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Abstract: This paper studies the local optimality condition for the widely applied concave piecewise
linear network flow problem (CPLNFP). Traditionally, for CPLNFP the complexity of checking the
local optimality condition is exponentially related to the number of active arcs (i.e., arcs in which the
flow is at the breakpoints). When the scale of CPLNFP is large, even local optimality is unverifiable
and the corresponding local algorithms are inefficient. To overcome this shortcoming, a new local
optimality condition is given. This new condition is based on the concavity and piecewise linearity of
the cost function and makes full use of the network structure. It is proven that the complexity of the
new condition is polynomial. Therefore, using the new condition to verify the local optimality is far
superior to using the traditional condition, especially when there are many active arcs.
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1. Introduction

The network flow problem (NFP) is a fundamental and important task in network optimization. NFP
has been widely applied in transportation, communication, construction project [1], manufacturing [2],
network design [3], water resource management [4], and other fields. NFP is to minimize a cost
function under linear constraints. Thus, its complexity strongly depends on the category of the cost
function. Using a linear function as the cost is the simplest case. But in practice, the cost function
is often concave due to the marginal utility. As described in [5], the concave cost is or can be well
approximated by a concave piecewise linear function. Moreover, NFP with general nonlinear cost
functions can be transformed into NFP with concave cost functions on an expanded network [6], so it
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is of great significance to investigate the concave piecewise linear network flow problem (CPLNFP).
Let G = (N, A) be a directed network with n nodes and m arcs, where N and A are the sets of

nodes and arcs, respectively. Each arc (i, j) ∈ A is associated with a flow xi j, a capacity ui j, and a cost
function fi j(xi j). For the i-th node i ∈ N, the supply or the demand flow is denoted by bi. If bi > 0, then
node i is a supply node; if bi < 0, then node i is a demand node; otherwise, node i is a transshipment
node. Due to the balance of network flow, the total supply flow must be equal to the total demand flow,
which means

∑
i∈N bi = 0. With those notations, a CPLNFP defined on network G can be formulated

as follows:
min

∑
(i, j)∈A

fi j(xi j)

s.t.
∑

{ j|(i, j)∈A}

xi j −
∑

{ j|( j,i)∈A}

x ji = bi,∀i ∈ N,

0 ≤ xi j ≤ ui j,∀(i, j) ∈ A,

(1.1)

where fi j(xi j) is a continuous concave piecewise linear function that can be expressed as

fi j(xi j) =



c1
i jxi j + 0, xi j ∈ [0, λ1

i j],

c2
i jxi j + d2

i j, xi j ∈ [λ1
i j, λ

2
i j],

· · · · · ·

cs
i jxi j + ds

i j, xi j ∈ [λs−1
i j , λ

s
i j],

· · · · · ·

csi j

i j xi j + dsi j

i j , xi j ∈ [λsi j−1
i j , ui j].

(1.2)

In (1.2), fi j(xi j) has si j segments, and the interval [0, ui j] is accordingly divided into si j subintervals
with breakpoints λ1

i j, λ
2
i j, · · · , λ

si j−1
i j . To make notations consistent, we set d1

i j = 0, λ0
i j = 0 and λsi j

i j = ui j.
Then, in each subinterval [λs−1

i j , λ
s
i j], the objective function fi j(xi j) becomes a linear function with slope

cs
i j and intercept ds

i j. Due to the continuity and concavity of fi j(xi j), we have cs
i jλ

s
i j + ds

i j = cs+1
i j λ

s
i j +

ds+1
i j , s = 1, 2, · · · , si j − 1, and c1

i j > c2
i j > · · · > csi j

i j .
CPLNFP has been widely applied in many areas, including facilities location [7] and inventory

management [8]. Since CPLNFP is nonconvex, the global optimality cannot be guaranteed, and
researchers focus on its local optimality, which also serves as the basis of many algorithms [9, 10]. The
classical local algorithms include the dynamic slope-scaling procedure (DSSP) [11] and the dynamic
cost updating procedure (DCUP) [12]. DSSP uses a linear function to approximate the concave
cost function based on the iterative solution. DCUP relaxes the CPLNFP as a bilinear programming
problem that can be transformed into a series of linear NFPs.

As a concave piecewise linear optimization over a polyhedron, the locally optimal solution of the
CPLNFP can be achieved at some vertices of the feasible domain. Algebraically, the vertex refers to the
basic feasible solution of the constraint system in (1.1). In many local algorithms, such as the DCUP
and DSSP, the vertex is obtained by solving a linear NFP and then its local optimality is checked.

By definition, the feasible domain of a piecewise linear function can be divided into many regions
in which the function stays linear. Each feasible point, including the vertex, belongs to one or more
regions. Moreover, for each point, we can certainly find a neighbourhood whose intersection with the
feasible domain is contained in the union of regions that this point belongs to. Figure 1 illustrates
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these direct but important properties with a two-dimensional concave piecewise linear function. For
example, it can be seen that the feasible domain can be divided into four regions and v1 belongs to two
regions: Ω1 and Ω2.

(a) The piecewise linear function g(y1, y2).

(b) The feasible domain.

Figure 1. A piecewise linear function g(y1, y2) defined on a two-dimensional polyhedron that
can be divided into four regions.

From the above discussing, for concave piecewise linear minimization over a polyhedron, a vertex
that is locally optimal is equivalent means that it is optimal in all the regions that it belongs to. This
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local optimality condition is geometrically intuitive: If we can find a region in which this vertex is not
optimal, there must be a feasible descent direction in this region, so this vertex is not locally optimal.
For example, in Figure 1, v4 is a locally optimal point if and only if v4 is an optimal point in Ω3 and Ω4.
For more detailed discussions about local optimality for piecewise linear programming, see [13], [14]
and [15]. Following the idea of checking optimality for all regions, we come to the traditional local
optimality condition for the CPLNFP.

A vertex v in the feasible domain is locally optimal for the CPLNFP if and only if v is optimal in all
the regions that v belongs to.

