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1. Introduction

We study the three-dimensional incompressible magnetohydrodynamic (3D MHD) equations (see
e.g. [5]):
uy— A+ w-Vu—(b-V)b+Vo=0
by—2sb+w-V)b—(b-Vu=0
(MHD) in Q7 :=R*x][0, 7, (1.1)
divu=0 and divd =0,

u(x,0) = up(x),  b(x,0) = bo(x)

) . . . bl* .
Here u is the flow velocity vector, b is the magnetic vector and 7 = p + Ior is the scalar pressure. By

suitable weak solutions we mean solutions that solves MHD in the sense of distribution and satisfy the
local energy inequality (see Definition 2.1 in section 2 for details). For a point z = (0,0) € R x (0, T)
by translation, we denote B.(x) := B, = {y e R® : [y — x| < r},

0.(z) = 0, = B, x (-r7,0), r< VT.
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We say that solutions u and b are regular at 7 € R3? x (0, 7T) if u and b are bounded for some Q,, r > 0.
Otherwise, it is said that u and b are singular at z. The original paper where the weak solvability
of the various boundary value problems was proved is Ladyzenskaja and Solonnikov [9]. As in the
Navier-Stokes equations, regularity problem remains open in dimension three. On the other hand, He
and Xin proved in [8] a suitable weak solution to this equations using the construction arguments of
a solution in [4]. Furthermore, they show that a suitable weak solution, (u, b) become regular in the
presence of a certain type of scaling invariant local integral conditions for velocity and magnetic fields.
Recently, in [14], Phuc give a new regularity condition, that is, u € L*(~1,0; L>7(B,)), a weak solution
to the 3D Navier-Stokes equations are regular for g # oo (cf [2]). In this paper, we give a criterion of
local interior regularity as like Phuc’s result for a suitable weak solution to the 3D MHD equations in
Lorentz space which is still unknown (see e.g. [20, 12] for the Naiver-Stokes equations). For proofs,
we prove the e- regularity criteria for this solution in Lorentz space (below Proposition 2.3)based on the
e-regularity criteria in Sobolev space. After that, using the standard blow-up argument(or contraction
argument) and the unique continuation for parabolic equation, we show a solution is regular (see e.g.
[1, 3, 6,7, 13]). In summary, overall, our proof is followed the arguments in [14, 2] which is mainly
contained the arguments for the Naiver-Stokes equations. Now we are ready to state the first part of
our main result.

Theorem 1.1. Let a pair of functions u, b and © have the following differentiability properties:

u,b € L>**(Q) N WH(Qy), 7e Li(Q)

Suppose that (u, b, ) satisfy the 3D MHD equations in Q, in the sense of distributions. Assume, in
addition, that there exists 3 < q < oo such that

u,b € L=(—4,0; L*9(B,)).
Then (u, b) is Holder continuous in the closure of the set Q%.

2. Preliminaries

In this section we introduce some scaling invariant functionals and suitable weak solutions, and
recall an estimation of the Stokes system.

We first start with some notations. Let Q be an open domain in R* and I be a finite time interval.
We denote by LP4(R*) with 1 < p, ¢ < oo the Lorentz space with the norm [21]

0 de\1/
lgllzra = ( f (. )" ) < oo for 1< < oo,
0

where m(p, 1) is the Lebesgue measure of the set {x € R? : |o(x)| > 1}, i.e.
m(p, 1) := m{x € R : |p(x)| > ).
In particular, when g = oo,
1
llpllLre = sup{t(m(p, 1))7} < co.

>0
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The Lorentz space L”* is also called weak L? space. The norm is equivalent to the norm

Iflle~ = sup IEl”q_lflf(X)ldX-
E

0<|E|<co0

For a function f(x,1), we denote ||fllrsoxry = Ifllacz@) = MAllz@llzey and vector fields u, v
we write (4;v;); j-123 as u ® v. We denote by C = C(a,, ...) a constant depending on the prescribed
quantities a, S, ..., which may change from line to line. Next we recall suitable weak solutions for the
MHD equations (1.1) in three dimensions.

