

Research article

Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space

Jae-Myoung Kim*

Department of Mathematics Education, Andong National University, Andong 36729, Republic of Korea

* Correspondence: Email: jmkim02@anu.ac.kr.

Abstract: We prove local regularity condition for a suitable weak solution to 3D MHD equations. Precisely, if a solution satisfies $u, b \in L^\infty(-(\frac{4}{3})^2, 0; L^{3,q}(B_{\frac{3}{4}}))$, $q \in (3, \infty)$ in Lorentz space, then (u, b) is Hölder continuous in the closure of the set $Q_{\frac{1}{2}}$.

Keywords: local regularity condition; suitable weak solution; 3D MHD equations

Mathematics Subject Classification: 35B65, 76W05

1. Introduction

We study the three-dimensional incompressible magnetohydrodynamic (3D MHD) equations (see e.g. [5]):

$$(MHD) \quad \begin{cases} u_t - \Delta u + (u \cdot \nabla)u - (b \cdot \nabla)b + \nabla \pi = 0 \\ b_t - \Delta b + (u \cdot \nabla)b - (b \cdot \nabla)u = 0 \\ \operatorname{div} u = 0 \quad \text{and} \quad \operatorname{div} b = 0, \\ u(x, 0) = u_0(x), \quad b(x, 0) = b_0(x) \end{cases} \quad \text{in } Q_T := \mathbb{R}^3 \times [0, T), \quad (1.1)$$

Here u is the flow velocity vector, b is the magnetic vector and $\pi = p + \frac{|b|^2}{2}$ is the scalar pressure. By suitable weak solutions we mean solutions that solves MHD in the sense of distribution and satisfy the local energy inequality (see Definition 2.1 in section 2 for details). For a point $z = (0, 0) \in \mathbb{R}^3 \times (0, T)$ by translation, we denote $B_r(x) := B_r = \{y \in \mathbb{R}^3 : |y - x| < r\}$,

$$Q_r(z) := Q_r = B_r \times (-r^2, 0), \quad r < \sqrt{T}.$$

We say that solutions u and b are regular at $z \in \mathbb{R}^3 \times (0, T)$ if u and b are bounded for some Q_r , $r > 0$. Otherwise, it is said that u and b are singular at z . The original paper where the weak solvability of the various boundary value problems was proved is Ladyženskaja and Solonnikov [9]. As in the Navier-Stokes equations, regularity problem remains open in dimension three. On the other hand, He and Xin proved in [8] a suitable weak solution to this equations using the construction arguments of a solution in [4]. Furthermore, they show that a suitable weak solution, (u, b) become regular in the presence of a certain type of scaling invariant local integral conditions for velocity and magnetic fields. Recently, in [14], Phuc give a new regularity condition, that is, $u \in L^\infty(-1, 0; L^{3,q}(B_1))$, a weak solution to the 3D Navier-Stokes equations are regular for $q \neq \infty$ (cf [2]). In this paper, we give a criterion of local interior regularity as like Phuc's result for a suitable weak solution to the 3D MHD equations in Lorentz space which is still unknown (see e.g. [20, 12] for the Naiver-Stokes equations). For proofs, we prove the ϵ -regularity criteria for this solution in Lorentz space (below Proposition 2.3) based on the ϵ -regularity criteria in Sobolev space. After that, using the standard blow-up argument (or contraction argument) and the unique continuation for parabolic equation, we show a solution is regular (see e.g. [1, 3, 6, 7, 13]). In summary, overall, our proof is followed the arguments in [14, 2] which is mainly contained the arguments for the Naiver-Stokes equations. Now we are ready to state the first part of our main result.

Theorem 1.1. *Let a pair of functions u, b and π have the following differentiability properties:*

$$u, b \in L^{2,\infty}(Q_2) \cap W_2^{1,0}(Q_2), \quad \pi \in L^{\frac{3}{2}}(Q_2)$$

Suppose that (u, b, π) satisfy the 3D MHD equations in Q_2 in the sense of distributions. Assume, in addition, that there exists $3 < q < \infty$ such that

$$u, b \in L^\infty(-4, 0; L^{3,q}(B_2)).$$

Then (u, b) is Hölder continuous in the closure of the set $Q_{\frac{1}{2}}$.

2. Preliminaries

In this section we introduce some scaling invariant functionals and suitable weak solutions, and recall an estimation of the Stokes system.

We first start with some notations. Let Ω be an open domain in \mathbb{R}^3 and I be a finite time interval. We denote by $L^{p,q}(\mathbb{R}^3)$ with $1 \leq p, q \leq \infty$ the Lorentz space with the norm [21]

$$\|\varphi\|_{L^{p,q}} = \left(\int_0^\infty t^q (m(\varphi, t))^{q/p} \frac{dt}{t} \right)^{1/q} < \infty \quad \text{for } 1 \leq q < \infty,$$

where $m(\varphi, t)$ is the Lebesgue measure of the set $\{x \in \mathbb{R}^3 : |\varphi(x)| > t\}$, i.e.

$$m(\varphi, t) := m\{x \in \mathbb{R}^3 : |\varphi(x)| > t\}.$$

In particular, when $q = \infty$,

$$\|\varphi\|_{L^{p,\infty}} = \sup_{t \geq 0} \{t(m(\varphi, t))^{\frac{1}{p}}\} < \infty.$$

The Lorentz space $L^{p,\infty}$ is also called weak L^p space. The norm is equivalent to the norm

$$\|f\|_{L^{q,\infty}} = \sup_{0 < |E| < \infty} |E|^{1/q-1} \int_E |f(x)| dx.$$

For a function $f(x, t)$, we denote $\|f\|_{L_{x,t}^{p,q}(\Omega \times I)} = \|f\|_{L_t^q(I; L_x^p(\Omega))} = \|\|f\|_{L_x^p(\Omega)}\|_{L_t^q(I)}$ and vector fields u, v we write $(u_i v_j)_{i,j=1,2,3}$ as $u \otimes v$. We denote by $C = C(\alpha, \beta, \dots)$ a constant depending on the prescribed quantities α, β, \dots , which may change from line to line. Next we recall suitable weak solutions for the MHD equations (1.1) in three dimensions.