Consider a vertex v in the feasible domain of the CPLNFP. Based on the characteristics of the cost
function, the regions that v belongs to can be obtained by restricting the flow associated with arc (i, j)
to a subinterval of [0, ui j] that vi j belongs to. Let m1 be the number of active arcs (i.e., arcs in which
the flow is at the breakpoints), and then clearly the number of regions that v belongs to is 2m1 since the
flow in active arcs belongs to two subintervals at the same time. In each region, the concave piecewise
linear cost function is a linear function, from which a linear NFP is defined with the constraints of
the CPLNFP; whether v is optimal in this region is equivalent to whether v is optimal for this linear
NFP. Therefore, to verify the local optimality, one needs to check the optimality of v for 2m1 linear
NFPs, which is obviously inefficient when the problem dimension, the number of segments of the cost
function, and thus the number of active arcs increase. In [12], the number of active arcs (m1) is assumed
to be zero and based on this assumption, DCUP was designed to obtain a local optimum. However, this
assumption exclude many real situations. The interested readers could find a numerical experiment in
Appendix A, showing the estimated m1 for different CPLNFPs. In Figure 2, we plot the results: m1 is
not always zero and becomes large and unacceptable as the problem dimension increases, from which
it follows that using the traditional local optimality condition is inefficient.
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Figure 2. The number of linear NFPs that need to be verified is 2m1 , and this figure plots
the increasing trend of m1 with respect to the problem dimension. For example, when m =

8000, si j = 10,∀(i, j) ∈ A, m1 is approximately equal to 42 and 2m1 is more than 4 × 1012,
which is certainly unacceptable.

In this paper, we provide a new local optimality condition, which is based on the network structure
and the concavity of fi j(xi j),∀(i, j) ∈ A. The complexity of implementing the proposed condition
is polynomial with the network parameters. After briefly introducing the background, the proposed

AIMS Mathematics Volume 6, Issue 3, 2094–2113.



2098

condition, the proof, and the strategy of implementation will be given in section 3.

2. Preliminaries

2.1. Basic concepts

To better represent the parameters associated with the arcs in A, we first define a tuple collection Θ.
Each tuple in Θ has m elements, having one-to-one correspondence with the arcs in A. For any tuple
γ ∈ Θ, the element corresponding to arc (i, j) ∈ A is a real number and denoted as γi j. In other words,
the tuple γ can be expressed as

γ = (γi j,∀(i, j) ∈ A).

Based on Θ, we can easily represent the parameters associated with the arcs in A. For example, we
use x ∈ Θ to denote flows in all the arcs in A, and express the feasible domain of the CPLNFP as below,

Ω =

x ∈ Θ

∣∣∣∣∣∣∣∣∣
∑

{ j|(i, j)∈A}

xi j −
∑

{ j|( j,i)∈A}

x ji = bi,∀i ∈ N

0 ≤ xi j ≤ ui j,∀(i, j) ∈ A

 .
By this way, the CPLNFP can be succinctly written as

min f (x) =
∑

(i, j)∈A

fi j(xi j)

s.t. x ∈ Ω.

(2.1)

As discussed, the feasible domain can be divided into a number of regions obtained by restricting
xi j,∀(i, j) ∈ A to one of the subintervals in [0, ui j]. Evidently, the cost function stays linear in each
region. Before introducing the new local optimality condition, we give the following definitions to
describe the related regions and linear NFPs for a feasible point x̂ ∈ Ω.

Definition 1. For any x̂ ∈ Ω and (i, j) ∈ A, we define Ψi j(x̂i j) as follows:

Ψi j(x̂i j) = {1}, if x̂i j = 0,
Ψi j(x̂i j) = {s}, if λs−1

i j < x̂i j < λ
s
i j,

Ψi j(x̂i j) = {s, s + 1}, if x̂i j = λs
i j, s , si j,

Ψi j(x̂i j) = {si j}, if x̂i j = ui j.

Ψi j(x̂i j) denotes the index(es) of the subinterval(s) that x̂i j belongs to. If x̂i j is at the breakpoints,
then x̂i j belongs to two subintervals, and Ψi j(x̂i j) has two elements. For example, if x̂i j = λ2

i j, then x̂i j

belongs to both the second and the third subinterval, and thus Ψi j(x̂i j) = {2, 3}.

Definition 2. For any x̂ ∈ Ω, the arc set A can be partitioned into two subsets as follows:(i, j) ∈ A1, if (i, j) ∈ A, x̂i j ∈ Bi j,

(i, j) ∈ A2, if (i, j) ∈ A, x̂i j < Bi j,
(2.2)

where Bi j = {λ1
i j, λ

2
i j, · · · , λ

si j−1
i j } consists of all breakpoints in [0, ui j]. For any (i, j) ∈ A1, Ψi j(x̂i j) has

two elements. We call arcs in A1 active arcs and use m1 to represent the number of active arcs.
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As discussed, we can randomly select an element from Ψi j(x̂i j),∀(i, j) ∈ A and restrict the flow xi j to
the corresponding subinterval to obtain a region that x̂ belongs to. Considering all possible selections,
a set collection Φ(x̂) can be used to indirectly index all the regions that x̂ belongs to as follows.

Φ(x̂) = {z ∈ Θ|zi j ∈ Ψi j(x̂i j),∀(i, j) ∈ A}.

In above definition, “z ∈ Θ” is just used to show that any tuple ϕ ∈ Φ(x̂) has m elements that have
a one-to-one correspondence with the arcs in A. In fact, ϕi j is an integer in [1, si j] since ϕi j ∈ Ψi j(x̂i j).
The region associated with ϕ is determined by selecting the ϕi j-th subinterval for any arc (i, j) ∈ A and
can be denoted as

Ωϕ = {x ∈ Ω|λ
ϕi j−1
i j ≤ xi j ≤ λ

ϕi j

i j ,∀(i, j) ∈ A}.

Clearly, the number of regions that x̂ belongs to is 2m1 because Ψi j(x̂i j) has two elements for any
(i, j) ∈ A1. Since the feasible domain Ω is constrained by equality constraints, Ωϕ might have only one
point x̂. In this case, when checking the local optimality, we do not need to check the optimality of x̂
in this region because x̂ is the only point in this region and is naturally optimal. However, in practice,
we do not know in advance which region has only one point, so we have to treat all the regions equally
and check the optimality of x̂ in this region. When Ωϕ has only one point, we can easily know that x̂ is
optimal in this region, and the process of checking the optimality of x̂ is equal to verifying that Ωϕ has
a unique point. Therefore, we only need to check the optimality of x̂ in all the regions that x̂ belongs
to, and consequently, the region with only one point becomes irrelevant.

In Ωϕ, the cost function is linear and can be expressed as

f ϕ(x) =
∑

(i, j)∈A

(c
ϕi j

i j xi j + d
ϕi j

i j ).

Due to the concavity of f (x), we can derive the following property that will be used in the proof of
Theorem 1.

Property 1. For any x̂ ∈ Ω, we have f (x̂) ≤ f ϕ(x̂).

