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Abstract: In this paper, we study the following Schrödinger-Poisson system with critical exponent−∆u − k(x)φu = λh(x)|u|p−2u + s(x)|u|4u, x ∈ R3,

−4φ = k(x)u2, x ∈ R3,

where 1 < p < 2 and λ > 0. Under suitable conditions on k, h and s, we show that there exists
λ∗ > 0 such that the above problem possesses infinitely many solutions with negative energy for each
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main tools are the concentration compactness principle, Z2 index theory and Fountain Theorem. These
results extend some existing results in the literature.
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1. Introduction

In this article, we are devoted to the following Schrödinger-Poisson system−∆u − k(x)φu = λh(x)|u|p−2u + s(x)|u|4u, x ∈ R3,

−4φ = k(x)u2, x ∈ R3,
(1.1)

where λ > 0 is a parameter, 1 < p < 2. To state our results, we impose some conditions on h and k as
follows:

(A1) h ∈ L
6

6−p (R3), h(x) ≥ 0 and h(x) . 0.
(A2) k ∈ L2(R3), k(x) ≥ 0 and k(x) . 0.
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(A3) s ∈ C(R3) ∩ L∞(R3), s(x) > 1.
(A4) s ∈ C(R3) ∩ L∞(R3), s(0) = 0, s(x) > 0 a.e. in R3 and lim

|x|→∞
s(x) = 0.

As we all know the Schrödinger-Poisson system has a strong physical meaning due to the influence
in quantum mechanics models (see e.g. [5, 15]) and in semiconductor theory (see e.g. [18, 19]). The
crucial tools to study the existence and multiplicity of solutions about nonlinear differential equations
are the variational method and the critical point theory (see e.g. [2, 26]). From an academic point
of view, these methods present an interesting competition between local and nonlocal nonlinearities.
Problem (1.1) is derived from the following Schrödinger-Poisson system−∆u + V(x)u + λk(x)φu = f (x, u), x ∈ R3,

−4φ = k(x)u2, x ∈ R3,
(1.2)

which is also called the Schrödinger-Maxwell equation, was firstly introduced in [4] while describing
the interacting between solitary waves and an electrostatic field in quantum mechanics. While studying
the Schrödinger-Poisson system, one has to face many obstacles since the existence of the non-local
term, especially in the critical case, the invariance by dilations of R3 makes the problems much harder
to deal with. In the past few years, a number of papers are devoted to the existence of solutions for
(1.2) under various assumptions on V , k and f . In [8], D’Aprile and Mugnai firstly proved the existence
results in the subcritical case. And the first non-existence result was given in [9] for the critical case.
After that, Ruiz in [21] obtained more existence results and properties of the non-local term φ. Based
on the work of [21], Azzollini and Pomponio [3] obtained the existence of ground state solutions for
(1.2) where f (x, u) = |u|p−1u with 2 < p < 5 when V is a positive constant and 3 < p < 5 when V is a
non-constant potential. After that, Zhang, Ma and Xie [28] studied the following problem with critical
exponent −∆u + V(x)u + K(x)φu = |u|4u, x ∈ R3,

−4φ = k(x)u2, x ∈ R3,
(1.3)

where V ∈ L
3
2 (R3), and proved the existence of bound state solutions.

In recent years, some researchers are interested in the existence of solutions involving concave-
convex nonlinearities. For example, Zhang [27] obtained ground state and nodal solutions of following
problem with critical exponent−∆u + u + k(x)φu = a(x)|u|p−2u + |u|5, x ∈ R3,

−4φ = k(x)u2, x ∈ R3,
(1.4)

where p ∈ (4, 6). Later, in [14], Li and Tang considered the following Schrödinger-Poisson system
with negative coefficient of nonlocal term−∆u − k(x)φu = λh(x)|u|p−2u + |u|4u, x ∈ R3,

−4φ = k(x)u2, x ∈ R3,
(1.5)

they proved Problem (1.5) possesses at least two solutions by Mountain Pass Theorem and Ekeland’s
Variational Principle. As for more results treating this problem or similar one, readers can refer to
[1, 7, 10, 13, 22–24] and references therein.
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All above works are to study existence of solutions of the Schrödinger-Poisson system under
different conditions. Here, we have to highlight the fact that one of the main attentions of interest in
our present paper is to prove the existence of infinitely many solutions. To the best of our knowledge,
it seems that there are no results about infinitely many solutions while concerning negative coefficient
nonlocal term. The first purpose in our paper is to establish the multiplicity of solutions possessing
negative energy of the problem (1.1). Furthermore, we are also devote to studying the convergent
properties of energy corresponding to the solutions. The critical exponential growth makes the
problem complicated due to the lack of compactness, thus we use the concentration compactness
principle to restore compactness. And we will introduce a cut-off functional which is bounded from
below, by analyzing the properties of the cut-off functional, utilizing Z2 index theory, we can obtain
the first result. To demonstrate our second result, we assume some extra conditions on k, h and s, by
using Fountain Theorem, we prove the existence of the multiple solutions possessing positive energy.