Definition 2.1. Let [ = (0,T). A triple of (u, b, r) is a suitable weak solution to (1.1) if the following
conditions are satisfied:

(a) The functions u,b : Qr — R and n : Q7 — R satisfy
u,b e L°(I; LXR)) 0 LA WR®RY),  ne L3(Qr),

(b) (u,b, ) solves the MHD equations in Q7 in the sense of distributions.
(c) u,b and n satisfy the local energy inequality

f (ju(x, P + 1b(x, D )$(x, )dx
B

+2 f f (\Vu(x, ) + |Vb(x, ) (x, £ )dxdrt’
to B

1 1
< f f (il + 6P + Apdxdl + f f (1P + 16 + 27) u - Vgdxar
1o B t B

t
— 2f f(b ~u)(b - Vp)dxdr'. (2.1
o B
for all nonnegative function ¢ € Cyy R3 x R).
The crucial regularity result in [8] and [23] ensures that

Lemma 2.1. There exists € > 0 such that if (u,b,n) is a suitable weak solution of the 3D MHD
equations and for r > 0,

1 5
ﬁf lu(y, s)I’ + b0, $)I’ + I7(y, s)|2dyds < €,

then z is a regular point.

Before a proof, we know some necessary results, which is crucial role for our analysis (see [2] and
[14]). After then, using these result, we prove Theorem 1.1.

Proposition 2.1. Suppose that the pair of functions (u, b, ) satisfies the 3D MHD equations in Q :=
01(0,0) = B1(0) X (—=1,0) in the sense of distributions and has the following properties

u, b € L(~1,0; L*(B))) N L*(—1,0; W"*(B)),
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e L*(-1,0;L'(B))).
for some q € (3, 0). Then (u, b, ) forms a suitable weak solution to the 3D MHD equations in Q% with
a generalized energy equality, u € L*(Q), and nt € LZ(Q%). Suppose further that
ue L®(=1,0;L%B,)), be L (-1,0;L*(B)).
In addition, the inequalities
s Dllsacs ) < Ntll o3 2.0, 393 )
1 7
and

llb(-, t)”L—*»q(B%) < ”b”Lw(_(%)Z,o; L34(B3))
P

hold for all t € (—(%)2, 0), and the function

t— f u(x, Hyw(x)dx
B

B

. . 3 4 . .
is continuous on [—(%)2, 0] for any w € L> a1 (B%). Here, it is clear that q%] = 1 in the case g = co.

Proof. By Sobolev’s inequality, we know u € L*(—1,0;L%(B;)). And also by the assumptions and
interpolative inequality, we have

1

1 1
Ml ey < Cllll el (22)

which implies u € L*(Q,). Similarly, we get b € L*(Q,). Thus by Holder’s inequality, we obtain
w-Vu,b-Vb,u-Vb,b-Vue L3(Q)). (2.3)

Decompose the pressure so that
T =1 + 7y,

where 7y := R;R;(xp,(uju; + b;b;)). Here R; is Riesz operator and we adopt summation convention. It
is not difficult to notice that in B,,:
A?Tz =0.

By Calder6n-Zygmund estimate we have
||7T1||L2(Bl) < C(”””%A(Bl) + ||b||i4(31))7 (24)

and thus (2.4), it holds
Imall2 1085y < Climallizcro0i ) = Clir = millcro.01 1)
6

2 2
< C”T(”Lz(—l,O;Ll(Bl)) + C(||I/l||L4(Q) + ||b||L4(Q)) (25)

Estimates (2.4) and (2.4) imply that the pressure 7 € LZ(Q%). With the energy class, estimate (2.2),
(2.3) and (2.5), and the local interior regularity of Stokes systems , we have

(||M||L4(Q3) + ||b||L4(Q3))+
s s
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u + b + (||V?u +||V?b + ||V 0.
dl IIIU(Q) I zlng(Q%) al lng(Q%) I IIL%(% I IIU(Q)