Proof. This property can be obtained directly: f (x̂) can be expressed as f (x̂) =
∑

(i, j)∈A min{c1
i j x̂i j +

d1
i j, c

2
i j x̂i j + d2

i j, · · · , c
si j

i j x̂i j + dsi j

i j }. �

Definition 3. The linear NFP associated with ϕ is defined as

P(ϕ) : min f ϕ(x)
s.t. x ∈ Ω.

(2.3)

Similarly, the linear NFPs associated with x̂ ∈ Ω are defined as P(ϕ),∀ϕ ∈ Φ(x̂). The number of linear
NFPs associated with x̂ is 2m1 .

Now we use a CPLNFP instance to illustrate the above concepts, including Ψi j(x̂i j), Φ(x̂), ϕ and
P(ϕ).

Example 1. Consider a CPLNFP defined on a network with 6 nodes and 8 arcs, as shown in Figure 3.
Following the formulation (1.1), this CPLNFP is formulated as

AIMS Mathematics Volume 6, Issue 3, 2094–2113.



2100

Figure 3. A practical CPLNFP.

min f12(x12) + f13(x13) + f23(x23) + f24(x24) + f34(x34)
+ f35(x35) + f46(x46) + f56(x56)

s.t. x12 + x13 = 7; x24 + x23 − x12 = 0
x34 + x35 − x13 − x23 = 0; x46 − x23 − x34 = 0
x56 − x35 = 0;−x46 − x56 = −7
0 ≤ x12 ≤ 6; 0 ≤ x13 ≤ 4; 0 ≤ x23 ≤ 3
0 ≤ x24 ≤ 4; 0 ≤ x34 ≤ 5; 0 ≤ x35 ≤ 8
0 ≤ x46 ≤ 2; 0 ≤ x56 ≤ 7

where

f12(x12) =

 5x12, x12 ∈ [0, 3]
3x12 + 6, x12 ∈ [3, 6]

; f13(x13) =

 6x13, x13 ∈ [0, 2]
4x13 + 4, x13 ∈ [2, 4]

;

f23(x23) =

 3x23, x23 ∈ [0, 1]
2x23 + 1, x23 ∈ [1, 3]

; f24(x24) =

 6x24, x24 ∈ [0, 2]
3x24 + 6, x24 ∈ [2, 4]

;

f34(x34) =

 4x34, x34 ∈ [0, 3]
3x34 + 3, x34 ∈ [3, 5]

; f35(x35) =

 4x35, x35 ∈ [0, 5]
2x35 + 10, x35 ∈ [5, 8]

;

f46(x46) =

 6x46, x46 ∈ [0, 1]
3x46 + 3, x46 ∈ [1, 2]

; f56(x56) =

 6x56, x56 ∈ [0, 5]
4x56 + 10, x56 ∈ [5, 7]

.

The corresponding tuple collection Θ can be expressed as

Θ = {(γ12, γ13, γ23, γ24, γ34, γ35, γ46, γ56)},

and the feasible domain can be expressed as Ω = {x ∈ Θ|x12 + x13 = 6, x24 + x23 − x12 = 0, x34 + x35 −

x13 − x23 = 0, x46 − x23 − x34 = 0, x56 − x35 = 0,−x46 + x56 = −6, 0 ≤ x12 ≤ 6, 0 ≤ x13 ≤ 4, 0 ≤ x23 ≤

3, 0 ≤ x24 ≤ 4, 0 ≤ x34 ≤ 5, 0 ≤ x35 ≤ 8, 0 ≤ x46 ≤ 2, 0 ≤ x56 ≤ 7}.
For a feasible solution x̂ = (3, 4, 1, 2, 0, 5, 2, 5), we know Ψ12(x̂12) = {1, 2}, Ψ13(x̂13) = {2},

Ψ23(x̂23) = {1, 2}, Ψ24(x̂24) = {1, 2}, Ψ34(x̂34) = {1}, Ψ35(x̂35) = {1, 2}, Ψ46(x̂46) = {2}, Ψ56(x̂56) = {1, 2}.
Obviously, there are 5 active arcs: (1, 2), (2, 3), (2, 4), (3, 5) and (5, 6). By definition, we have
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Φ(x̂) = {(z12, z13, z23, z24, z34, z35, z46, z56)|z12 ∈ {1, 2}, z13 ∈ {2}, z23 ∈ {1, 2}, z24 ∈ {1, 2}, z34 ∈ {1}, z35 ∈

{1, 2}, z46 ∈ {2}, z56 ∈ {1, 2}} , which consists of 25 = 32 tuples. For ϕ = (1, 2, 1, 2, 1, 2, 2, 2) ∈ Φ(x̂), the
linear NFP associated with ϕ can be expressed as

P(ϕ) : min 5x12 + 4x13 + 4 + 3x23 + 3x24 + 6 + 4x34 + 2x35 + 10 + 3x46 + 3 + 4x56 + 10
s.t. x ∈ Ω

Let V represent the set of vertices of Ω, or in other words, the set of the basic feasible solutions
of the constraint system in (1.1). Based on Definition 3, we can derive the following local optimality
condition.

Theorem 1. A vertex v ∈ V is locally optimal for the CPLNFP if and only if v is optimal for all the
linear NFPs associated with it.

Proof. ⇒ If there is a P(ϕ), ϕ ∈ Φ(v) for which v is not optimal, then there must be a feasible descent
direction d ∈ Θ satisfying v + εd ∈ Ω and f ϕ(v + εd) < f ϕ(v) for a sufficiently small positive number
ε. Since f ϕ(v) = f (v), we will have f (v + εd) ≤ f ϕ(v + εd) < f (v), which contradicts that v is locally
optimal for the CPLNFP.
⇐ For a sufficiently small δ ∈ Rm, if v + δ ∈ Ω, then v + δ must belong to the union of regions

that v belongs to. Therefore, there must be a region Ωϕ′ , ϕ
′ ∈ Φ(v) containing v + δ, from which it

follows that f (v + δ) = f ϕ
′

(v + δ). Since v is optimal for all the linear NFPs associated with it, we have
f (v) = f ϕ

′

(v) ≤ f ϕ
′

(v + δ) = f (v + δ), which means v is locally optimal for the CPLNFP. �

In the worst case, checking the local optimality of v needs to consider the optimality of v for 2m1

linear NFPs, when one relies on Theorem 1. It is noted that the feasible domain of P(ϕ) is the same as
that of the CPLNFP, not Ωϕ. Thus, one does not need to worry about the change of the feasible domain,
but only the change of the objective function when checking the optimality of v for these linear NFPs.