Definition 2.1. *Let $I = (0, T)$. A triple of (u, b, π) is a suitable weak solution to (1.1) if the following conditions are satisfied:*

(a) *The functions $u, b : Q_T \rightarrow \mathbb{R}^3$ and $\pi : Q_T \rightarrow \mathbb{R}$ satisfy*

$$u, b \in L^\infty(I; L^2(\mathbb{R}^3)) \cap L^2(I; W^{1,2}(\mathbb{R}^3)), \quad \pi \in L^{\frac{3}{2}}(Q_T),$$

(b) *(u, b, π) solves the MHD equations in Q_T in the sense of distributions.*

(c) *u, b and π satisfy the local energy inequality*

$$\begin{aligned} & \int_B (|u(x, t)|^2 + |b(x, t)|^2) \phi(x, t) dx \\ & + 2 \int_{t_0}^t \int_B (|\nabla u(x, t')|^2 + |\nabla b(x, t')|^2) \phi(x, t') dx dt' \\ & \leq \int_{t_0}^t \int_B (|u|^2 + |b|^2) (\partial_t \phi + \Delta \phi) dx dt' + \int_{t_0}^t \int_B (|u|^2 + |b|^2 + 2\pi) u \cdot \nabla \phi dx dt' \\ & \quad - 2 \int_{t_0}^t \int_B (b \cdot u) (b \cdot \nabla \phi) dx dt'. \end{aligned} \tag{2.1}$$

for all nonnegative function $\phi \in C_0^\infty(\mathbb{R}^3 \times R)$.

The crucial regularity result in [8] and [23] ensures that

Lemma 2.1. *There exists $\epsilon > 0$ such that if (u, b, π) is a suitable weak solution of the 3D MHD equations and for $r > 0$,*

$$\frac{1}{r^2} \int_{Q_{z,r}} |u(y, s)|^3 + |b(y, s)|^3 + |\pi(y, s)|^{\frac{3}{2}} dy ds < \epsilon,$$

then z is a regular point.

Before a proof, we know some necessary results, which is crucial role for our analysis (see [2] and [14]). After then, using these result, we prove Theorem 1.1.

Proposition 2.1. *Suppose that the pair of functions (u, b, π) satisfies the 3D MHD equations in $Q := Q_1(0, 0) = B_1(0) \times (-1, 0)$ in the sense of distributions and has the following properties*

$$u, b \in L^\infty(-1, 0; L^2(B_1)) \cap L^2(-1, 0; W^{1,2}(B_1)),$$

$$\pi \in L^2(-1, 0; L^1(B_1)).$$

for some $q \in (3, \infty)$. Then (u, b, π) forms a suitable weak solution to the 3D MHD equations in $Q_{\frac{5}{6}}$ with a generalized energy equality, $u \in L^4(Q)$, and $\pi \in L^2(Q_{\frac{5}{6}})$. Suppose further that

$$u \in L^\infty(-1, 0; L^{3,q}(B_1)), \quad b \in L^\infty(-1, 0; L^{3,q}(B_1)).$$

In addition, the inequalities

$$\|u(\cdot, t)\|_{L^{3,q}(B_{\frac{3}{4}})} \leq \|u\|_{L^\infty(-(\frac{3}{4})^2, 0; L^{3,q}(B_{\frac{3}{4}}))},$$

and

$$\|b(\cdot, t)\|_{L^{3,q}(B_{\frac{3}{4}})} \leq \|b\|_{L^\infty(-(\frac{3}{4})^2, 0; L^{3,q}(B_{\frac{3}{4}}))}$$

hold for all $t \in (-(\frac{3}{4})^2, 0)$, and the function

$$t \rightarrow \int_{B_{\frac{3}{4}}} u(x, t) w(x) dx$$

is continuous on $[-(\frac{3}{4})^2, 0]$ for any $w \in L^{\frac{3}{2}, \frac{q}{q-1}}(B_{\frac{3}{4}})$. Here, it is clear that $\frac{q}{q-1} = 1$ in the case $q = \infty$.

Proof. By Sobolev's inequality, we know $u \in L^2(-1, 0; L^6(B_1))$. And also by the assumptions and interpolative inequality, we have

$$\|u\|_{L^4(B_1)} \leq C \|u\|_{L^{3,q}}^{\frac{1}{2}} \|u\|_{L^6(B_1)}^{\frac{1}{2}}, \quad (2.2)$$

which implies $u \in L^4(Q_1)$. Similarly, we get $b \in L^4(Q_1)$. Thus by Hölder's inequality, we obtain

$$u \cdot \nabla u, b \cdot \nabla b, u \cdot \nabla b, b \cdot \nabla u \in L^{\frac{4}{3}}(Q_1). \quad (2.3)$$

Decompose the pressure so that

$$\pi = \pi_1 + \pi_2,$$

where $\pi_1 := R_i R_j (\chi_{B_\rho} (u_i u_j + b_i b_j))$. Here R_i is Riesz operator and we adopt summation convention. It is not difficult to notice that in B_ρ :

$$\Delta \pi_2 = 0.$$

By Calderón-Zygmund estimate we have

$$\|\pi_1\|_{L^2(B_1)} \leq C (\|u\|_{L^4(B_1)}^2 + \|b\|_{L^4(B_1)}^2), \quad (2.4)$$

and thus (2.4), it holds

$$\begin{aligned} \|\pi_2\|_{L^2(-1, 0; L^\infty(B_{\frac{5}{6}}))} &\leq C \|\pi_2\|_{L^2(-1, 0; L^1(B_1))} = C \|\pi - \pi_1\|_{L^2(-1, 0; L^1(B_1))} \\ &\leq C \|\pi\|_{L^2(-1, 0; L^1(B_1))} + C (\|u\|_{L^4(Q)}^2 + \|b\|_{L^4(Q)}^2). \end{aligned} \quad (2.5)$$

Estimates (2.4) and (2.5) imply that the pressure $\pi \in L^2(Q_{\frac{5}{6}})$. With the energy class, estimate (2.2), (2.3) and (2.5), and the local interior regularity of Stokes systems, we have

$$(\|u\|_{L^4(Q_{\frac{3}{4}})} + \|b\|_{L^4(Q_{\frac{3}{4}})}) +$$

$$(\|u_t\|_{L^{\frac{4}{3}}(Q_{\frac{3}{4}})} + \|b_t\|_{L^{\frac{4}{3}}(Q_{\frac{3}{4}})} + (\|\nabla^2 u\|_{L^{\frac{4}{3}}(Q_{\frac{3}{4}})} + \|\nabla^2 b\|_{L^{\frac{4}{3}}(Q_{\frac{3}{4}})} + \|\nabla \pi\|_{L^{\frac{4}{3}}(Q_{\frac{3}{4}})} < \infty.$$

It then follows that

$$u, b \in C(-(\frac{3}{4})^2, 0; L^{\frac{4}{3}}(B_{\frac{3}{4}}))$$

and thus the function

$$g_\varphi(t) := \int_{B_{3/4}} u(x, t)\varphi(x)dx$$

is continuous on $[-(\frac{3}{4})^2, 0]$ for any $\varphi \in C_0^\infty(B_{\frac{3}{4}})$. This yields

$$\left| \int_{B_{3/4}} u(x, t)\varphi(x)dx \right| \leq C \|\varphi\|_{L^{\frac{3}{2}, \frac{q}{q-1}}(B_{\frac{3}{4}})} \|u\|_{L^\infty(-(\frac{4}{3})^2, 0; L^{3,q}(B_{\frac{3}{4}}))}.$$