Next, we will state our main results.

Theorem 1.1. Suppose 1 < p < 2, the hypotheses (A1), (A2) and (A3) hold. If h(x) > 0 is bounded
on some open subset Ω ⊂ R3 with |Ω| > 0. Then there exists λ∗ > 0 such that for all λ ∈ (0, λ∗),
Problem (1.1) has infinitely many solutions with negative energy. Moreover, there exists a sequence of
the critical values corresponding to the solutions which converges to zero.

In order to give the second result, we need to introduce some notations. Denote O(3) to be the group
of orthogonal linear transformations in R3 and let T ⊂ O(3) be a subgroup. Set |T | := inf

x∈R3,x,0
|Tx|, where

Tx := {τx : τ ∈ O(3)} for x , 0. Moreover, a function f : R3 → R is called T -invariant if f (τx) = f (x)
for all τ ∈ T and x ∈ R3.

Theorem 1.2. Suppose 1 < p < 2, the hypotheses (A1), (A2) and (A4) hold. Assume k(x), h(x) and s(x)
are T-invariant. Moreover, let |T | = ∞. Then Problem (1.1) has infinitely many solutions with positive
energy.

Remark 1.1. The results obtained in our paper extend the ones in [14]. To be more precise, the
authors [14] obtained just two solutions. Here, by the argument of Z2 index theory, we prove the
existence of infinitely many small solutions with negative energy, besides, we also obtain a sequence
of high energy solutions by Fountain Theorem.

This paper is organized as follows. In section 2, we give some notations and preliminaries, for the
readers’ convenience, we also describe the main mathematical tools which we shall use. In section 3,
we prove Theorem 1.1 by the truncated technique. Section 4 is devoted to the proof of Theorem 1.2.

2. Preliminaries and variational setting

Hereafter we use the following notations.
Ls := Ls(R3) (1 ≤ s < ∞) is the usual Lebesgue space with the norm defined by

‖u‖s =

(∫
R3
|u|sdx

) 1
s

,

|| · ||∞ denotes the L∞-norm and D1,2 := D1,2(R3) = {u ∈ L6(R3)| ∇u ∈ L2(R3)} with the norm defined by
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‖u‖ =

(∫
R3
|∇u|2dx

) 1
2

.

For any ρ > 0 and z ∈ R3, Bρ(z) denotes the ball of radius ρ centered at z, and |Bρ(z)| denotes its
Lebesgue measure. C, Ĉ, Cp, C1, C2, · · · are various positive constants which can change from line to
line.

We now recall some known results. For all u ∈ D1,2, the linear functional Lu is defined by

Lu(v) =

∫
R3

k(x)u2vdx.

By (A2), Hölder and Sobolev inequalities, we obtain

Lu(v) ≤ ‖k‖2‖u2‖3‖v‖6 ≤ C1‖k‖2‖u‖26‖v‖. (2.1)

Thanks to the Lax-Milgram theorem, for every u ∈ D1,2, the Poisson equation

−4φ = k(x)u2, x ∈ R3

exists a unique solution φu ∈ D1,2 and

φu(x) =
1

4π

∫
R3

k(x)u2(y)
|x − y|

dy.

It is easy to see that φu satisfies ∫
R3
∇φu∇vdx =

∫
R3

k(x)u2vdx, (2.2)

for any v ∈ D1,2. Furthermore, by (2.1), (2.2), Hölder and Sobolev inequalities, the relations

‖φu‖ ≤ C1S −1‖k‖2‖u‖2, ‖φu‖6 ≤ C2‖φu‖,∣∣∣∣∣∫
R3

k(x)φuu2dx
∣∣∣∣∣ ≤ ‖k‖2‖φu‖6‖u2‖3 ≤ C1C2S −2‖k‖22‖u‖

4 := C3‖u‖4

hold, where S is the best Sobolev constant defined by

S := inf
u∈D1,2\{0}

∫
R3
|∇u|2dx(∫

R3
|u|6dx

) 1
3

. (2.3)

Substituting φu into (1.1), we get

−4u − k(x)φuu = λh(x)|u|p−2u + s(x)|u|4u, x ∈ R3.