2.2. Network simplex algorithm

The network simplex algorithm (NSA) (for detail see [16], [17] and[18]) is a classical and efficient
algorithm to solve the linear NFP. When solving P(ϕ) by the NSA, the vertex v ∈ V as the basic feasible
solution obtained in each iteration is associated with the following parameters:

• Basis: Mathematically, the basis is a triple (T, L,U), which is a partitioning of the arc set A as
follows: 

The arcs in T constitute a spanning tree of network G;
(i, j) ∈ L, if (i, j) < T, vi j = 0;
(i, j) ∈ U, if (i, j) < T, vi j = ui j.

(2.4)

The iteration of the NSA is essentially the iteration of the basis. Therefore, the basis is the core
of iteration and others parameters are related to the vertex through the basis.
For ease of expression, we set T = L ∪ U. An arc in T is called a basis arc and an arc in T is
called a nonbasis arc. By definition, we have A1 ∩ T = φ. Similar to the partitioning of A, T can
also be partitioned into T1 and T2 as follows:(i, j) ∈ T1, if (i, j) ∈ T, (i, j) ∈ A1;

(i, j) ∈ T2, if (i, j) ∈ T, (i, j) < A1.
(2.5)

AIMS Mathematics Volume 6, Issue 3, 2094–2113.
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By definition, we have T1 = A1.
• Price: The price pi for node i is defined as

pi = pr −
∑

(h,t)∈Path(i)+
T

c
ϕht
ht +

∑
(h,t)∈Path(i)−T

c
ϕht
ht , (2.6)

where pr is the price for the root node of the spanning tree, and Path(i)+
T and Path(i)−T are the arc

sets consisting of the forward arcs and backward arcs in the path of the spanning tree from the
root node to node i, respectively. Generally, the root node of the spanning tree and its price pr are
specified in advance and will not change during iteration. In this paper, pr is set as zero.
• Reduced cost: The reduced cost ri j for arc (i, j) ∈ A is defined as

ri j = c
ϕi j

i j + p j − pi. (2.7)

Note that, for any (i, j) ∈ T , the reduced cost ri j is always zero by this definition.
• Optimality condition: A vertex v ∈ V is optimal for P(ϕ) if the reduced costs associated with v

satisfy the following condition: ri j ≥ 0,∀(i, j) ∈ L,

ri j ≤ 0,∀(i, j) ∈ U.
(2.8)

3. The polynomial local optimality condition

In this section, we first derive the detailed local optimality condition by using the NSA to
determine the optimality of the vertex for linear NFPs and then prove that the derived condition can be
implemented with polynomial complexity in network parameters.

Let vϕ be the optimal vertex to P(ϕ). For vertex v, we first randomly select a ϕ ∈ Φ(v) and then
verify the optimality of v for P(ϕ). If v is not optimal for P(ϕ), we can immediately determine that v
is not locally optimal for the CPLNFP. Therefore, we only need to focus on the case that v = vϕ and
propose a local optimality condition for vϕ.

3.1. Local optimality condition for vϕ

Traditionally, we need to verify the optimality of vϕ for the remaining 2m1−1 linear NFPs associated
with it to determine the local optimality. The optimality of vϕ for P(ϕ′) can be verified through solving
P(ϕ′) by the NSA. In this paper, it is assumed that vϕ is nondegenerate and is thus associated with only
one spanning tree. Here, the statement that vϕ is nondegenerate means that the basic feasible solution
corresponding to vϕ is nondegenerate. We say that vϕ is nondegenerate from a geometrically intuitive
perspective. Similarly to the discussion on simplex algorithm, dealing with degeneracy is skilful and
requires complicated representations. In this paper, we focus on nondegenerate case and leave the
discussion on degeneracy for further study. When solving the remaining linear NFPs associated with
vϕ, we can use vϕ as the initial solution, and thus the parameters associated with vϕ can be utilized. For
example, the basis associated with vϕ will not change when solving the linear NFPs associated with vϕ.

For the sake of distinction, in the following discussion, we use rϕi j and rϕ
′

i j to represent the reduced
cost associated with vϕ in solving P(ϕ) and P(ϕ′), respectively. Based on the optimality condition (2.8)
for the linear NFP, the local optimality condition for vϕ can be expressed as follows.
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Theorem 2. The vertex vϕ is locally optimal for CPLNFP if and only if rϕ
′

i j ,∀(i, j) ∈ T satisfy condition
(2.8) for any ϕ′ ∈ Φ(vϕ).

Traditionally, for each of the linear NFPs associated with vϕ, we need to calculate the reduced costs
to determine the optimality of vϕ. In other words, we have to calculate the reduced cost for each
nonbasis arc 2m1 times.

In this paper, we consider the optimality of vϕ for the linear NFPs associated with it from the point
of view of each nonbasis arc rather than each linear NFP. According to Theorem 2, for each (i, j) ∈ T ,
we actually only need to check whether the extremum of the reduced cost when solving the linear NFPs
associated with vϕ satisfies condition (2.8). Here, the extremum refers to the minimum for (i, j) ∈ L
and the maximum for (i, j) ∈ U. If the extremum of the reduced cost for arc (i, j) satisfies (2.8), we
can conclude that the reduced cost for arc (i, j) always satisfies (2.8) when solving all the linear NFPs
associated with vϕ. Based on this idea, we actually only need to calculate the extremum of the reduced
cost for each nonbasis arc, which means we only need to calculate the reduced cost for each nonbasis
arc once. To better represent the extremum, we define ψ(i j) as follows.

ψ(i j) =


arg min

ϕ′
{rϕ

′

i j |ϕ
′ ∈ Φ(vϕ)}, if (i, j) ∈ L;

arg max
ϕ′
{rϕ

′

i j |ϕ
′ ∈ Φ(vϕ)}, if (i, j) ∈ U.

(3.1)

With this definition, rψ(i j)
i j represents the extremum of the reduced cost for arc (i, j) when solving

the linear NFPs associated with vϕ and P(ψ(i j)) is the linear NFP that makes the reduced cost reach
the extremum. Notice that although ψ(i j) is defined on an exponential-sized set, but we do not need
actually calculate it in that way. In the next subsection, we will provide a strategy to obtain ψ(i j) and
rψ(i j)

i j in complexity O(n).

Theorem 3. The local optimality condition shown in Theorem 2 can be checked with polynomial
complexity.