Thus by the density of $C_0^\infty(B_{\frac{3}{4}})$ in $L^{\frac{3}{2}, \frac{q}{q-1}}(B_{\frac{3}{4}})$ we see that

$$\|u\|_{L^{3,q}(B_{\frac{3}{4}})} \leq C \|u\|_{L^\infty(-(\frac{4}{3})^2, 0; L^{3,q}(B_{\frac{3}{4}}))}, \quad t \in [-(\frac{3}{4})^2, 0].$$

Then it can be seen, again by density, that the function g_φ above is actually continuous on $[-(\frac{3}{4})^2, 0]$ for any $\varphi \in L^{\frac{3}{2}, \frac{q}{q-1}}(B_{\frac{3}{4}})$. Finally, using $u \in L^4(B_1)$ and a standard mollification in R^{3+1} combined with a truncation in time of test functions, we obtain the local generalized energy equality in $Q_{\frac{5}{6}}$. \square

2.1. Some estimates

For simplicity, we write

$$\Phi(r) := A_u(r) + A_b(r) + E_u(r) + E_b(r).$$

where

$$\begin{aligned} A_u(r) &:= \sup_{t-r^2 \leq s < t} \frac{1}{r} \int_{B_r} |u(y, s)|^2 dy, \quad E_u(r) := \frac{1}{r} \int_{Q_r} |\nabla u(y, s)|^2 dy ds, \\ A_b(r) &:= \sup_{t-r^2 \leq s < t} \frac{1}{r} \int_{B_r} |b(y, s)|^2 dy, \quad E_b(r) := \frac{1}{r} \int_{Q_r} |\nabla b(y, s)|^2 dy ds, \end{aligned}$$

Also, we introduce following the scale invariant functional : for $0 < r < 1$,

$$\begin{aligned} C_\infty^u(r) &= \frac{1}{r^2} \int_{-r^2}^0 \|u(y, s)\|_{L^{3,\infty}(B_r)}^3 ds, \quad C_\infty^b(r) = \frac{1}{r^2} \int_{-r^2}^0 \|b(y, s)\|_{L^{3,\infty}(B_r)}^3 ds. \\ D_\infty(r) &= \frac{1}{r^2} \int_{-r^2}^0 \|\pi(y, s)\|_{L^{\frac{3}{2}, \infty}(B_r)}^{\frac{3}{2}} ds. \end{aligned}$$

Now, we begin with stating a well known algebraic Lemma, whose proof is omitted but found in [4].

Lemma 2.2. *Let $I(s)$ be a bounded non negative function in the interval $[R_1, R_2]$. Assume that for every $s, \rho \in [R_1, R_2]$ and $s < \rho$ we have*

$$I(s) \leq [A(\rho - s)^{-\alpha} + B(\rho - s)^{-\beta} + C] + \theta I(\rho)$$

with $A, B, C \geq 0$, $\alpha > \beta > 0$ and $\theta \in [0, 1)$. Then there holds

$$I(R_1) \leq c(\alpha, \theta)[A(R_2 - R_1)^{-\alpha} + B(R_2 - R_1)^{-\beta} + C].$$

Lemma 2.3. Let (u, b, π) be a suitable weak solution to 3D MHD equations. Then for $0 < r$ the following holds

$$\Phi\left(\frac{r}{2}\right) \leq C(C_{\infty}^u(r)^{\frac{2}{3}} + C_{\infty}^b(r)^{\frac{2}{3}} + C_{\infty}^u(r)^{\frac{4}{3}} + C_{\infty}^b(r)^{\frac{4}{3}} + D_{\infty}(r)^{\frac{2}{3}}).$$

Proof. Without loss of generally, consider z_0 to be the origin. Let $0 < \frac{r}{2} \leq s < \rho \leq r < 1$. Let $\eta_1 \in C_0^{\infty}(B(\rho))$ such that $0 \leq \eta_1 \leq 1$ in \mathbb{R}^3 and $\eta_1 = 1$ on $B(s)$. Furthermore for $|\alpha| \leq 2$:

$$|\nabla^{\alpha} \eta_1| \leq \frac{C}{(\rho - s)^{\alpha}}.$$

Let $\eta_2 \in C_0^{\infty}(-\rho^2, \rho^2)$ such that $0 \leq \eta_2 \leq 1$ in \mathbb{R} and $\eta_2 = 1$ on $[-s^2, s^2]$.

$$|\eta'_1| \leq \frac{C}{(\rho^2 - s^2)} \leq \frac{C}{r(\rho - s)} \leq \frac{C}{(\rho - s)^2}.$$

Let $\phi(x, t) := \eta_1(t)\eta_2(x)$. Hence:

$$|\nabla \phi| \leq \frac{C}{\rho - s}, \quad |\nabla^2 \phi| \leq \frac{C}{(\rho - s)^2}, \quad |\phi_t| \leq \frac{C}{(\rho - s)^2}.$$

From the local energy inequality, we are known

$$\begin{aligned} & \int_{B_r} (|u(x, t)|^2 + |b(x, t)|^2) \phi(x, t) dx + 2 \int_{-\rho^2}^0 \int_{B_r} (|\nabla u(x, t')|^2 + |\nabla b(x, t')|^2) \phi(x, t') dx dt' \\ & \leq \int_{-\rho^2}^0 \int_{B_\rho} (|u|^2 + |b|^2) (\partial_t \phi + \Delta \phi) dx dt' \\ & + \int_{-\rho^2}^0 \int_{B_\rho} (|u|^2 + |b|^2) u \cdot \nabla \phi dx dt' + 2 \int_{-\rho^2}^0 \int_{B_\rho} \pi u \cdot \nabla \phi dx dt' - 2 \int_{-\rho^2}^0 \int_{B_\rho} (b \cdot u)(b \cdot \nabla \phi) dx dt', \quad (2.6) \\ & := \mathcal{E}_1 + \mathcal{E}_2 + \mathcal{E}_3 + \mathcal{E}_4 \end{aligned}$$

for all $t \in I = (-1, 0)$ and for all non-negative functions $\phi \in C_0^{\infty}(\mathbb{R}^3 \times \mathbb{R})$. Let us treat the term \mathcal{E}_1 first. By O'Neil's inequality in space, the property of ϕ , and then Hölder in time, we have

$$\begin{aligned} \mathcal{E}_1 & \leq \int_{-\rho^2}^0 (\|u\|_{L^{3,\infty}(B_\rho)}^2 + \|b\|_{L^{3,\infty}(B_\rho)}^2) \|\Delta \phi + \partial_t \phi\|_{L^{3,1}(B_\rho)} ds \\ & \leq \frac{C\rho}{(\rho - s)^2} \int_{-\rho^2}^0 (\|u\|_{L^{3,\infty}(B_\rho)}^2 + \|b\|_{L^{3,\infty}(B_\rho)}^2) ds \\ & \leq \frac{C\rho^{\frac{5}{3}}}{(\rho - s)^2} \left[\left(\int_{-\rho^2}^0 \|u\|_{L^{3,\infty}(B_\rho)}^3 ds \right)^{\frac{2}{3}} + \left(\int_{-\rho^2}^0 \|b\|_{L^{3,\infty}(B_\rho)}^3 ds \right)^{\frac{2}{3}} \right]. \quad (2.7) \end{aligned}$$