It is standard to see that the solutions of (1.1) are the critical points of the functional defined by

I(u) :=
1
2
‖u‖2 −

1
4

∫
R3

k(x)φuu2dx −
λ

p

∫
R3

h(x)|u|pdx −
1
6

∫
R3

s(x)|u|6dx,
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for u ∈ D1,2. Hence, we just say that u ∈ D1,2, instead of (u, φu) ∈ D1,2 × D1,2, is a weak solution of
system (1.1). It is easy to see that I(u) ∈ C1(D1,2,R) and

〈I′(u), ϕ〉 =

∫
R3
∇u∇ϕdx −

∫
R3

k(x)φu(x)u(x)ϕ(x)dx − λ
∫
R3

h(x)|u|p−2uϕdx −
∫
R3

s(x)|u|4uϕdx,

for all ϕ ∈ D1,2.

Now we define the operator

Φ : D1,2 → D1,2 as Φ(u) = φu

and set

N(u) =

∫
R3

k(x)φuu2dx.

In the following lemma, we conclude some properties of Φ which are useful for studying our problems.

Lemma 2.1. ( [21])

1. Φ is continuous;
2. Φ maps bounded sets into bounded sets;
3. Φ(tu) = t2Φ(u) for all t ∈ R;
4. If un ⇀ u ∈ D1,2, then Φ(un)→ Φ(u) in D1,2;
5. If un ⇀ u ∈ D1,2, then N(un)→ N(u), as n→ ∞.

Definition 2.2. Let Y be a Banach space and I : Y → R be a differentiable functional. A sequence
{uk} ⊂ Y is called a (PS )c sequence for I if I(uk) → c and I′(uk) → 0 as k → ∞. If every (PS )c

sequence for I has a converging subsequence (in Y), we say that I satisfies the (PS )c condition.

Lemma 2.3. Assume that (A1), (A2) and (A3) hold. Let {un} ⊂ D1,2 be a (PS )c sequence for I, then {un}

is bounded in D1,2. Moreover, if c < 0, there exists λ∗∗ > 0 such that I satisfies the (PS )c condition for
all λ ∈ (0, λ∗∗).

Proof. Since {un} is a (PS )c sequence, we have

I(un)→ c, I′(un)→ 0, as n→ ∞. (2.4)

On one hand, by (2.4), we can easily get

I(un) −
1
4
〈I′(un), un〉 = c + on(1). (2.5)

On the other hand, we have

I(un) −
1
4
〈I′(un), un〉 =

1
4
‖un‖

2 +
1

12

∫
R3

s(x)|un|
6dx − (

1
p
−

1
4

)λ
∫
R3

h(x)|un|
pdx. (2.6)

By (A1), Sobolev and Hölder inequalities, we find∫
R3

h(x)|un|
pdx ≤ Cp‖un‖

p. (2.7)
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In view of (2.5)–(2.7), we get

c + on(1) ≥
1
4
‖un‖

2 − (
1
p
−

1
4

)Cpλ‖un‖
p. (2.8)

Since 1 < p < 2, we obtain that {un} is bounded in D1,2. Thus there exists a subsequence, still denoted
by {un}, and u ∈ D1,2, such that

un ⇀ u, in D1,2,

un → u, a.e. x ∈ R3.

Moreover, we get |un|
p ⇀ |u|p in L

6
p (see Proposition 4.7.12 in [6]). By (A1), we can conclude that∫

R3
h(x)|un|

pdx→
∫
R3

h(x)|u|pdx, as n→ ∞. (2.9)

Next, we want to use the concentration compactness principle to restore the compactness. Using
the fact that {un} is bounded in D1,2, by the concentration compactness principle in [16, 17], we may
suppose there exists a subsequence, still denoted by {un}, such that

|∇un|
2 ⇀ µ ≥ |∇u|2 +

∑
i∈Γ

µiδai , |un|
6 ⇀ ν = |u|6 +

∑
i∈Γ

νiδai ,
∑
i∈Γ

ν
1
3
i < ∞, (2.10)

where µ, µi, ν and νi are nonnegative measures, Γ is an at most countable index set, {ai} ⊂ R
3 is a

sequence and δai is the Dirac mass at ai. Moreover, we have

µi, νi ≥ 0, S ν
1
3
i ≤ µi, (2.11)

where S is given in (2.3).
We claim that Γ is empty. Indeed, if Γ is not empty, then there exists i ∈ Γ such that µi , 0. For