It then follows that 3
ub e C(=(3)%,0:Li(By)
and thus the function

8,(1) = f u(x, Hp(x)dx
B34

is continuous on [—(%)2, 0] for any ¢ € C°°(B;). This yields

”””LM(( POLIB )"

| f u(x, Dp()dx| < Cligll 3 0,
B34 (B 4

N\w

q
q-

Thus by the density of C;°(B 3 )in L (B ) we see that

3 2
||u||L3vq(B%) < C”u”Lw(_(%)Z,o;L&q(Bl)), re [_(Z) ,0].
i

Then it can be seen, again by density, that the function g, above is actually continuous on [—(%)2, 0]

for any ¢ € L¥71(B 3). Finally, using u € L*(B;) and a standard mollification in R**! combined with a
truncation in time of test functions, we obtain the local generalized energy equality in Q%. O

2.1. Some estimates

For simplicity, we write
O(r) ;= A, (r) + Ap(r) + E, (1) + Ep(r).

where { 1
A, (r):= sup — f lu(y, $)PPdy, E.r):=—- | |Vu(y,s)|dyds,
t—r2<s<t B, rJo,
Anr) = sup ~ f by, )Py, Exr) = ~ [ Vb0, s)Pdvds,
—r2<s<t T 0O,

Also, we introduce following the scale invariant functional : for 0 < r < 1,
1 0
CLn = f . ) s Ch) = f 15y, s -

1 0 3
D.(V== | Ixeol,  ds.
2 . L3(B,)

Now, we begin with stating a well known algebraic Lemma, whose proof is omitted but found in
[4].

Lemma 2.2. Let I(s) be a bounded non negative function in the interval [R;, R,]. Assume that for every
s,p € [R1,R,] and s < p we have

I(s) <[A(p— $)“ + B(p — s)” + C] + 0I(p)
with A,B,C >0, a > > 0and 6 € [0, 1). Then there holds
I(R)) < c(a,)[ARy — R)) ™ + B(R, - R))* + C].
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Lemma 2.3. Let (u,b, ) be a suitable weak solution to 3D MHD equations. Then for 0 < r the
following holds

@@sd%mhcwﬁﬂw&+%mhawﬁ.

Proof. Without loss of generally, consider zo to be the origin. Let0 < § < s < p < r < 1. Let
m € Cy(B(p)) such that0 <7 < 1in R? and i; = 1 on B(s). Furthermore for |o| < 2:

IViml <

C
(p—s)
Letm, € Cy(—p*, p*) such that 0 < m, < linRand 77, = 1 on [—-s%, 5*].

Inyl < ¢ < < < ¢ :
(P> =52 " rle—s) " (p—s)7

Let ¢(x, 1) := nt)n2(x). Hence:

c
Vol <~ V2¢l < Il <

_C e
(0= ) (0= 57

From the local energy inequality, we are known

0
f (Ju(x, DI + b(x, DH)P(x, Ddx + Zf f (Vulx, ©)F + [Vb(x, )P )(x, ' )dxdt
B, —P2 B,

0
Sb[ jlwﬁ+w%w¢+A@¢Mf

_p2

BP
0 0 0
+ f f (lul® + bP) u - Vodxdt +2 f f mu - Vodxdl — 2 f f (b-u)(b-Ve)dxdl, (2.6)
_p2 Bp —P2 Bp —P2 Bp

1281+82+83+84

for all # € I = (=1, 0) and for all non-negative functions ¢ € C3 (R?® x R). Let us treat the term & first.
By O’Neil’s inequality in space, the property of ¢, and then Holder in time, we have

0
2 2
&SfﬂMmWﬁWMWWMW%MM@W
-p

Cp ? 2 2
S (p _ S)2 [pz(”u”l},m(l}p) + ||b||L3,oo(Bp))dS

3 0 2 0 )
< (pcf ;)2 ( f 2||u||z3,w(3p)ds)3 +( f p2||b||23,w(3p)ds)3]. 2.7)

0

Lorentz spaces is characterization as interpolation space between L? and LS as follows:
L*(Q) = (LX(Q), L)y, (2.8)
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Before the term &; is estimated, we note that

it Vloocs, < e Vol foa- Vol | < e VAL, VG TP,

Cllula,p 19l

Cllull2s L2(B
< (By) + (By)

T (p-s)2 p=s
where we use the interpolation (2.8), Sobolev embedding and the property of ¢. Set I(p) = p®D(p).
Using O’Neil inequality and the estimate (2.9), the term &; is estimated as follows: for p < r,