Lorentz spaces is characterization as interpolation space between L^2 and L^6 as follows:

$$L^{3,1}(\Omega) = (L^2(\Omega), L^6(\Omega))_{\frac{1}{2},1} \quad (2.8)$$

Before the term \mathcal{E}_3 is estimated, we note that

$$\begin{aligned} \|u \cdot \nabla \phi\|_{L^{3,1}(B_\rho)} &\leq \|u \cdot \nabla \phi\|_{L^2(B_\rho)}^{\frac{1}{2}} \|u \cdot \nabla \phi\|_{L^6(B_\rho)}^{\frac{1}{2}} \leq \|u \cdot \nabla \phi\|_{L^2(B_\rho)}^{\frac{1}{2}} \|\nabla(u \cdot \nabla \phi)\|_{L^2(B_\rho)}^{\frac{1}{2}} \\ &\leq \frac{C\|u\|_{L^2(B_\rho)}}{(\rho - s)^{\frac{3}{2}}} + \frac{C\|u\|_{L^2(B_\rho)}^{\frac{1}{2}} \|\nabla u\|_{L^2(B_\rho)}^{\frac{1}{2}}}{\rho - s}, \end{aligned} \quad (2.9)$$

where we use the interpolation (2.8), Sobolev embedding and the property of ϕ . Set $I(\rho) = \rho\Phi(\rho)$. Using O'Neil inequality and the estimate (2.9), the term \mathcal{E}_3 is estimated as follows: for $\rho \leq r$,

$$\begin{aligned} \mathcal{E}_3 &\leq \int_{-\rho^2}^0 \|u \cdot \nabla \phi\|_{L^{3,1}(B_\rho)} \|\pi\|_{L^{\frac{3}{2},\infty}(B_\rho)} ds \leq \left[\frac{C}{(\rho - s)^{\frac{3}{2}}} \left(\int_{-\rho^2}^0 \|u\|_{L^2(B_\rho)}^3 ds \right)^{\frac{1}{3}} \right. \\ &\quad \left. + \frac{C}{\rho - s} \left(\int_{-\rho^2}^0 \|u\|_{L^2(B_\rho)}^{\frac{3}{2}} \|u\|_{L^2(B_\rho)}^{\frac{3}{2}} ds \right)^{\frac{1}{3}} \right] \times \left(\int_{-\rho^2}^0 \|\pi\|_{L^{\frac{3}{2},\infty}(B_\rho)}^{\frac{3}{2}} ds \right)^{\frac{2}{3}} \\ &\leq C \left(\frac{r^{\frac{2}{3}} I(\rho)^{\frac{1}{2}}}{(\rho - s)^{\frac{3}{2}}} + \frac{r^{\frac{1}{6}}}{\rho - s} I(\rho)^{\frac{1}{2}} \right) \left(\int_{-\rho^2}^0 \|\pi\|_{L^{\frac{3}{2},\infty}(B_\rho)}^{\frac{3}{2}} ds \right)^{\frac{2}{3}}. \end{aligned} \quad (2.10)$$

Similarly, we are obtained the following estimate as like \mathcal{E}_3 :

$$\int_{-\rho^2}^0 \int_{B_\rho} 2|u|^2 u \cdot \nabla \phi dx dt' \leq C \left(\frac{r^{\frac{2}{3}} I(\rho)^{\frac{1}{2}}}{(\rho - s)^{\frac{3}{2}}} + \frac{r^{\frac{1}{6}}}{\rho - s} I(\rho)^{\frac{1}{2}} \right) \left(\int_{-\rho^2}^0 \|u\|_{L^{3,\infty}(B_\rho)}^3 ds \right)^{\frac{2}{3}}, \quad (2.11)$$

$$\int_{-\rho^2}^0 \int_{B_\rho} 2|b|^2 u \cdot \nabla \phi dx dt' \leq C \left(\frac{r^{\frac{2}{3}} I(\rho)^{\frac{1}{2}}}{(\rho - s)^{\frac{3}{2}}} + \frac{r^{\frac{1}{6}}}{\rho - s} I(\rho)^{\frac{1}{2}} \right) \left(\int_{-\rho^2}^0 \|b\|_{L^{3,\infty}(B_\rho)}^3 ds \right)^{\frac{2}{3}}. \quad (2.12)$$

So thus, with the estimates (2.11) and (2.12), the term $\mathcal{E}_2 + \mathcal{E}_4$ is estimated by

$$\mathcal{E}_2 + \mathcal{E}_4 \leq C \left(\frac{r^{\frac{2}{3}} I(\rho)^{\frac{1}{2}}}{(\rho - s)^{\frac{3}{2}}} + \frac{r^{\frac{1}{6}}}{\rho - s} I(\rho)^{\frac{1}{2}} \right) \left[\left(\int_{-\rho^2}^0 \|u\|_{L^{3,\infty}(B_\rho)}^3 ds \right)^{\frac{2}{3}} + \left(\int_{-\rho^2}^0 \|b\|_{L^{3,\infty}(B_\rho)}^3 ds \right)^{\frac{2}{3}} \right]. \quad (2.13)$$

We combine with the estimate (2.7), (2.10) and (2.13) and Young's inequality to get

$$\begin{aligned} I(\rho) &\leq \frac{r^{\frac{5}{3}}}{(\rho - s)^2} \left[\left(\int_{-\rho^2}^0 \|u\|_{L^{3,\infty}(B_\rho)}^3 ds \right)^{\frac{2}{3}} + \left(\int_{-\rho^2}^0 \|u\|_{L^{3,\infty}(B_\rho)}^3 ds \right)^{\frac{2}{3}} \right] + \frac{1}{2} I(\rho) \\ &\quad + \left(\frac{r^{\frac{4}{3}}}{(\rho - s)^3} + \frac{r^{\frac{1}{3}}}{(\rho - s)^2} \right) \left[\left(\int_{-\rho^2}^0 \|u\|_{L^{3,\infty}(B_\rho)}^3 ds \right)^{\frac{4}{3}} + \left(\int_{-\rho^2}^0 \|b\|_{L^{3,\infty}(B_\rho)}^3 ds \right)^{\frac{4}{3}} + \left(\int_{-\rho^2}^0 \|\pi\|_{L^{\frac{3}{2},\infty}(B_\rho)}^{\frac{3}{2}} ds \right)^{\frac{4}{3}} \right] \end{aligned}$$