ε > 0 small, we introduce a cut-off function centered at ai as following

ϕi
ε(x) = 1, for |x − ai| ≤

ε
2 ,

ϕi
ε(x) = 0, for |x − ai| ≥ ε

and 0 ≤ ϕi
ε(x) ≤ 1, |∇ϕi

ε(x)| ≤ 4
ε
. By (2.4) we can obtain

〈I′(un), ϕi
ε(x)un〉 → 0, as n→ ∞,

which implies∫
R3

(∇un∇ϕ
i
ε(x))undx +

∫
R3
ϕi
ε(x)|∇un|

2dx −
∫
R3

k(x)φun(x)ϕi
ε(x)|un|

2dx

= λ

∫
R3
ϕi
ε(x)h(x)|un|

pdx +

∫
R3
ϕi
ε(x)s(x)|un|

6dx + on(1).
(2.12)

Step 1. We prove ν
1
3
i ≥

√
S

s(ai)
.
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Since {un} is bounded, using Hölder inequality, we can obtain

lim
ε→0

lim sup
n→∞

∣∣∣∣∣∫
R3

(∇un∇ϕ
i
ε(x))undx

∣∣∣∣∣
≤ lim

ε→0
lim sup

n→∞

(∫
Bε(ai)
|∇un|

2dx
) 1

2
(∫

Bε(ai)
|∇ϕi

ε(x)|2|un|
2dx

) 1
2

≤ C lim
ε→0

(∫
Bε(ai)
|∇ϕi

ε(x)|2|u|2dx
) 1

2

≤ C lim
ε→0

(∫
Bε(ai)
|∇ϕi

ε(x)|3dx
) 1

3
(∫

Bε(ai)
|u|6dx

) 1
6

= 0,

(2.13)

where Bε(ai) = {x ∈ R3| |x − ai| < ε}. By (2.10), we get

lim
ε→0

lim sup
n→∞

∫
R3
ϕi
ε(x)|∇un|

2dx = lim
ε→0

∫
R3
ϕi
ε(x)dµ

≥ lim
ε→0

(∫
Bε(ai)

ϕi
ε(x)|∇u|2dx + µi

)
= µi,

(2.14)

lim
ε→0

lim sup
n→∞

∫
R3

k(x)φun(x)ϕi
ε(x)|un|

2dx = lim
ε→0

∫
Bε(ai)

k(x)φu(x)ϕi
ε(x)|u|2dx = 0, (2.15)

lim
ε→0

lim sup
n→∞

∫
R3
ϕi
ε(x)h(x)|un|

pdx = lim
ε→0

∫
Bε(ai)

ϕi
ε(x)h(x)|u|pdx = 0 (2.16)

and

lim
ε→0

lim sup
n→∞

∫
R3
ϕi
ε(x)s(x)|un|

6dx = lim
ε→0

∫
Bε(ai)

ϕi
ε(x)s(x)dν = s(ai)νi. (2.17)

In view of (2.12)-(2.17), we get µi ≤ s(ai)νi. By (2.11) we obtain

ν
1
3
i ≥

√
S

s(ai)
. (2.18)

Step 2. We prove our claim.
Let ϕR(x) be a cut-off function which satisfies

ϕR(x) = 1, |x| < R; ϕR(x) = 0, |x| > 2R
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and 0 ≤ ϕR(x) ≤ 1, |∇ϕR(x)| < 2
R . By (2.5) and (2.9), we obtain

c = lim
R→∞

lim sup
n→∞

(
I(un) −

1
4
〈I′(un), un〉

)
≥ lim

R→∞
lim sup

n→∞

1
4

∫
R3
|∇un|

2dx + lim
R→∞

lim sup
n→∞

1
12

∫
R3

s(x)|un|
6dx

− lim
R→∞

lim sup
n→∞

(
1
p
−

1
4

)λ
∫
R3

h(x)|un|
pdx

≥ lim
R→∞

lim sup
n→∞

1
4

∫
R3
ϕR(x)|∇un|

2dx + lim
R→∞

lim sup
n→∞

1
12

∫
R3
ϕR(x)s(x)|un|

6dx

− lim
R→∞

lim sup
n→∞

(
1
p
−

1
4

)λ
∫
R3

h(x)|un|
pdx

= lim
R→∞

1
4

∫
R3
ϕR(x)dµ + lim

R→∞

1
12

∫
R3
ϕR(x)s(x)dν − (

1
p
−

1
4

)λ
∫
R3

h(x)|u|pdx

≥
1
4
µi +

1
12

s(ai)νi +
1

12

∫
R3

s(x)|u|6dx − (
1
p
−

1
4

)λ
∫
R3

h(x)|u|pdx.