L6 (2.9)

0
&< [ Vol il 3.y s < |

P (p—5)
C 0 i 0 3 2
+p—_s( f . ||u||L2(B)||u||L2(B) ) ]x( f p2||n||z%‘m(3p)ds)
2 1 1
r3l(p)2 re 0 3 3
<C( © i (D4 )(f Ixll?,  ds)’. (2.10)
-2 P~ —p? L27(By)

Similarly, we are obtained the following estimate as like Es:

2
3

0 Hip)!
f f2|u|2u-V¢dxdt’ < o1 +pr 1(p) )(f Il 5) 2.11)
_p2 Bp -

A=

(0~ 9
° ST (O ;
Lz fB 21bPu - Vodxdt SC((p—s)% to S 1(p)? )([ GRS (2.12)

So thus, with the estimates (2.11) and (2.12), the term &, + &, is estimated by

et A o :
82+84sc((;l_(’;))%+pr 1(p)? )[([ e, 5 )z+([ 161 e 5, 5) |- (2.13)

We combine with the estimate (2.7), (2.10) and (2.13) and Young’s inequality to get

r3 0 : - .
I(p) < (o — [(f ||u||L3,oo(Bp)dS) + (Ipz ||M||L3,w(3p)ds) ] + E](p)
0

ooy ool f el 5) " + f 1685+ ([ a9

Since 5 < 5 < p < r and by Lemma 2.2, we obtain

r -1 0 3 % %
() < [ f 1l )"+ ( f 1}, 5) |

_pZ

_3 0 % % : g %
+Cr 3[(]; 11505, )ds) ([ 1, ) +([2”ﬂ”z§’mwﬂ)m) ]

0

O
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2.2. Proof of main theorem

Following the notation in [14], we suppose that z, := (x¢, %)) € Q 1 (0,0) is a singular point. It means
that there exists no neighborhood N of zy such that (u, b) has a Holder continuous representative on
N N [B;(0) x (—1,0]). By Theorem 3.2 [13], there exist ¢y > 0 and a sequence of numbers ¢, € (0, 1)
such that ¢, > 0 as k — oo and

1
sup — lu(x, s)*dx + |b(x, $)*dx > ¢, (2.14)
fo—e<s<ty €k B(xo,€)

for any k € N. Moreover, by Proposition 2.1, we have in particular
uC,19) € L¥(B3a(0)),  b(:,10) € L*(B3/4(0))

Recall that we can decompose 7 = 7 + h, where & 1s harmonic in By, and & = R;R;[(u;u;+b;b )y, ]. For
each Q = w X (a, b), where w € R? and —c0 < a < b < 0, we choose a large ky = ko(Q) > 1 so that for
any k > ky there hold the implications x € w = xy + €.x € B%, andr € (a,b) =ty + gt € (—(%)2, 0),
where the sequence ¢ is as in (4.7). Set Q = w X (a, b), let us set

wi(x, ) = u(xo + €x,t + 1),  b(x,1) = gb(xo + €x, 1y + €1),
and
m(x, 1) = e,fkn(xo + x,ty + e,ft),
T(x, 1) = e,fii(xo + X, 1o+ e,ft), and h(x, 1) = e,fh(xo + gx,to + e,ft),

for any (x,1) € Q and k > ko(Q).

The following proposition is a key in the proof of Theorem 1.1, which says the properties in the
limit.
Proposition 2.2. Let 0 < g < o0 and Q = w X (a,b) with w C R3, —co < a < b < 0. There exists a
subsequence of (u, b*, ), still denoted by (u*, b*, %), and a pair of functions

W™, b, 1) € L®(—00,0; L*(R?)) X L™(~c0,0; L*(R?)) x L¥(—00,0; L¥#(R?))