Proof. Since rψ(i j)
i j can be obtained with complexity O(n) for any nonbasis arc and the number of

nonbasis arcs is m − n, the total complexity for checking the condition shown in Theorem 2 is
O(n(m − n)), which is polynomial in the network parameters. �

3.2. A simple strategy to obtain the extremum

One key procedure of checking local optimality is to obtain ψ(i j) and rψ(i j)
i j for any nonbasis arc (i, j)

with complexity O(n), which is represented as the following theorem.

Theorem 4. For vertex vϕ, ψ(i j) and rψ(i j)
i j can be obtained with complexity O(n) for any (i, j) ∈ T.

Proof. This is a constructive proof, in which a strategy to obtain ψ(i j) for any nonbasis arc (i, j) with
complexity O(n) is given. This strategy is based on the difference in the reduced cost between solving
P(ϕ) and the remaining linear NFPs associated with vϕ.

For any of the remaining linear NFPs: P(ϕ′) (ϕ′ ∈ Φ(vϕ),ϕ′ , ϕ), we need to calculate rϕ
′

i j to check
the optimality of vϕ. Since rϕi j has been obtained when solving P(ϕ), we only need to consider the
difference between rϕ

′

i j and rϕi j. Moreover, for any nobasis arc (i, j), vϕi j equals 0 or ui j, which means that
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vϕi j belongs to only one subinterval (i.e., the first subinterval or the last subinterval), and thus we have

ϕ′i j = ϕi j and c
ϕ′i j

i j = c
ϕi j

i j . Therefore, based on the definition of the reduced cost, the difference between
rϕ
′

i j and rϕi j can be expressed as

∆
ϕ→ϕ′

ri j = ∆
ϕ→ϕ′

p j − ∆
ϕ→ϕ′

pi,∀(i, j) ∈ T , (3.2)

where ∆
ϕ→ϕ′

pi and ∆
ϕ→ϕ′

p j are the increments of pi and p j when the linear NFP changes from P(ϕ) to

P(ϕ′), respectively.
By definition, the price is related to the arcs in the spanning tree. So we only need to consider

the effect of basis arcs on ∆
ϕ→ϕ′

pi and ∆
ϕ→ϕ′

p j. For ease of expression, we use ∆
ϕht→ϕ

′
ht

ri j, ∆
ϕht→ϕ

′
ht

pi and

∆
ϕht→ϕ

′
ht

p j to represent the effects of arc (h, t) ∈ T on ∆
ϕ→ϕ′

ri j, ∆
ϕ→ϕ′

pi and ∆
ϕ→ϕ′

p j, respectively. Then, we

have

∆
ϕ→ϕ′

ri j =
∑

(h,t)∈T

∆
ϕht→ϕ

′
ht

ri j =
∑

(h,t)∈T

( ∆
ϕht→ϕ

′
ht

p j − ∆
ϕht→ϕ

′
ht

pi) (3.3)

Moreover, for any basis arc (h, t), if (h, t) < T1, we have ϕht = ϕ′ht according to the definition of
T1, which means arc (h, t) has no effect on ∆

ϕ→ϕ′
pi and ∆

ϕ→ϕ′
p j. Therefore, when calculating ∆

ϕ→ϕ′
ri j, we

need to focus on the arcs in T1.

Definition 4. For any (i, j) ∈ T, the unique cycle formed by arc (i, j) and the spanning tree is called
the derived cycle and is denoted as CT

i j.

By this definition, CT
i j can be expressed as

CT
i j = (i, j) ∪ Path(i)T ∪ Path( j)T .

where Path(i)T and Path( j)T are the arc sets consisting of the arcs in the path of the spanning tree from
the root node to node i and j, respectively.

Lemma 1. For any (h, t) ∈ T1 and ∀(i, j) ∈ T, if (h, t) < CT
i j, then arc (h, t) has no effect on ∆

ϕ→ϕ′
ri j.

Proof. If (h, t) < CT
i j, then there are three cases for any (h, t) ∈ T1.

• Case 1: (h, t) ∈ Path(i)+
T , (h, t) ∈ Path( j)+

T ;
• Case 2: (h, t) ∈ Path(i)−T , (h, t) ∈ Path( j)−T ;
• Case 3: (h, t) < Path(i)+

T ∪ Path(i)−T , (h, t) < Path( j)+
T ∪ Path( j)−T .

Clearly, without considering other arcs, we have ∆
ϕht→ϕ

′
ht

pi = ∆
ϕht→ϕ

′
ht

p j for all three cases based on the

definition of price in (2.6). Therefore, we have ∆
ϕht→ϕ

′
ht

ri j = 0 which means that arc (h, t) has no effect

on ∆
ϕ→ϕ′

ri j. �
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Therefore, only (h, t) ∈ T1 ∩CT
i j contributes to ∆

ϕ→ϕ′
ri j. Let GT

i j = T1 ∩CT
i j; we have

∆
ϕ→ϕ′

ri j =
∑

(h,t)∈GT
i j

∆
ϕht→ϕ

′
ht

ri j =
∑

(h,t)∈GT
i j

( ∆
ϕht→ϕ

′
ht

p j − ∆
ϕht→ϕ

′
ht

pi) (3.4)

According to the location and direction, the arcs in GT
i j can be divided into the following four subsets:

• GT
1·i j = {(h, t) ∈ GT

i j | (h, t) belongs to the path of the spanning tree from the root node to node j,
and it has the reverse direction as (i, j) in the cycle CT

i j}.
• GT

2·i j = {(h, t) ∈ GT
i j | (h, t) belongs to the path of the spanning tree from the root node to node j,

and it has the same direction as (i, j) in the cycle CT
i j}.

• GT
3·i j = {(h, t) ∈ GT

i j | (h, t) belongs to the path of the spanning tree from the root node to node i,
and it has the same direction as (i, j) in the cycle CT

i j}.
• GT

4·i j = {(h, t) ∈ GT
i j | (h, t) belongs to the path of the spanning tree from the root node to node i,

and it has the reverse direction as (i, j) in the cycle CT
i j}.

Now, for any arc (h, t) in these four subsets, we use an example to illustrate the effect of arc (h, t) on
∆

ϕ→ϕ′
ri j.

Example 2. Examples of these four subsets are shown in Figure 4. In the derived cycle CT
i j, it is

assumed that (e, f ), (g, f ), (b, c), (d, c) ∈ T1; then, we have (e, f ) ∈ GT
1·i j, (g, f ) ∈ GT

2·i j, (b, c) ∈ GT
3·i j,

and (d, c) ∈ GT
4·i j.