(2.19)

Using Hölder and Young inequalities (ε small enough), we obtain

(
1
p
−

1
4

)λ
∫
R3

h(x)|u|pdx ≤ (
1
p
−

1
4

)λ
(∫
R3
|h(x)|

6
6−p dx

) 6−p
6

(∫
R3
|u|6dx

) p
6

≤ ε

∫
R3
|u|6dx + Cελ

6
6−p .

(2.20)

Hence we have

c ≥
1
4
µi +

1
12

s(ai)νi −Cελ
6

6−p . (2.21)

Choose λ1 small enough such that 1
4µi + 1

12 s(ai)νi − Cελ
6

6−p > 0 for all λ ∈ (0, λ1), which contradicts to
c < 0. Thus Γ is empty.

By the claim, we get

|un|
6dx ⇀ |u|6dx,

which implies ∫
R3
|un|

6vdx→
∫
R3
|u|6vdx, ∀ v ∈ C0(R3), as n→ ∞. (2.22)

We define

ν∞ = lim
R→∞

lim sup
n→∞

∫
|x|>R
|un|

6dx

and

µ∞ = lim
R→∞

lim sup
n→∞

∫
|x|>R
|∇un|

2dx.

AIMS Mathematics Volume 6, Issue 3, 2059–2077.



2067

From [16], we know that ν∞ and µ∞ satisfy

(i) lim sup
n→∞

∫
R3
|un|

6dx =

∫
R3

dν + ν∞,

(ii) lim sup
n→∞

∫
R3
|∇un|

2dx =

∫
R3

dµ + µ∞,

(iii) S ν
1
3
∞ ≤ µ∞,

where µ and ν are the same as above.
In the following discussion, we want to prove µ∞ = ν∞ = 0. Let ηR ∈ C1(R3) be such thatηR(x) = 0, |x| < R,

ηR(x) = 1, |x| > 2R,
(2.23)

with 0 ≤ ηR(x) ≤ 1 and |∇ηR(x)| < 2
R . From (2.4), we get

〈I′(un), ηR(x)un〉 → 0, as n→ ∞,

which gives ∫
R3

(∇un∇ηR(x))undx +

∫
R3
ηR(x)|∇un|

2dx −
∫
R3

k(x)φun(x)ηR(x)|un|
2dx

= λ

∫
R3
ηR(x)h(x)|un|

pdx +

∫
R3
ηR(x)s(x)|un|

6dx + on(1).
(2.24)

Since {un} is bounded, by Hölder inequality, we have

lim
R→∞

lim sup
n→∞

∣∣∣∣∣∫
R3

(∇un∇ηR(x))undx
∣∣∣∣∣

≤ lim
R→∞

lim sup
n→∞

(∫
|x|≥R
|∇un|

2dx
) 1

2
(∫
|x|≥R
|∇ηR(x)|2|un|

2dx
) 1

2

≤ C lim
R→∞

(∫
|x|≥R
|∇ηR(x)|2|u|2dx

) 1
2

≤ C lim
R→∞

(∫
|x|≥R
|∇ηR(x)|3dx

) 1
3
(∫
|x|≥R
|u|6dx

) 1
6

= 0.

(2.25)

Moreover, by Lemma 2.1, (2.9) and the definitions of µ∞ and ν∞, we obtain

lim
R→∞

lim sup
n→∞

∫
R3
ηR(x)|∇un|

2dx ≥ lim
R→∞

lim sup
n→∞

∫
|x|>2R

ηR(x)|∇un|
2dx

= lim
R→∞

lim sup
n→∞

∫
|x|>2R

|∇un|
2dx

= µ∞,

(2.26)
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lim
R→∞

lim sup
n→∞

∫
R3

k(x)φunηR(x)|un|
2dx = lim

R→∞

∫
|x|≥R

k(x)φuηR(x)|u|2dx = 0, (2.27)

lim
R→∞

lim sup
n→∞

∫
R3
ηR(x)h(x)|un|

pdx = lim
R→∞

∫
|x|≥R

ηR(x)h(x)|u|pdx = 0 (2.28)

and

lim
R→∞

lim sup
n→∞

∫
R3
ηR(x)s(x)|un|

6dx = lim
R→∞

lim sup
n→∞

∫
|x|≥R

ηR(x)s(x)|un|
6dx

≤ lim
R→∞

lim sup
n→∞

∫
|x|≥R

s(x)|un|
6dx = ‖s‖∞ν∞.