with div u® = 0 and div b = 0 in R X (=0, 0), such that for s € (1,3),

Uk — u™ in C(a, b; L' (w)), (2.15)
b* — b™ in C(a, b; L (w)), (2.16)
7% — 7% weakly* in L™ (a, b; L%’%(w)), (2.17)
Moreover
™, b=, Vu™, Vb € L*(Q), (2.18)
O, 8,6, Vu™>, Vb=, V™ € L3(Q), (2.19)

and (U™, b™,n*) satisfies a suitable weak solution to the 3D MHD equations in Q. Additionally, u™
and b™ satisfy the lower bound satisfies the lower bound

f (u=P + 16%)dz > €. (2.20)
0
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Proof. For each Q = w X (a, b), where for w c R and ¢ € [a, b] with —c0 < a < b < 0, we have
2
ot (-, Ol 30wy < w5 2o + Ekt)”qu(B%) < |z -1,0):039¢8,) (2.21)

and
15k, Ol 3y < Wbl zo=1,0):2348))s (2.22)

By Calder6n-Zygmund estimate, for a.e. ¢ € (a, b) there holds

~ ~ 2 2 2
176Dl 3.9, < It + €01, 3 < COMIEwygrpsasy + 1By grpsacs,) (2.23)
7

On the other hand, by harmonicity we have

b
3 3 3

f sup |hi(x, 1)|2dt < ekf sup |h(xo + €x, $)|2ds < &llhl|?, (2.24)

a Xew —(3/4)? xew Lf(—l,O);L""(B%)

3 3
S CEk(l|u||L°°((—1,O);L3"7(Bl)) + ||b||L°°((—1,0);L3'q(Bl)) + ||7T||L%(Q]))

Thus each (uy, by) is a suitable solution in Q. Then, from the energy estimate follows that

el oo b2y + 1Prllzoapi2cwy + IVDrlli2g) + [IVurlli20) < C. (2.25)

Using (2.25) and Sobolev embedding, we have |[ull2(p:.6)) < C, which by (4.12), interpolation, and
Holder’s inequality gives for

_ . <
el 220y + 1Bkl 20y + II(ux V)”k”Lg(Q) + [|(bx V)ukHLg(Q) <C.

From the bounds (2.23) and (2.24), we also have

3
<C, s€(0, E). (2.26)

s <
millLso) < C”ﬂk”Lz(a,b;L%’%(w)) =

Using the estimate (2.25)—(2.26), it follows from the local interior regularity of solutions to
non-stationary Stokes equations we find

2
<
19l 5 o, + Il ¢ ) + 195 ) < C. (2.27)

Furthermore, we can easily check the as following:

2 2
<
19l 5 ) + 193l 5 )+ V%0l 5 )+ 1920l 3 + IVl 5 ) < C. (2.28)

Using estimates (2.21)—(2.23), we may get that
up =" u®  in L= (=00, 0; L*(R)).
by —=* b¥ in L¥(—o0,0; L*(R?)).
frp = A% in L¥(=00,0; L2 (R3)).
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Estimates (2.25) and (2.27) yield
e =" 1 in C(=00,0;L3(Q)), (2.29)

by —=* b® in C(=c0,0; L3(Q)). (2.30)

For any s € (1, 3), the uniform bound (2.21) and the interpolation inequality

Q(l_l 12 l_l)
S\s 3 5\4 s
NG, ) = ur(e, O)llzs < Mlure, 1) = - t’)llL% )Iluk(-, 1) — u(, t')lle(

imply that each u; € C([a, b]; L*(w)). Thus by using (2.29) and interpolating we obtain (2.15) for any
s € (1,3). On the other hand, by (2.24), we have

h; — 0 strongly in L*(a, b; L™ (w)),

Now (2.18)—(2.19) follows from (2.29), (2.30), (2.25) and (2.27) via an argument as in the proof of
Proposition 2.1. Finally, note that by (2.41) and a change of variables we have

1
sup f g (x, t)|2dx = sup — i (y, s)|2dy > Cy.
B(0,1)

~1<1<0 to-€<t<rg €k JBO,1)

Similarly, sup_, fB(O b lup(x, t)?dx > Cy. Thus using the convergences (2.15) and (2.16) with s = 2
we obtain the lower bound (2.20). O

Before proving the main statement we introduce some notation

1 1
Cr) == | Wldz Gy =
O Or

1
bPdz,  D(r) == f Inl3dz.

Now, we prove the e- regularity criteria for a suitable weak solution to the 3D MHD equations under
our circumstance.

