence εk is as in (4.7). Set Q = ω × (a, b), let us set

uk(x, t) = εku(x0 + εkx, t0 + ε2
k t), bk(x, t) = εkb(x0 + εkx, t0 + ε2

k t),

and
πk(x, t) = ε2

k kπ(x0 + εkx, t0 + ε2
k t),

π̃k(x, t) = ε2
k π̃(x0 + εkx, t0 + ε2

k t), and hk(x, t) = ε2
k h(x0 + εkx, t0 + ε2

k t),

for any (x, t) ∈ Q and k ≥ k0(Q).
The following proposition is a key in the proof of Theorem 1.1, which says the properties in the

limit.

Proposition 2.2. Let 0 < q < ∞ and Q = ω × (a, b) with ω ⊂ R3, −∞ < a < b ≤ 0. There exists a
subsequence of (uk, bk, πk), still denoted by (uk, bk, πk), and a pair of functions

(u∞, b∞, π∞) ∈ L∞(−∞, 0; L3,q(R3)) × L∞(−∞, 0; L3,q(R3)) × L∞(−∞, 0; L
3
2 ,

q
2 (R3))

with div u∞ = 0 and div b∞ = 0 in R3 × (−∞, 0), such that for s ∈ (1, 3),

uk → u∞ in C(a, b; Ls(ω)), (2.15)

bk → b∞ in C(a, b; Ls(ω)), (2.16)

πk → π∞ weakly∗ in L∞(a, b; L
3
2 ,

q
2 (ω)), (2.17)

Moreover
|u∞|2, |b∞|2,∇u∞,∇b∞ ∈ L2(Q), (2.18)

∂tu∞, ∂tb∞,∇2u∞,∇2b∞,∇π∞ ∈ L
4
3 (Q), (2.19)

and (u∞, b∞, π∞) satisfies a suitable weak solution to the 3D MHD equations in Q. Additionally, u∞

and b∞ satisfy the lower bound satisfies the lower bound∫
Q

(|u∞|2 + |b∞|2)dz ≥ ε3. (2.20)

AIMS Mathematics Volume 6, Issue 3, 2440–2453.



2448

Proof. For each Q = ω × (a, b), where for ω ⊂ R3 and t ∈ [a, b] with −∞ < a < b ≤ 0, we have

‖uk(·, t)‖L3,q(ω) ≤ ‖uk(·, t0 + ε2
k t)‖L3,q(B 3

4
) ≤ ‖u‖L∞(−1,0);L3,q(B1), (2.21)

and
‖bk(·, t)‖L3,q(ω) ≤ ‖b‖L∞(−1,0);L3,q(B1), (2.22)

By Calderón-Zygmund estimate, for a.e. t ∈ (a, b) there holds

‖π̃k(·, t)‖L 3
2 ,

q
2 (ω)
≤ ‖π̃k(·, t0 + ε2

k t)‖
L

3
2 ,

q
2 (B 3

4
)
≤ C(‖u‖2L∞(−1,0);L3,q(B1) + ‖b‖2L∞(−1,0);L3,q(B1)). (2.23)

On the other hand, by harmonicity we have∫ b

a
sup
x∈ω
|hk(x, t)|

3
2 dt ≤ εk

∫
−(3/4)2

sup
x∈ω
|hk(x0 + εkx, s)|

3
2 ds ≤ εk‖h‖

3
2

L
3
2 (−1,0);L∞(B 3

4
)

(2.24)

≤ Cεk(‖u‖3L∞((−1,0);L3,q(B1)) + ‖b‖3L∞((−1,0);L3,q(B1)) + ‖π‖
L

3
2 (Q1)

)

Thus each (uk, bk) is a suitable solution in Q. Then, from the energy estimate follows that

‖uk‖L∞(a,b;L2(ω)) + ‖bk‖L∞(a,b;L2(ω)) + ‖∇bk‖L2(Q) + ‖∇uk‖L2(Q) ≤ C. (2.25)

Using (2.25) and Sobolev embedding, we have ‖uk‖L2(a,b;L6(ω)) ≤ C, which by (4.12), interpolation, and
Hölder’s inequality gives for

‖uk‖L4(Q) + ‖bk‖L4(Q) + ‖(uk · ∇)uk‖L
4
3 (Q)

+ ‖(bk · ∇)uk‖L
4
3 (Q)
≤ C.