(2.29)

Therefore, by (2.24)–(2.29), we obtain

µ∞ ≤ ‖s‖∞ν∞.

Furthermore, from S ν
1
3
∞ ≤ µ∞, we have

(1∗) ν∞ = 0 or (2∗) ν
1
3
∞ ≥

√
S
‖s‖∞

. (2.30)

We claim (1∗) holds. In fact, if (2∗) holds, it follows from (2.5), (2.9) and s(x) > 1 that

c = lim sup
n→∞

(
I(un) −

1
4
〈I′(un), un〉

)
≥ lim sup

n→∞

1
4

∫
R3
|∇un|

2dx + lim sup
n→∞

1
12

∫
R3
|un|

6dx

− lim sup
n→∞

(
1
p
−

1
4

)λ
∫
R3

h(x)|un|
pdx

=
1
4

(
∫
R3

dµ + µ∞) +
1

12
(
∫
R3

dν + ν∞) − (
1
p
−

1
4

)λ
∫
R3

h(x)|u|pdx

≥
1
4
µ∞ +

1
12
ν∞ +

1
12

∫
R3
|u|6dx − (

1
p
−

1
4

)λ
∫
R3

h(x)|u|pdx.

(2.31)

From (2.20) and (2.31), we have

c ≥
1
4
µ∞ +

1
12
ν∞ −Cελ

6
6−p . (2.32)

Choose λ2 small enough such that 1
4µ∞+ 1

12ν∞−Cελ
6

6−p > 0 for all λ ∈ (0, λ2), which is a contradiction.
Thus we have µ∞ = ν∞ = 0. By the definitions of µ∞ and ν∞, we obtain

lim
R→∞

lim sup
n→∞

∫
|x|>R
|un|

6dx = 0. (2.33)
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Hence,

lim
n→∞

∣∣∣∣∣∫
R3
|un|

6dx −
∫
R3
|u|6dx

∣∣∣∣∣ ≤ lim sup
n→∞

∣∣∣∣∣∫
R3
|un|

6dx −
∫
R3
|u|6dx

∣∣∣∣∣
≤ lim sup

n→∞

∣∣∣∣∣∫
R3

(|un|
6 − |u|6)ηR(x)dx

∣∣∣∣∣
+ lim sup

n→∞

∣∣∣∣∣∫
R3

(|un|
6 − |u|6)(1 − ηR(x))dx

∣∣∣∣∣
≤ lim sup

n→∞

∣∣∣∣∣∫
R3

(|un|
6 − |u|6)ηR(x)dx

∣∣∣∣∣
+ lim sup

n→∞

∫
|x|≥R
|un|

6dx + lim sup
n→∞

∫
|x|≥R
|u|6dx.

(2.34)

Let R→ ∞ in (2.34), from (2.22) and (2.33), we get

lim
n→∞

∣∣∣∣∣∫
R3
|un|

6dx −
∫
R3
|u|6dx

∣∣∣∣∣ = 0,

it follows that ∫
R3
|un|

6dx→
∫
R3
|u|6dx, as n→ ∞. (2.35)

On one hand, since {un} is bounded in D1,2, we set U = lim
n→∞
‖un‖. Since 〈I′(un), un〉 → 0 as n→ ∞,

utilizing (2.9) and (2.35), we have

lim
n→∞

(
‖un‖

2 −

∫
R3

k(x)φunu
2
ndx

)
= λ

∫
R3

h(x)|u|pdx +

∫
R3

s(x)|u|6dx. (2.36)

Then by Lemma 2.1, we have

U2 −

∫
R3

k(x)φuu2dx = λ

∫
R3

h(x)|u|pdx +

∫
R3

s(x)|u|6dx. (2.37)

On the other hand, since {un} is a (PS )c sequence for I, i.e., 〈I′(un), v〉 → 0 as n→ ∞ for all v ∈ D1,2,
that implies∫
R3
∇un∇vdx −

∫
R3

k(x)φununvdx − λ
∫
R3

h(x)|un|
p−2unvdx −

∫
R3

s(x)|un|
4unvdx→ 0, as n→ ∞.