Since $\frac{r}{2} \leq s < \rho \leq r$ and by Lemma 2.2, we obtain

$$\begin{aligned} \Phi\left(\frac{r}{2}\right) &\leq r^{-\frac{1}{3}} \left[\left(\int_{-\rho^2}^0 \|u\|_{L^{3,\infty}(B_\rho)}^3 ds \right)^{\frac{2}{3}} + \left(\int_{-\rho^2}^0 \|u\|_{L^{3,\infty}(B_\rho)}^3 ds \right)^{\frac{2}{3}} \right] \\ &\quad + C r^{-\frac{5}{3}} \left[\left(\int_{-\rho^2}^0 \|u\|_{L^{3,\infty}(B_\rho)}^3 ds \right)^{\frac{4}{3}} + \left(\int_{-\rho^2}^0 \|b\|_{L^{3,\infty}(B_\rho)}^3 ds \right)^{\frac{4}{3}} + \left(\int_{-\rho^2}^0 \|\pi\|_{L^{\frac{3}{2},\infty}(B_\rho)}^{\frac{3}{2}} ds \right)^{\frac{4}{3}} \right]. \end{aligned}$$

□

2.2. Proof of main theorem

Following the notation in [14], we suppose that $z_0 := (x_0, t_0) \in Q_{\frac{1}{2}}(0, 0)$ is a singular point. It means that there exists no neighborhood \mathcal{N} of z_0 such that (u, b) has a Hölder continuous representative on $\mathcal{N} \cap [B_1(0) \times (-1, 0)]$. By Theorem 3.2 [13], there exist $c_0 > 0$ and a sequence of numbers $\epsilon_k \in (0, 1)$ such that $\epsilon_k \rightarrow 0$ as $k \rightarrow \infty$ and

$$\sup_{t_0 - \epsilon_k \leq s \leq t_0} \frac{1}{\epsilon_k} \int_{B(x_0, \epsilon_k)} |u(x, s)|^2 dx + |b(x, s)|^2 dx \geq c_0, \quad (2.14)$$

for any $k \in \mathbb{N}$. Moreover, by Proposition 2.1, we have in particular

$$u(\cdot, t_0) \in L^{3,q}(B_{3/4}(0)), \quad b(\cdot, t_0) \in L^{3,q}(B_{3/4}(0))$$

Recall that we can decompose $\pi = \tilde{\pi} + h$, where h is harmonic in B_1 , and $\tilde{\pi} = R_i R_j [(u_i u_j + b_i b_j) \chi_{B_1}]$. For each $Q = \omega \times (a, b)$, where $\omega \in \mathbb{R}^3$ and $-\infty < a < b \leq 0$, we choose a large $k_0 = k_0(Q) \geq 1$ so that for any $k \geq k_0$ there hold the implications $x \in \omega \implies x_0 + \epsilon_k x \in B_{\frac{2}{3}}$, and $t \in (a, b) \implies t_0 + \epsilon_k t \in (-(\frac{2}{3})^2, 0)$, where the sequence ϵ_k is as in (4.7). Set $Q = \omega \times (a, b)$, let us set

$$u_k(x, t) = \epsilon_k u(x_0 + \epsilon_k x, t_0 + \epsilon_k^2 t), \quad b_k(x, t) = \epsilon_k b(x_0 + \epsilon_k x, t_0 + \epsilon_k^2 t),$$

and

$$\begin{aligned} \pi_k(x, t) &= \epsilon_k^2 k \pi(x_0 + \epsilon_k x, t_0 + \epsilon_k^2 t), \\ \tilde{\pi}_k(x, t) &= \epsilon_k^2 \tilde{\pi}(x_0 + \epsilon_k x, t_0 + \epsilon_k^2 t), \quad \text{and} \quad h_k(x, t) = \epsilon_k^2 h(x_0 + \epsilon_k x, t_0 + \epsilon_k^2 t), \end{aligned}$$

for any $(x, t) \in Q$ and $k \geq k_0(Q)$.

The following proposition is a key in the proof of Theorem 1.1, which says the properties in the limit.

Proposition 2.2. *Let $0 < q < \infty$ and $Q = \omega \times (a, b)$ with $\omega \subset \mathbb{R}^3$, $-\infty < a < b \leq 0$. There exists a subsequence of (u^k, b^k, π^k) , still denoted by (u^k, b^k, π^k) , and a pair of functions*

$$(u^\infty, b^\infty, \pi^\infty) \in L^\infty(-\infty, 0; L^{3,q}(\mathbb{R}^3)) \times L^\infty(-\infty, 0; L^{3,q}(\mathbb{R}^3)) \times L^\infty(-\infty, 0; L^{\frac{3}{2}, \frac{q}{2}}(\mathbb{R}^3))$$

with $\operatorname{div} u^\infty = 0$ and $\operatorname{div} b^\infty = 0$ in $\mathbb{R}^3 \times (-\infty, 0)$, such that for $s \in (1, 3)$,

$$u^k \rightarrow u^\infty \text{ in } C(a, b; L^s(\omega)), \quad (2.15)$$

$$b^k \rightarrow b^\infty \text{ in } C(a, b; L^s(\omega)), \quad (2.16)$$

$$\pi^k \rightarrow \pi^\infty \text{ weakly* in } L^\infty(a, b; L^{\frac{3}{2}, \frac{q}{2}}(\omega)), \quad (2.17)$$

Moreover

$$|u^\infty|^2, |b^\infty|^2, \nabla u^\infty, \nabla b^\infty \in L^2(Q), \quad (2.18)$$

$$\partial_t u^\infty, \partial_t b^\infty, \nabla^2 u^\infty, \nabla^2 b^\infty, \nabla \pi^\infty \in L^{\frac{4}{3}}(Q), \quad (2.19)$$

and $(u^\infty, b^\infty, \pi^\infty)$ satisfies a suitable weak solution to the 3D MHD equations in Q . Additionally, u^∞ and b^∞ satisfy the lower bound satisfies the lower bound

$$\int_Q (|u^\infty|^2 + |b^\infty|^2) dz \geq \varepsilon_3. \quad (2.20)$$

Proof. For each $Q = \omega \times (a, b)$, where for $\omega \subset \mathbb{R}^3$ and $t \in [a, b]$ with $-\infty < a < b \leq 0$, we have

$$\|u_k(\cdot, t)\|_{L^{3,q}(\omega)} \leq \|u_k(\cdot, t_0 + \epsilon_k^2 t)\|_{L^{3,q}(B_{\frac{3}{4}})} \leq \|u\|_{L^\infty(-1,0); L^{3,q}(B_1)}, \quad (2.21)$$

and

$$\|b_k(\cdot, t)\|_{L^{3,q}(\omega)} \leq \|b\|_{L^\infty(-1,0); L^{3,q}(B_1)}, \quad (2.22)$$