From the bounds (2.23) and (2.24), we also have

‖πk‖Ls(Q) ≤ C‖πk‖L2(a,b;L
3
2 ,

q
2 (ω))
≤ C, s ∈ (0,

3
2

). (2.26)

Using the estimate (2.25)–(2.26), it follows from the local interior regularity of solutions to
non-stationary Stokes equations we find

‖∂tuk‖L
4
3 (Q)

+ ‖∇2uk‖L
4
3 (Q)

+ ‖∇πk‖L
4
3 (Q)
≤ C. (2.27)

Furthermore, we can easily check the as following:

‖∂tuk‖L
4
3 (Q)

+ ‖∂tbk‖L
4
3 (Q)

+ ‖∇2uk‖L
4
3 (Q)

+ ‖∇2bk‖L
4
3 (Q)

+ ‖∇πk‖L
4
3 (Q)
≤ C. (2.28)

Using estimates (2.21)–(2.23), we may get that

uk ⇀
∗ u∞ in L∞(−∞, 0; L3,q(R3)).

bk ⇀
∗ b∞ in L∞(−∞, 0; L3,q(R3)).

π̃k ⇀
∗ π̃∞ in L∞(−∞, 0; L

3
2 ,

q
2 (R3)).
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Estimates (2.25) and (2.27) yield

uk ⇀
∗ u∞ in C(−∞, 0; L

4
3 (Q)), (2.29)

bk ⇀
∗ b∞ in C(−∞, 0; L

4
3 (Q)). (2.30)

For any s ∈ (1, 3), the uniform bound (2.21) and the interpolation inequality

‖uk(·, t) − uk(·, t′)‖Ls ≤ ‖uk(·, t) − uk(·, t′)‖
12
5

(
1
s−

1
3

)
L

4
3

‖uk(·, t) − uk(·, t′)‖
12
5

(
3
4−

1
s

)
Ls

imply that each uk ∈ C([a, b]; Ls(ω)). Thus by using (2.29) and interpolating we obtain (2.15) for any
s ∈ (1, 3). On the other hand, by (2.24), we have

hk → 0 strongly in L2(a, b; L∞(ω)),

Now (2.18)–(2.19) follows from (2.29), (2.30), (2.25) and (2.27) via an argument as in the proof of
Proposition 2.1. Finally, note that by (2.41) and a change of variables we have

sup
−1≤t≤0

∫
B(0,1)
|uk(x, t)|2dx = sup

t0−ε2
k≤t≤r0

1
εk

∫
B(0,1)
|uk(y, s)|2dy ≥ C0.

Similarly, sup−1≤t≤0

∫
B(0,1)
|uk(x, t)|2dx ≥ C0. Thus using the convergences (2.15) and (2.16) with s = 2

we obtain the lower bound (2.20). �

Before proving the main statement we introduce some notation

Cu(r) :=
1
r2

∫
Qr

|u|3dz, Cb(r) :=
1
r2

∫
Qr

|b|3dz, D(r) :=
1
r2

∫
Qr

|π|
3
2 dz.

Now, we prove the ε- regularity criteria for a suitable weak solution to the 3D MHD equations under
our circumstance.

Proposition 2.3. Let (u, b, π) be a suitable weak solution to 3D MHD equations. Then there exists a
universal constants c0 and c0k(ε0) (with k = 1, 2, · · · ) with the following property. Assume

Cu
∞(1) + Cb

∞(1) + D∞(1) ≤ ε0, (2.31)

then for any natural number k, ∇k−1u is Hölder continuous in Q̃1/8 and the following bound is valid:

sup
Q̃1/8

(
|∇k−1u(z)| + |∇k−1b(z)|

)
< c0k(ε0).

Proof. From Lemma 2.3 and assumptions (2.31), it follows that

Au(
1
2

) + Ab(
1
2

) + Eu(
1
2

) + Eb(
1
2

) ≤ C(ε0 + ε2
0 )

2
3 . (2.32)

By interpolation and Sobolev embedding theorem one can show that

Cu(
1
2

) ≤ C[Au(
1
2

)
3
4 Eu(

1
2

)
3
4 + Au(

1
2

)
3
2 ].
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Thus, by (2.32) we have

Cu(
1
2

) ≤ C(ε0 + ε2
0 ). (2.33)

Similarly, we have

Cb(
1
2

) ≤ C(ε0 + ε2
0 ). (2.34)

For similar reasons it is not so difficult to see that

‖∇ · (u × u)‖
L

9
8 ,

3
2 (Q 1

2
)
≤ C[Au(

1
2

) + Au(
1
2

)
1
3 Bu(

1
2

)
2
3 ].