For any (h, t) ∈ GT
i j, if v

ϕht
ht = λk

ht, then ϕ′ht ∈ {k, k + 1}. Regardless of the influence of other arcs,
∆

ϕht→ϕ
′
ht

ri j can be calculated as follows.

(1) Case 1: As shown in Figure 4(a), (h, t) = (e, f ) ∈ GT
1·i j. Based on (2.6), we have ∆

ϕht→ϕ
′
ht

pi = 0

and ∆
ϕht→ϕ

′
ht

p j = c
ϕi j

ht − c
ϕ′i j

ht . Therefore, according to (3.2), ∆
ϕht→ϕ

′
ht

ri j can be calculated by ∆
ϕht→ϕ

′
ht

ri j =

c
ϕi j

ht − c
ϕ′i j

ht .
(2) Case 2: As shown in Figure 4(b), (h, t) = (g, f ) ∈ GT

2·i j. Based on (2.6), we have ∆
ϕht→ϕ

′
ht

pi = 0

and ∆
ϕht→ϕ

′
ht

p j = c
ϕ′i j

ht − c
ϕi j

ht . Therefore, according to (3.2), ∆
ϕht→ϕ

′
ht

ri j can be calculated by ∆
ϕht→ϕ

′
ht

ri j =

c
ϕ′i j

ht − c
ϕi j

ht .
(3) Case 3: As shown in Figure 4(c), (h, t) = (b, c) ∈ GT

3·i j. Based on (2.6), we have ∆
ϕht→ϕ

′
ht

pi =

c
ϕi j

ht −c
ϕ′i j

ht and ∆
ϕht→ϕ

′
ht

p j = 0. Therefore, according to (3.2), ∆
ϕht→ϕ

′
ht

ri j can be calculated by ∆
ϕht→ϕ

′
ht

ri j =

c
ϕ′i j

ht − c
ϕi j

ht .
(4) Case 4: As shown in Figure 4(d), (h, t) = (d, c) ∈ GT

4·i j. Based on (2.6), we have ∆
ϕht→ϕ

′
ht

pi =

c
ϕ′i j

ht −c
ϕi j

ht and ∆
ϕht→ϕ

′
ht

p j = 0. Therefore, according to (3.2), ∆
ϕht→ϕ

′
ht

ri j can be calculated by ∆
ϕht→ϕ

′
ht

ri j =

c
ϕi j

ht − c
ϕ′i j

ht .
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(a) Case 1: (h, t) = (e, f ) ∈ GT
1·i j (b) Case 2: (h, t) = (g, f ) ∈ GT

2·i j

(c) Case 3: (h, t) = (b, c) ∈ GT
3·i j (d) Case 4: (h, t) = (d, c) ∈ GT

4·i j

Figure 4. Four cases of arc (h, t) ∈ GT
i j.
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This example illustrates the effect of a single arc on ∆
ϕ→ϕ′

ri j. Considering the effect of all the arcs in

GT
i j, we can calculate ∆

ϕ→ϕ′
ri j by

∆
ϕ→ϕ′

ri j =
∑

(h,t)∈GT
1·i j

(cϕht
ht − c

ϕ′ht
ht ) +

∑
(h,t)∈GT

2·i j

(cϕ
′
ht

ht − c
ϕht
ht )

+
∑

(h,t)∈GT
3·i j

(c
ϕ′i j

ht − c
ϕht
ht ) +

∑
(h,t)∈GT

4·i j

(cϕht
ht − c

ϕ′ht
ht ).

(3.5)

Based on the concavity of fi j(xi j), we have ck
i j > ck+1

i j . For any arc (i, j) ∈ L, since ψ(i j) =

arg minϕ′{r
ϕ′

i j |∀ϕ
′ ∈ Φ(vϕ)}, the value of ψ(i j)ht for any (h, t) ∈ A can be obtained as follows.

ψ(i j)ht =


k, if (h, t) ∈ GT

1·i j ∪GT
4·i j;

k + 1, if (h, t) ∈ GT
2·i j ∪GT

3·i j;

ϕht, else.

(3.6)

Accordingly, the difference between rψ(i j)
i j and rϕi j can be calculated as

∆
ϕ→ψ(i j)

ri j =
∑

(h,t)∈GT
1·i j∪GT

4·i j

(cϕht
ht − ck

ht) +
∑

(h,t)∈GT
2·i j∪GT

3·i j

(ck+1
ht − c

ϕht
ht ). (3.7)

Similarly, for any arc (i, j) ∈ U, since ψ(i j) = argmaxϕ′{r
ϕ′

i j |∀ϕ
′ ∈ Φ(vϕ)}, the value of ψ(i j)ht for

any (h, t) ∈ A can be obtained as follows.

ψ(i j)ht =


k + 1, if (h, t) ∈ GT

1·i j ∪GT
4·i j;

k, if (h, t) ∈ GT
2·i j ∪GT

3·i j;

ϕht, else.

(3.8)

Accordingly, the difference between rψ(i j)
i j and rϕi j can be calculated as

∆
ϕ→ψ(i j)

ri j =
∑

(h,t)∈GT
1·i j∪GT

4·i j

(cϕht
ht − ck+1

ht ) +
∑

(h,t)∈GT
2·i j∪GT

3·i j

(ck
ht − c

ϕht
ht ). (3.9)

In summary, for any nonbasis arc (i, j), if we have already obtained CT
i j, then it is clear that the

computational complexity of obtaining ψ(i j) and ∆
ϕ→ψ(i j)

ri j by (3.6) and (3.7) (or (3.8) and (3.9)) is

O(n). Based on the NSA, the computational complexity of searching for a derived cycle CT
i j is also

O(n) through backtracking the spanning tree from node i and node j to the root node. Then, rψ(i j)
i j can

be obtained by rψ(i j)
i j = rϕi j + ∆

ϕ→ψ(i j)
ri j, which requires only an addition operation. Therefore, the total

complexity of obtaining ψ(i j) and ∆rψ(i j)
i j is still O(n).

At this point, the constructive proof of Theorem 4 is completed. �
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3.3. Check the local optimality

Using the strategy in the proof of Theorem 4 to obtain ψ(i j), the procedure for checking the local
optimality of a vertex v can be expressed as Algorithm 1.