Combining (2.9), Lemma 2.1 with the fact of un ⇀ u in D1,2, we have∫
R3
∇u∇vdx −

∫
R3

k(x)φuuvdx = λ

∫
R3

h(x)|u|p−2uvdx −
∫
R3

s(x)|u|4uvdx. (2.38)

Taking v = u in (2.38), we get

‖u‖2 −
∫
R3

k(x)φuu2dx = λ

∫
R3

h(x)|u|pdx +

∫
R3

s(x)|u|6dx. (2.39)

Comparing (2.37) with (2.39), we get ‖u‖ = U = lim
n→∞
‖un‖. Noticing that D1,2 is a reflexive Banach

space, combining above analysis, we can prove that un → u in D1,2 as n → ∞. Taking
λ∗∗ = min{λ1, λ2}, we conclude that I(u) satisfies the (PS )c condition for all λ ∈ (0, λ∗∗). �
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In order to continue our proof, we will introduce a truncated functional. By (A1), Sobolev
embedding theorem and above analysis, we have

I(u) =
1
2
‖u‖2 −

1
4

∫
R3

k(x)φuu2dx −
λ

p

∫
R3

h(x)|u|pdx −
1
6

∫
R3

s(x)|u|6dx

≥
1
2
‖u‖2 −

C3

4
‖u‖4 −

λ

p
‖h(x)‖ 6

6−p
‖u‖p

6 −
‖s‖∞

6

∫
R3
|u|6dx

≥
1
2
‖u‖2 −

C3

4
‖u‖4 −

λC4

p
‖h(x)‖ 6

6−p
‖u‖p −

C5

6
‖u‖6

:= C6‖u‖2 −C7‖u‖4 − λC8‖u‖p −C9‖u‖6

(2.40)

for all u ∈ D1,2. Let g(t) = C6t2 −C7t4 − λC8tp −C9t6. Next we will discuss some properties of g(t).
First of all, it is easy to see that there exist positive constants λ3, T1 and T2 (T1 < T2) such that for

any λ ∈ (0, λ3), g(t) can take positive maximum value for some t > 0, and we have

g(T1) = g(T2) = 0,
g(t) ≤ 0,∀ t ∈ [0,T1],
g(t) > 0,∀ t ∈ (T1,T2),
g(t) ≤ 0,∀ t ∈ [T2,+∞).

Let τ : R+ → [0, 1] be C∞ function such that

τ(t) = 1, if t ≤ T1; τ(t) = 0, if t ≥ T2.

Now, we give the truncated functional as follows:

I∞(u) =
1
2
‖u‖2 −

τ(‖u‖)
4

∫
R3

k(x)φuu2dx −
λ

p

∫
R3

h(x)|u|pdx −
τ(‖u‖)

6

∫
R3

s(x)|u|6dx.

Since τ ∈ C∞, we get I∞(u) ∈ C1(D1,2,R). Similar to above analysis, we obtain

I∞(u) ≥
1
2
‖u‖2 −

C3τ(‖u‖)
4

‖u‖4 −
λC4

p
‖h(x)‖ 6

6−p
‖u‖p −

C5τ(‖u‖)
6

‖u‖6

:= C6‖u‖2 −C7τ(‖u‖)‖u‖4 − λC8‖u‖p −C9τ(‖u‖)‖u‖6,

where constants C6, · · · ,C9 are the same as those in (2.40).
Let g∞(t) = C6t2 − C7τ(t)t4 − λC8tp − C9τ(t)t6. We say that g∞(t) ≥ g(t) for all t > 0. In fact, if

0 ≤ t ≤ T1, g∞(t) = g(t); If T1 < t < T2, 0 < g(t) < g∞(t); If t ≥ T2, g∞(t) > 0 ≥ g(t). Moreover, we
obtain that I∞(u) = I(u) when 0 ≤ ‖u‖ ≤ T1.

Lemma 2.4. If u satisfies that I∞(u) < 0, then ‖u‖ ≤ T1 and there exists ε > 0 such that for all
v ∈ Bε(u), there holds I∞(v) = I(v). Furthermore, there exists λ∗ > 0 such that for all λ ∈ (0, λ∗), I∞(u)
satisfies the (PS )c condition for c < 0.

Proof. We prove by contradiction. If I∞(u) < 0 and ‖u‖ > T1, from above analysis, we get
I∞(u) ≥ g∞(‖u‖) > 0, which is a contradiction, thus we obtain ‖u‖ ≤ T1. Since I(u) and I∞(u) are both
continuous, we have I(v) = I∞(v) for all v ∈ Bε(u). Setting λ∗ = min{λ∗∗, λ3}, by using Lemma 2.3, we
get I∞(u) satisfies the (PS )c condition for c < 0. �
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To prove our main results, we need the following deformation lemma.