Proposition 2.3. Let (u, b, ) be a suitable weak solution to 3D MHD equations. Then there exists a
universal constants cy and co (&) (with k = 1,2, - --) with the following property. Assume

Ca(1) + C&(D) + Do(D) < &, (2.31)
then for any natural number k, V*-'u is Holder continuous in Q153 and the following bound is valid:

sup (IV*"'u(@)| + IV*"'b(2)]) < cor(eo)-
Oiss

Proof. From Lemma 2.3 and assumptions (2.31), it follows that
A(1)+A(1)+E(1)+E(l)<C( + )3 (2.32)
ul5 5 uls p5) = € T €)°- .
By interpolation and Sobolev embedding theorem one can show that
Cu(3) < CIAGES3)} +A5)1]
u 2 — u 2 u 2 u 2 .
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Thus, by (2.32) we have

Cu(%) < Cle + ).
Similarly, we have

cb(%) < Cle + §).

For similar reasons it is not so difficult to see that

1\ (uxu)lngg(Q) [Au( )+A( )3By(= )]
Thus,

2.2
IV ol p,, < Cler+

Similarly, we have
2
V- (XD 3 ;(Q )= Cle + €)5.

On the other hand, by Holder’s inequality, it is obvious that

llullyy o0 <C(A 5 )+B( ))<C(eo+60)*

oc\\o =

§
2

Similarly, we have
||b||W10 < Clgy + 60)3

Using O’Neil’s inequality, we have
f In(x, )lFdx < Cllas]] 5. = Cllﬂllm
B(}) L

Hence,
2
3
I Dll, 33 < Ceg

Using the local interior regularity theory for Stokes equation, we have

3
2

2
ludl 95, HIIV7ull o3+ 11Vl o
@) L33y L#30))

< UV - Goxll g+ IV 0X D)3 )

+|ul| EM +IVull o3 +||n| o
0 L8210 L¥ Z(Q )
2

=

Note that a suitable weak solution (u, b, ) implies that
b e W2 (0) NWLQ), 7e W0 NLI(Qy).
8°2 3 8°2
(see e.g. [18, 19]). Using this together with the estimates (2.35)— (2.39), we obtain that

197135 g, < el + ) + @+ 1

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)
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Thus, by the Poincaré inequality, we have

I = [xlll 3, < el + €)% + (e + €))]-

Therefore, we conclude
1 2
Il 5, < cllCer + )} + (&0 + €)D)] (2.40)
7
This along with (2.33), (2.34) and (2.40) gives

1 1 1 I 2
Cu(i) + Cb(i) + D(E) < Cl(60 + €)% + (€0 + €))] (2.41)

Choosing ¢ sufficiently small, the estimate (2.41) satisfies the conditions of Theorem 3.3 in [13] and
so we complete the proof. m|

Proof of Theorem 1.1. The proof is similar to the argument in [13, Theorem 1.1] We now fix such
numbers M and N and let z; = (x1, ;) € (R*\Boy(0)) X (=%, 0]. Due to C% (1) + CL (1) + Duo(1) < &,
we obtain, by Proposition 2.3

max |Vu®(z)] < C(k), max |V*6¥()| < Ck), k=1,2,--

€01 (21) €01 (21
2 2

On the other hand, on the set (R*\By(0)) x (=%, 0], we have that there exists M > 0 such that
|O,W — AW| < M(W| +|VW]), and |W|<C,

for the (15-component) vector-valued function W = (b=, w™, b% 1, b% 5, b™ 3) where w™ = Vxu™ given
in [13, pp.2922-2923]. Then

—_— M
W = 0on R\ Bay(0) X (=, 01
Using the theory of unique continuation for parabolic equation (see [6, Theorem 5]), we see W(-,1) = 0
in R? for a.e. t € (—%,0). Thus u®(-,t) = 0 is globally harmonic, and using Liouville theorem, it

follows that u*(-,¢) = O for a.e. ¢ € (—%, 0). This yields to a contradiction to the lower bound (2.20)
and hence completes the proof of Theorem 1.1. 0

3. Conclusions

In this paper, we investigete some local regularity condition for a suitable weak solution to 3D
MHD equations in Lorentz space. However, it remains an open question to obtain the local regularity
condition for only velocity vector u.
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