Algorithm 1 Check the local optimality of v.
Require: Feasible domain Ω; fi j(xi j),∀(i, j) ∈ A, v, f lag = 1;

1: • Select an index tuple ϕ ∈ Φ(v);
2: • Solve the linear NFP P(ϕ) and obtain rϕi j;
3: if v is not optimal for P(ϕ) then
4: • f lag := 0;
5: else
6: for ∀(i, j) ∈ T do
7: • Obtain ψ(i j) by (3.6) or (3.8);
8: • Calculate ∆

ϕ→ψ(i j)
ri j by (3.7) or (3.9);

9: • Calculate rψ(i j)
i j by rψ(i j)

i j = rϕi j + ∆
ϕ→ψ(i j)

ri j;

10: if rψ(i j)
i j satisfies condition (2.8) then

11: • Go to the next arc in T .
12: else
13: f lag := 0;
14: • End the current for-loop.
15: end if
16: end for
17: end if
18: if flag == 1 then
19: • v is locally optimal for CPLNFP;
20: else
21: • v is not locally optimal for CPLNFP;
22: end if

Theorem 5. The complexity of checking the local optimality of v by Algorithm 1 is polynomial in the
network parameters.

Proof. If v is not optimal for P(ϕ), we determine that v is not locally optimal for CPLNFP by verifying
the optimality of v for only one linear NFP. In this case, the computational complexity of verifying the
optimality of v for P(ϕ) is O(m − n) according to the NSA. If v is optimal for P(ϕ) (i.e., v = vϕ), we
check the optimality of v(vϕ) by the strategy stated in the proof of Theorem 4 in complexity O(n(m−n)).
Therefore, the total complexity of checking the local optimality of v by Algorithm 1 is still O(n(m−n)),
which is polynomial in the network parameters. �

Traditionally, as mentioned earlier, for any vertex v, we need to verify the optimality of v for 2m1

linear NFPs P(ϕ),∀ϕ ∈ Φ(v). The total computational complexity is O(2m1(m−n)) since the complexity
of checking v for a linear NFP is O(m − n). It is clear that for large-scale CPLNFPs with 2m1 >> n,
Algorithm 1 is far superior to the traditional implementation of the local optimality condition.
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3.4. An example to illustrate Algorithm 1

Example 3. For the CPLNFP instance in Example 1, we can easily obtain that x̂ = (3, 4, 1, 2, 0, 5, 2, 5)
is a nondegenerate vertex. Moreover, x̂ is also an optimal solution to P(ϕ) for ϕ = (1, 2, 1, 2, 1, 2, 2, 2),
which means that vϕ = x̂ = (3, 4, 1, 2, 0, 5, 2, 5). When solving P(ϕ) by the NSA, the basis associated
with vϕ is 

T = {(1, 2), (2, 3), (2, 4), (3, 5), (5, 6)},
L = {(3, 4)},
U = {(1, 3), (4, 6)}.

(3.10)

Figure 5. The basis associated with vϕ.

Figure 5 shows the basis, where the basis arcs are represented by solid lines and nonbasis arcs
are represented by dashed lines. By definition, we have T = L ∪ U = {(1, 3), (3, 4), (4, 6)} and T1 =

{(1, 2), (2, 3), (2, 4), (3, 5), (5, 6)}. Let node 1 be the root of T . The prices associated with vϕ are p1 =

0, p2 = −5, p3 = −8, p4 = −8, p5 = −10, p6 = −14 when solving P(ϕ) by the NSA. Accordingly,
the reduced costs for nonbasis arcs are rϕ13 = 4 + (−8) − 0 = −4, rϕ34 = 4 + (−8) − (−8) = 4, rϕ46 =

3 + (−14) − (−8) = −3. It can be seen that rϕ13, rϕ34 and rϕ46 satisfy the optimality condition (2.8), which
in turn verifies the optimality of x̂ for P(ϕ).

For arc (1, 3) ∈ U, the derived cycle is CT
13 = {(1, 2), (2, 3), (1, 3)} and the intersection of CT

13
and T1 is GT

13 = {(1, 2), (2, 3)}. As discussed in section 3.2, GT
13 can be divided into four subsets:

GT
1·13 = {(1, 2), (2, 3)}, GT

2·13 = φ, GT
3·13 = φ and GT

4·13 = φ. According to (3.6) and (3.7), we have
ψ(13) = (2, 2, 2, 2, 1, 2, 2, 2) and ∆

ϕ→ψ(13)
r13 = (5 − 3) + (3 − 2) = 3. Then, rψ(13)

13 can be calculated as

rψ(13)
13 = rϕ13 + ∆

ϕ→ψ(13)
r13 = −4 + 3 = −1 < 0. Clearly, rψ(13)

13 still satisfies condition (2.8).

Similarly, for arc (3, 4) ∈ L and arc (4, 6) ∈ U, we can obtain ψ(34) =

(1, 2, 2, 1, 1, 2, 2, 2), ∆
ϕ→ψ(34)

r34 = (2 − 3) + (3 − 6) = −4, rψ(34)
34 = 4 − 4 = 0 and ψ(46) =

(1, 2, 1, 2, 1, 1, 2, 1), ∆
ϕ→ψ(46)

r46 = (3 − 3) + (4 − 2) + (6 − 4) = 4, rψ(46)
46 = −3 + 4 = 1 > 0. Obviously,

rψ(46)
46 does not satisfy condition (2.8). Therefore, vϕ is not locally optimal for the CPLNFP instance in

Example 1. In practice, when rψ(46)
46 is obtained, one can determine that vϕ is not locally optimal and

obtain a better solution by solving P(ψ(46)). In the process of checking the local optimality of vϕ, we
calculate the reduced cost for each nonbasis arc only once.
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Traditionally, we need to check the optimality of vϕ for 32 linear NFPs. Moreover, we need to
calculate the reduced cost for each nonbasis arc every time we solve one of these 32 linear NFPs. For
example, when solving P(ϕ′) where ϕ′ = (1, 2, 2, 2, 1, 1, 2, 2) ∈ Φ(x̂), we need to recalculate prices
as: p1 = 0, p2 = −5, p3 = −7, p4 = −8, p5 = −11, p6 = −15, and then check the optimality of vϕ by
calculating the reduced costs for nonbasis arcs as rϕ

′

13 = 4 + (−7) − 0 = −3, rϕ
′

34 = 4 + (−8) − (−7) =

3, rϕ
′

46 = 3 + (−15) − (−8) = −4. Therefore, if we want to check the optimality of vϕ for 32 linear NFPs,
we need to calculate the reduced cost for each nonbasis arc 32 times.