By Calderón-Zygmund estimate, for a.e. $t \in (a, b)$ there holds

$$\|\tilde{\pi}_k(\cdot, t)\|_{L^{\frac{3}{2}, \frac{q}{2}}(\omega)} \leq \|\tilde{\pi}_k(\cdot, t_0 + \epsilon_k^2 t)\|_{L^{\frac{3}{2}, \frac{q}{2}}(B_{\frac{3}{4}})} \leq C(\|u\|_{L^\infty(-1,0); L^{3,q}(B_1)}^2 + \|b\|_{L^\infty(-1,0); L^{3,q}(B_1)}^2). \quad (2.23)$$

On the other hand, by harmonicity we have

$$\begin{aligned} \int_a^b \sup_{x \in \omega} |h_k(x, t)|^{\frac{3}{2}} dt &\leq \epsilon_k \int_{-(3/4)^2} \sup_{x \in \omega} |h_k(x_0 + \epsilon_k x, s)|^{\frac{3}{2}} ds \leq \epsilon_k \|h\|_{L^{\frac{3}{2}}(-1,0); L^\infty(B_{\frac{3}{4}})}^{\frac{3}{2}} \\ &\leq C \epsilon_k (\|u\|_{L^\infty((-1,0); L^{3,q}(B_1))}^3 + \|b\|_{L^\infty((-1,0); L^{3,q}(B_1))}^3 + \|\pi\|_{L^{\frac{3}{2}}(Q_1)}^3) \end{aligned} \quad (2.24)$$

Thus each (u_k, b_k) is a suitable solution in Q . Then, from the energy estimate follows that

$$\|u_k\|_{L^\infty(a,b; L^2(\omega))} + \|b_k\|_{L^\infty(a,b; L^2(\omega))} + \|\nabla b_k\|_{L^2(Q)} + \|\nabla u_k\|_{L^2(Q)} \leq C. \quad (2.25)$$

Using (2.25) and Sobolev embedding, we have $\|u_k\|_{L^2(a,b; L^6(\omega))} \leq C$, which by (4.12), interpolation, and Hölder's inequality gives for

$$\|u_k\|_{L^4(Q)} + \|b_k\|_{L^4(Q)} + \|(u_k \cdot \nabla) u_k\|_{L^{\frac{4}{3}}(Q)} + \|(b_k \cdot \nabla) u_k\|_{L^{\frac{4}{3}}(Q)} \leq C.$$

From the bounds (2.23) and (2.24), we also have

$$\|\pi_k\|_{L^s(Q)} \leq C \|\pi_k\|_{L^2(a,b; L^{\frac{3}{2}, \frac{q}{2}}(\omega))} \leq C, \quad s \in (0, \frac{3}{2}). \quad (2.26)$$

Using the estimate (2.25)–(2.26), it follows from the local interior regularity of solutions to non-stationary Stokes equations we find

$$\|\partial_t u_k\|_{L^{\frac{4}{3}}(Q)} + \|\nabla^2 u_k\|_{L^{\frac{4}{3}}(Q)} + \|\nabla \pi_k\|_{L^{\frac{4}{3}}(Q)} \leq C. \quad (2.27)$$

Furthermore, we can easily check the as following:

$$\|\partial_t u_k\|_{L^{\frac{4}{3}}(Q)} + \|\partial_t b_k\|_{L^{\frac{4}{3}}(Q)} + \|\nabla^2 u_k\|_{L^{\frac{4}{3}}(Q)} + \|\nabla^2 b_k\|_{L^{\frac{4}{3}}(Q)} + \|\nabla \pi_k\|_{L^{\frac{4}{3}}(Q)} \leq C. \quad (2.28)$$

Using estimates (2.21)–(2.23), we may get that

$$u_k \rightharpoonup^* u^\infty \quad \text{in } L^\infty(-\infty, 0; L^{3,q}(\mathbb{R}^3)).$$

$$b_k \rightharpoonup^* b^\infty \quad \text{in } L^\infty(-\infty, 0; L^{3,q}(\mathbb{R}^3)).$$

$$\tilde{\pi}_k \rightharpoonup^* \tilde{\pi}^\infty \quad \text{in } L^\infty(-\infty, 0; L^{\frac{3}{2}, \frac{q}{2}}(\mathbb{R}^3)).$$

Estimates (2.25) and (2.27) yield

$$u_k \rightharpoonup^* u^\infty \quad \text{in } C(-\infty, 0; L^{\frac{4}{3}}(Q)), \quad (2.29)$$

$$b_k \rightharpoonup^* b^\infty \quad \text{in } C(-\infty, 0; L^{\frac{4}{3}}(Q)). \quad (2.30)$$

For any $s \in (1, 3)$, the uniform bound (2.21) and the interpolation inequality

$$\|u_k(\cdot, t) - u_k(\cdot, t')\|_{L^s} \leq \|u_k(\cdot, t) - u_k(\cdot, t')\|_{L^{\frac{4}{3}}}^{\frac{12}{5}\left(\frac{1}{s} - \frac{1}{3}\right)} \|u_k(\cdot, t) - u_k(\cdot, t')\|_{L^s}^{\frac{12}{5}\left(\frac{3}{4} - \frac{1}{s}\right)}$$

imply that each $u_k \in C([a, b]; L^s(\omega))$. Thus by using (2.29) and interpolating we obtain (2.15) for any $s \in (1, 3)$. On the other hand, by (2.24), we have

$$h_k \rightarrow 0 \text{ strongly in } L^2(a, b; L^\infty(\omega)),$$

Now (2.18)–(2.19) follows from (2.29), (2.30), (2.25) and (2.27) via an argument as in the proof of Proposition 2.1. Finally, note that by (2.41) and a change of variables we have

$$\sup_{-1 \leq t \leq 0} \int_{B(0,1)} |u_k(x, t)|^2 dx = \sup_{t_0 - \epsilon_k^2 \leq t \leq t_0} \frac{1}{\epsilon_k} \int_{B(0,1)} |u_k(y, s)|^2 dy \geq C_0.$$

Similarly, $\sup_{-1 \leq t \leq 0} \int_{B(0,1)} |u_k(x, t)|^2 dx \geq C_0$. Thus using the convergences (2.15) and (2.16) with $s = 2$ we obtain the lower bound (2.20). \square

Before proving the main statement we introduce some notation

$$C_u(r) := \frac{1}{r^2} \int_{Q_r} |u|^3 dz, \quad C_b(r) := \frac{1}{r^2} \int_{Q_r} |b|^3 dz, \quad D(r) := \frac{1}{r^2} \int_{Q_r} |\pi|^{\frac{3}{2}} dz.$$

Now, we prove the ϵ -regularity criteria for a suitable weak solution to the 3D MHD equations under our circumstance.