Thus,
‖∇ · (u × u)‖

L
9
8 ,

3
2 (Q 1

2
)
≤ C(ε0 + ε2

0 )
2
3 . (2.35)

Similarly, we have
‖∇ · (b × b)‖

L
9
8 ,

3
2 (Q 1

2
)
≤ C(ε0 + ε2

0 )
2
3 . (2.36)

On the other hand, by Hölder’s inequality, it is obvious that

‖u‖W1,0
9
8 ,

3
2

(Q 1
2

) ≤ C(Au(
1
2

) + Bu(
1
2

)) ≤ C(ε0 + ε2
0 )

1
3 . (2.37)

Similarly, we have
‖b‖W1,0

9
8 ,

3
2

(Q 1
2

) ≤ C(ε0 + ε2
0 )

1
3 . (2.38)

Using O’Neil’s inequality, we have∫
B( 1

2 )
|π(x, t)|

9
8 dx ≤ C‖π

9
8 ‖

L
8
3 ,∞

= C‖π‖
9
8

L3,∞

Hence,
‖π(x, t)‖

L
9
8 ,

3
2
≤ Cε

2
3
0 . (2.39)

Using the local interior regularity theory for Stokes equation, we have

‖ut‖L
9
8 ,

3
2 (Q 1

4
)
+ ‖∇2u‖

L
9
8 ,

3
2 (Q 1

4
)
+ ‖∇π‖

L
9
8 ,

3
2 (Q 1

4
)

≤ C(‖∇ · (u × u)‖
L

9
8 ,

3
2 (Q 1

2
)
+ ‖∇ · (b × b)‖

L
9
8 ,

3
2 (Q 1

2
)
)

+‖u‖
L

9
8 ,

3
2 (Q 1

2
)
+ ‖∇u‖

L
9
8 ,

3
2 Q 1

2

+ ‖π‖
L

9
8 ,

3
2 (Q 1

2
)
.

Note that a suitable weak solution (u, b, π) implies that

u, b ∈ W2,1
9
8 ,

3
2
(Q2) ∩W1,0

4
3

(Q2), π ∈ W1,0
9
8 ,

3
2
(Q2) ∩ L

4
3 (Q2).

(see e.g. [18, 19]). Using this together with the estimates (2.35)– (2.39), we obtain that

‖∇π‖
L

9
8 ,

3
2 (Q 1

4
)
≤ c[((ε0 + ε2

0 )
1
3 + (ε0 + ε2

0 )
2
3 )].
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Thus, by the Poincaré inequality, we have

‖π − [π]‖
L

3
2 (Q 1

4
)
≤ c[((ε0 + ε2

0 )
1
3 + (ε0 + ε2

0 )
2
3 )].

Therefore, we conclude
‖π‖

L
3
2 (Q 1

4
)
≤ c[((ε0 + ε2

0 )
1
3 + (ε0 + ε2

0 )
2
3 )] (2.40)

This along with (2.33), (2.34) and (2.40) gives

Cu(
1
2

) + Cb(
1
2

) + D(
1
2

) ≤ C[((ε0 + ε2
0 )

1
3 + (ε0 + ε2

0 )
2
3 )] (2.41)

Choosing ε0 sufficiently small, the estimate (2.41) satisfies the conditions of Theorem 3.3 in [13] and
so we complete the proof. �

Proof of Theorem 1.1. The proof is similar to the argument in [13, Theorem 1.1] We now fix such
numbers M and N and let z1 = (x1, t1) ∈ (R3\B̄2N(0)) × (−M

2 , 0]. Due to Cu∞
∞ (1) + Cb∞

∞ (1) + D∞(1) ≤ ε0,
we obtain, by Proposition 2.3

max
z∈Q̄ 1

2
(z1)
|∇ku∞(z)| ≤ C(k), max

z∈Q̄ 1
2

(z1)
|∇kb∞(z)| ≤ C(k), k = 1, 2, · · · .

On the other hand, on the set (R3\B̄2N(0)) × (−M
2 , 0], we have that there exists M > 0 such that

|∂tW − ∆W | ≤ M(|W | + |∇W |), and |W | ≤ C,

for the (15-component) vector-valued function W = (b∞,w∞, b∞,1, b∞,2, b∞,3) where w∞ = ∇×u∞ given
in [13, pp.2922-2923]. Then

W = 0 on (R3 \ B4N(0)) × (−
M
4
, 0].

Using the theory of unique continuation for parabolic equation (see [6, Theorem 5]), we see W(·, t) = 0
in R3 for a.e. t ∈ (−M

4 , 0). Thus u∞(·, t) = 0 is globally harmonic, and using Liouville theorem, it
follows that u∞(·, t) = 0 for a.e. t ∈ (−M

4 , 0). This yields to a contradiction to the lower bound (2.20)
and hence completes the proof of Theorem 1.1.

3. Conclusions

In this paper, we investigete some local regularity condition for a suitable weak solution to 3D
MHD equations in Lorentz space. However, it remains an open question to obtain the local regularity
condition for only velocity vector u.
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