4. Conclusion

The motivation of our study comes from the demand for the local optimal solution to the CPLNFP.
The efficient implementation of the local optimality condition is the key to verify and obtain a
local optimal solution. In this paper, we propose a polynomial local optimality condition for the
nondegenerate vertex based on the mathematical properties of linear NFPs associated with this vertex.
The proposed local optimality condition makes use of the network characteristics of the CPLNFP and
is suitable for large-scale CPLNFPs.
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Appendix

A. The growth trend of the number of active arcs

This appendix estimates the growth trend of the number of active arcs (m1) in the CPLNFPs defined
on benchmark networks.

A.1. Test problems

Test problems used to estimate the growth trend of m1 are generated randomly. Each test problem
consists of two parts: the network and the concave piecewise linear cost function. The network is
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generated randomly with parameters n and m by the benchmark network generator NETGEN [19].
The total supply flow is equal to the total demand flow and is set as 10 × n. The capacity ui j for arc
(i, j) is generated along with G, as stated in [19]. Note that parameters n and m are correlated; thus, we
use n/m to denote these two parameters. Without loss of generality, it is assumed that si j remains the
same over all arcs and is expressed as ŝ. The concave piecewise linear cost function fi j(xi j) for each
arc (i, j) ∈ A is generated according to the following three steps.

• Step 1: The breakpoints (λ1
i j, λ

2
i j, · · · , λ

ŝ−1
i j ) are randomly generated in (0, ui j), which satisfies

λ1
i j < λ

2
i j < · · · < λ

ŝ−1
i j .

• Step 2: The slopes (c1
i j, c

2
i j, · · · , c

ŝ
i j) are randomly generated in [cmin, cmax], which satisfies c1

i j >

c2
i j > · · · > cŝ

i j. In this paper, we set cmin = 5 and cmax = 5ŝ.
• Step 3: The intercepts (d1

i j, d
2
i j, · · · , d

ŝ
i j) are generated iteratively based on the continuity of fi j(xi j)

as follows:

- d1
i j = 0;

- For s = 2 to ŝ do
∗ ds

i j = cs−1
i j λ

s−1
i j + ds−1

i j − cs
i jλ

s−1
i j .

Considering that various practical problems require various network dimension parameters n/m
and different piecewise linear cost function parameters ŝ, we set ten different values for parameter
n/m and four different values for parameter ŝ, which can be expressed as as Ξ={10/20 20/40 40/100
60/400 80/600 100/1000 200/2000 300/3000 400/6000 500/8000 } and S = {3, 5, 7, 10}, respectively.
Problems with the same n/m and ŝ form a problem set, which is denoted as Pn,m,ŝ. In each problem set
Pn,m,ŝ, there are 20 randomly generated test problems.

In this paper, the problem group that consists of all test problems is denoted as P. According to
parameter ŝ, P is divided into four problem subgroups P1, P2, P3 and P4.

P1 = {Pn,m,3|n/m ∈ Ξ}, P2 = {Pn,m,5|n/m ∈ Ξ},

P3 = {Pn,m,7|n/m ∈ Ξ}, P4 = {Pn,m,10|n/m ∈ Ξ}.

Clearly, there are 200 test problems in Pk, k = 1, 2, 3, 4 and a total of 800 test problems in P.

A.2. Estimate the growth trend of m1

To study the relationship between m1 and the parameters n, m and ŝ, we estimate the value of m1

in problem groups P1, P2, P3 and P4. The test problems in each problem set Pn,m,ŝ have the same
parameters n, m and ŝ; thus, they are estimated as a whole. The average of the estimated values of m1

for all 20 problems is used to estimate the overall level of m1 for Pn,m,ŝ. For a test problem, each vertex
in the feasible region corresponds to a value of m1. Since the number of vertices is combinatorial, it
is not realistic to find values of m1 for all vertices. Here, we propose a reasonable sampling method to
estimate the value of m1.

For ease of expression, we use the concept of P(ϕ) that is a linear NFP defined from one of the
regions in the feasible domain. The formal definition of P(ϕ) will be given in (2.3). The linear NFPs
defined from all the possible regions in the feasible domain can be expressed as

P̂ = {P(ϕ)|ϕ ∈ Φ̂},
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where Φ̂ is defined as
Φ̂ = {ϕ ∈ Θ|ϕi j ∈ {1, 2, · · · , ŝ},∀(i, j) ∈ A}.

The definition of Θ can be seen in section 2.1.
For a vertex v in the feasible domain, if v is not optimal for P(ϕ),∀ϕ ∈ P̂, then we can determine v

is not locally optimal for the CPLNFP by solving any one of these linear NFPs. Therefore, we do not
have to explore the value of m1 for this vertex. We should focus on vertices that are at least optimal for
one linear NFP in P̂. It is appropriate to sample vertices from the optimal solutions to problems in P̂.

For a test problem p ∈ P with the feasible region Ω, the process of sampling ns vertices is shown as
follows.

For k = 1 : ns do
– Randomly select ϕ satisfying ϕ ∈ Φ̂;
– Solve P(ϕ) by the network simplex algorithm ([16]) and obtain the optimal vertex vϕ;
– Calculate the value of m1 associated with vϕ;
– γk = m1;
– Φ̂ := Φ̂\ϕ;

End

The average of γ1, γ2, · · · , γns is used to estimate the value of m1 in this problem.

ηp =
γ1 + γ2 + · · · + γns

ns
. (A.1)

In our experiments, we set ns = n. The overall level of m1 for Pn,m,ŝ is estimated by

ζ =

∑
p∈Pn,m,ŝ

ηp

20
. (A.2)

Table 1. The overall level of the value of m1.

Problem n 10 20 40 60 80 100 200 300 400 500

Group m 20 40 100 400 600 1000 2000 3000 6000 8000

P1(ŝ = 3) ζ 0.15 0.34 0.80 1.24 1.78 2.25 3.85 5.40 8.12 10.50

P2(ŝ = 5) ζ 0.32 0.98 2.03 2.42 3.55 4.35 7.75 11.20 14.98 18.31

P3(ŝ = 7) ζ 0.60 1.20 3.12 3.96 5.56 6.40 12.42 17.05 21.88 28.91

P4(ŝ = 10) ζ 0.87 2.14 3.94 5.94 7.22 9.93 18.15 26.84 33.91 41.58

It can be seen in Table 1, as the scale of the problem increases, the value of ζ gradually increases and
the value of 2ζ becomes very large. For example, we have 2ζ ≈ 1.71 × 1047 >> 500 for test problems
in P500,8000,10. Moreover, for the same problem scale, the value of ζ also increases as the value of ŝ
increases. The specific growth trend of ζ can be seen in Figure 2 in Introduction.
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