Proposition 2.3. *Let (u, b, π) be a suitable weak solution to 3D MHD equations. Then there exists a universal constants c_0 and $c_{0k}(\epsilon_0)$ (with $k = 1, 2, \dots$) with the following property. Assume*

$$C_u^u(1) + C_b^b(1) + D_\infty(1) \leq \epsilon_0, \quad (2.31)$$

then for any natural number k , $\nabla^{k-1} u$ is Hölder continuous in $\tilde{Q}_{1/8}$ and the following bound is valid:

$$\sup_{\tilde{Q}_{1/8}} (|\nabla^{k-1} u(z)| + |\nabla^{k-1} b(z)|) < c_{0k}(\epsilon_0).$$

Proof. From Lemma 2.3 and assumptions (2.31), it follows that

$$A_u\left(\frac{1}{2}\right) + A_b\left(\frac{1}{2}\right) + E_u\left(\frac{1}{2}\right) + E_b\left(\frac{1}{2}\right) \leq C(\epsilon_0 + \epsilon_0^2)^{\frac{2}{3}}. \quad (2.32)$$

By interpolation and Sobolev embedding theorem one can show that

$$C_u\left(\frac{1}{2}\right) \leq C[A_u\left(\frac{1}{2}\right)^{\frac{3}{4}} E_u\left(\frac{1}{2}\right)^{\frac{3}{4}} + A_u\left(\frac{1}{2}\right)^{\frac{3}{2}}].$$

Thus, by (2.32) we have

$$C_u\left(\frac{1}{2}\right) \leq C(\epsilon_0 + \epsilon_0^2). \quad (2.33)$$

Similarly, we have

$$C_b\left(\frac{1}{2}\right) \leq C(\epsilon_0 + \epsilon_0^2). \quad (2.34)$$

For similar reasons it is not so difficult to see that

$$\|\nabla \cdot (u \times u)\|_{L^{\frac{9}{8}, \frac{3}{2}}(Q_{\frac{1}{2}})} \leq C[A_u\left(\frac{1}{2}\right) + A_u\left(\frac{1}{2}\right)^{\frac{1}{3}}B_u\left(\frac{1}{2}\right)^{\frac{2}{3}}].$$

Thus,

$$\|\nabla \cdot (u \times u)\|_{L^{\frac{9}{8}, \frac{3}{2}}(Q_{\frac{1}{2}})} \leq C(\epsilon_0 + \epsilon_0^2)^{\frac{2}{3}}. \quad (2.35)$$

Similarly, we have

$$\|\nabla \cdot (b \times b)\|_{L^{\frac{9}{8}, \frac{3}{2}}(Q_{\frac{1}{2}})} \leq C(\epsilon_0 + \epsilon_0^2)^{\frac{2}{3}}. \quad (2.36)$$

On the other hand, by Hölder's inequality, it is obvious that

$$\|u\|_{W_{\frac{9}{8}, \frac{3}{2}}^{1,0}(Q_{\frac{1}{2}})} \leq C(A_u\left(\frac{1}{2}\right) + B_u\left(\frac{1}{2}\right)) \leq C(\epsilon_0 + \epsilon_0^2)^{\frac{1}{3}}. \quad (2.37)$$

Similarly, we have

$$\|b\|_{W_{\frac{9}{8}, \frac{3}{2}}^{1,0}(Q_{\frac{1}{2}})} \leq C(\epsilon_0 + \epsilon_0^2)^{\frac{1}{3}}. \quad (2.38)$$

Using O'Neil's inequality, we have

$$\int_{B(\frac{1}{2})} |\pi(x, t)|^{\frac{9}{8}} dx \leq C \|\pi^{\frac{9}{8}}\|_{L^{\frac{8}{3}, \infty}} = C \|\pi\|_{L^{3, \infty}}^{\frac{9}{8}}$$

Hence,

$$\|\pi(x, t)\|_{L^{\frac{9}{8}, \frac{3}{2}}} \leq C \epsilon_0^{\frac{2}{3}}. \quad (2.39)$$

Using the local interior regularity theory for Stokes equation, we have

$$\begin{aligned} & \|u\|_{L^{\frac{9}{8}, \frac{3}{2}}(Q_{\frac{1}{4}})} + \|\nabla^2 u\|_{L^{\frac{9}{8}, \frac{3}{2}}(Q_{\frac{1}{4}})} + \|\nabla \pi\|_{L^{\frac{9}{8}, \frac{3}{2}}(Q_{\frac{1}{4}})} \\ & \leq C(\|\nabla \cdot (u \times u)\|_{L^{\frac{9}{8}, \frac{3}{2}}(Q_{\frac{1}{2}})} + \|\nabla \cdot (b \times b)\|_{L^{\frac{9}{8}, \frac{3}{2}}(Q_{\frac{1}{2}})}) \\ & \quad + \|u\|_{L^{\frac{9}{8}, \frac{3}{2}}(Q_{\frac{1}{2}})} + \|\nabla u\|_{L^{\frac{9}{8}, \frac{3}{2}}(Q_{\frac{1}{2}})} + \|\pi\|_{L^{\frac{9}{8}, \frac{3}{2}}(Q_{\frac{1}{2}})}. \end{aligned}$$

Note that a suitable weak solution (u, b, π) implies that

$$u, b \in W_{\frac{9}{8}, \frac{3}{2}}^{2,1}(Q_2) \cap W_{\frac{4}{3}}^{1,0}(Q_2), \quad \pi \in W_{\frac{9}{8}, \frac{3}{2}}^{1,0}(Q_2) \cap L^{\frac{4}{3}}(Q_2).$$

(see e.g. [18, 19]). Using this together with the estimates (2.35)–(2.39), we obtain that

$$\|\nabla \pi\|_{L^{\frac{9}{8}, \frac{3}{2}}(Q_{\frac{1}{4}})} \leq c[(\epsilon_0 + \epsilon_0^2)^{\frac{1}{3}} + (\epsilon_0 + \epsilon_0^2)^{\frac{2}{3}}].$$

Thus, by the Poincaré inequality, we have

$$\|\pi - [\pi]\|_{L^{\frac{3}{2}}(Q_{\frac{1}{4}})} \leq c[((\epsilon_0 + \epsilon_0^2)^{\frac{1}{3}} + (\epsilon_0 + \epsilon_0^2)^{\frac{2}{3}})].$$

Therefore, we conclude

$$\|\pi\|_{L^{\frac{3}{2}}(Q_{\frac{1}{4}})} \leq c[((\epsilon_0 + \epsilon_0^2)^{\frac{1}{3}} + (\epsilon_0 + \epsilon_0^2)^{\frac{2}{3}})] \quad (2.40)$$

This along with (2.33), (2.34) and (2.40) gives

$$C_u\left(\frac{1}{2}\right) + C_b\left(\frac{1}{2}\right) + D\left(\frac{1}{2}\right) \leq C[((\epsilon_0 + \epsilon_0^2)^{\frac{1}{3}} + (\epsilon_0 + \epsilon_0^2)^{\frac{2}{3}})] \quad (2.41)$$

Choosing ϵ_0 sufficiently small, the estimate (2.41) satisfies the conditions of Theorem 3.3 in [13] and so we complete the proof. \square

Proof of Theorem 1.1. The proof is similar to the argument in [13, Theorem 1.1] We now fix such numbers M and N and let $z_1 = (x_1, t_1) \in (\mathbb{R}^3 \setminus \bar{B}_{2N}(0)) \times (-\frac{M}{2}, 0]$. Due to $C_\infty^{u^\infty}(1) + C_\infty^{b^\infty}(1) + D_\infty(1) \leq \epsilon_0$, we obtain, by Proposition 2.3

$$\max_{z \in \bar{Q}_{\frac{1}{2}}(z_1)} |\nabla^k u^\infty(z)| \leq C(k), \quad \max_{z \in \bar{Q}_{\frac{1}{2}}(z_1)} |\nabla^k b^\infty(z)| \leq C(k), \quad k = 1, 2, \dots.$$

On the other hand, on the set $(\mathbb{R}^3 \setminus \bar{B}_{2N}(0)) \times (-\frac{M}{2}, 0]$, we have that there exists $M > 0$ such that

$$|\partial_t W - \Delta W| \leq M(|W| + |\nabla W|), \quad \text{and} \quad |W| \leq C,$$

for the (15-component) vector-valued function $W = (b^\infty, w^\infty, b^\infty_{,1}, b^\infty_{,2}, b^\infty_{,3})$ where $w^\infty = \nabla \times u^\infty$ given in [13, pp.2922-2923]. Then

$$W = 0 \text{ on } (\mathbb{R}^3 \setminus \overline{B_{4N}}(0)) \times (-\frac{M}{4}, 0].$$

Using the theory of unique continuation for parabolic equation (see [6, Theorem 5]), we see $W(\cdot, t) = 0$ in \mathbb{R}^3 for a.e. $t \in (-\frac{M}{4}, 0)$. Thus $u^\infty(\cdot, t) = 0$ is globally harmonic, and using Liouville theorem, it follows that $u^\infty(\cdot, t) = 0$ for a.e. $t \in (-\frac{M}{4}, 0)$. This yields to a contradiction to the lower bound (2.20) and hence completes the proof of Theorem 1.1. \square

3. Conclusions

In this paper, we investigate some local regularity condition for a suitable weak solution to 3D MHD equations in Lorentz space. However, it remains an open question to obtain the local regularity condition for only velocity vector u .

Acknowledgments

The author thank the very knowledgeable referee very much for his/her valuable comments and helpful suggestions. Jae-Myoung Kim's work is supported by a Research Grant of Andong National University and NRF-2020R1C1C1A01006521.

Conflicts of interest

The authors declare that they have no conflicts of interest

References

1. R. P. Agarwal, S. Gala, M. A. Ragusa, A regularity criterion in weak spaces to Boussinesq Equations, *Mathematics*, **8** (2020), 920.
2. T. Barker, Local boundary regularity for the Navier-Stokes equations in nonendpoint borderline Lorentz spaces, *J. Math. Sci.(N.Y.)*, **224** (2017), 391–413.
3. S. Benbernou, S. Gala, M. A. Ragusa, On the regularity criteria for the 3D magnetohydrodynamic equations via two components in terms of BMO space, *Math. Methods Appl. Sci.*, **37** (2014), 2320–2325.
4. L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, *Comm. Pure Appl. Math.*, **35** (1982), 771–831.
5. P. A. Davidson, *An introduction to magnetohydrodynamics*, Cambridge University Press, Cambridge, 2001.
6. L. Escauriaza, G. Seregin, V. Šverák, $L^{3,\infty}$ -solutions of Navier-Stokes equations and backward uniqueness, *Uspekhi Mat. Nauk*, **58** (2003), 211–250.
7. N. S. Khan, Mixed convection in MHD second grade nanofluid flow through a porous medium containing nanoparticles and gyrotactic microorganisms with chemical reaction, *Filomat*, **33** (2019), 4627–4653.
8. C. He, Z. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations, *J. Funct. Anal.*, **227** (2005), 113–152.
9. O. A. Ladyženskaja, V. A. Solonnikov, Solution of some non-stationary problems of magnetohydrodynamics for a viscous incompressible fluid, *Trudy Mat. Inst. Steklov., Acad. Sci. USSR, Moscow–Leningrad*, **59** (1960), 115–173.
10. O. A. Ladyženskaja, G. A. Seregin, On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations, *J. Math. Fluid Mech.*, **1** (1999), 356–387.
11. F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, *Comm. Pure Appl. Math.*, **51** (1998), 241–257.
12. Y. Luo, T. P. Tsai, Regularity criteria in weak L^3 for 3D incompressible Navier-Stokes equations, Funccialaj Ekvacioj, *Comm. Pure Appl. Math.*, **58** (2015), 387–404.
13. A. Mahalov, A. Nicolaenko, A. Shilkin, $L^{3,\infty}$ -solutions to the MHD equations, *J. Math. Sci. (N.Y.)*, **143** (2007), 2911–2923.
14. N. C. Phuc, The Navier-Stokes equations in nonendpoint borderline Lorentz spaces, *J. Math. Fluid Mech.*, **17** (2015), 741–760.
15. M. Sermange, R. Temam, Some mathematical questions related to the MHD equations, *Comm. Pure Appl. Math.*, **36** (1983), 635–664.

16. G. A. Seregin, Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary, *J. Math. Fluid Mech.*, **4** (2002), 1–29.

17. G. A. Seregin, Some estimates near the boundary for solutions to the non-stationary linearized Navier-Stokes equations, *J. Math. Sci. (N. Y.)*, **115** (2003), 2820–2831.

18. G. A. Seregin, On smoothness of $L_{3,\infty}$ -solutions to the Navier-Stokes equations up to boundary, *Math. Ann.*, **332** (2005), 219–238.

19. G. A. Seregin, A note on local boundary regularity for the Stokes system, *J. Math. Sci. (N.Y.)*, **166** (2010), 86–90.

20. S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations, *Manuscripta Math.*, **69** (1990), 237–254.

21. H. Triebel, *Theory of Function Spaces*, Birkhäuser Verlag. Basel-Boston, (1983).

22. V. Vyalov, T. Shilkin, Partial regularity of solutions to the magnetohydrodynamic equations, *J. Math. Sci. (N. Y.)*, **150** (2008), 1771–1786.

23. W. Wang, Z. Zhang, Limiting case for the regularity criterion to the 3-D magneto-hydrodynamics equations, *J. Differential Equations*, **252** (2012), 5751–5762.

© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>)