Lemma 2.5. ( [20]) Let Y be a Banach space, f ∈ C1(Y,R), c ∈ R and N is any neighborhood of
Kc , {u ∈ Y | f (u) = c, f ′(u) = 0}. If f satisfies the (PS )c condition, then there exist ηt(u) ≡ η(t, u) ∈
C([0, 1] × Y,Y) and constants ε > ε > 0 such that
(1) η0(u) = u, ∀ u ∈ Y,
(2) ηt(u) = u, ∀ u < f −1[c − ε, c + ε],
(3) ηt(u) = u is a homeomorphism of Y onto Y, ∀ t ∈ [0, 1],
(4) f (ηt(u)) ≤ f (u), ∀ u ∈ Y and ∀ t ∈ [0, 1],
(5) η1( f c+ε \ N) ⊂ f c−ε , where f c = {u ∈ Y | f (u) ≤ c}, ∀ c ∈ R,
(6) if Kc = ∅, η1( f c+ε) ⊂ f c−ε ,
(7) if f is even, ηt is odd in u.

At the end of this section, we point out some concepts and results about Z2 index theory. Let Y be a
Banach space and set

Σ = {A ⊂ Y \ {0}| A is closed,−A = A}

and
Σk = {A ∈ Σ, γ(A) ≥ k}, (2.41)

where γ(A) is the Z2 genus of A defined by

γ(A) =


0, if A = ∅,

inf{n : there exists an odd, continuous φ : A→ Rn\{0}},
+∞, if it does not exist odd, continuous h : A→ Rn\{0}.

In the following lemma, we give the main properties of genus.

Lemma 2.6. ( [20]) Let A, B ∈ Σ.
(1) If there exists an odd map f ∈ C(A, B), then γ(A) ≤ γ(B).
(2) If A ⊂ B, then γ(A) ≤ γ(B).
(3) If there exists an odd homeomorphism between A and B, then γ(A) = γ(B).
(4) If S N−1 is the sphere in RN , then γ(S N−1) = N.
(5) γ(A ∪ B) ≤ γ(A) + γ(B).
(6) If γ(A) < ∞, then γ(A − B) ≥ γ(A) − γ(B).
(7) If A is compact, then γ(A) < ∞, and there exists δ > 0 such that γ(A) = γ(Nδ(A)),

where Nδ(A) = {x ∈ Y | dist(x, A) ≤ δ}.
(8) If Y0 is a subspace of Y with codimension k, and γ(A) > k, then A ∩ Y0 , ∅.

3. Proof of Theorem 1.1

Now, we will use the genus argument to prove Theorem 1.1.
For any k ∈ N, we define

ck = inf
A∈Σk

sup
u∈A

I∞(u).
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Moreover, by the definition, we get Σk+1 ⊂ Σk, so we have ck ≤ ck+1.

Firstly, we prove for any k ∈ N, there exists ε = ε(k) > 0 such that

γ(I−ε∞ (u)) ≥ k,

where I−ε∞ (u) = {u ∈ D1,2| I∞(u) ≤ −ε}. Let Ω be an open bounded subset of R3 with smooth boundary
and h(x) > 0 in Ω. For fixed k ∈ N, let Xk be a k-dimension subspace of D1,2(Ω). Choosing u ∈ Xk

with ‖u‖ = 1, for 0 < ρ ≤ T1 (T1 is the same as before), we get

I(ρu) = I∞(ρu) =
1
2
ρ2 −

1
4
ρ4

∫
R3

k(x)φuu2dx −
λ

p
ρp

∫
R3

h(x)|u|pdx −
1
6
ρ6

∫
R3

s(x)|u|6dx. (3.1)

Since Xk is a finite dimension space, all the norms are equivalent. For each u ∈ Xk with ‖u‖ = 1, by
(A1), we know that there exists αk > 0 such that∫

Ω

h(x)|u|pdx ≥ αk. (3.2)

Define

βk = inf
u∈Xk ,‖u‖=1

∫
R3

s(x)|u|6dx. (3.3)

It is easy to check that lim
k→∞

βk = 0. Hence, by (3.1)–(3.3), we get

I∞(ρu) ≤ 1
2ρ

2 − λ
pρ

pαk −
1
6ρ

6βk.

Since 1 < p < 2, for λ ∈ (0, λ∗), u ∈ Xk with ‖u‖ = 1, there must be ρ0 ∈ (0,T1) small enough such that

I∞(ρ0u) ≤ −ε,

and ε = −1
2ρ

2
0 + λ

pρ
p
0αk + 1

6ρ
6
0βk > 0.

Let Kc = {u ∈ D1,2| I∞(u) = c, I′∞(u) = 0} and S ρ0 = {u ∈ D1,2(Ω)| ‖u‖ = ρ0}, then S ρ0 ∩ Xk ⊂ I−ε∞ .
From Lemma 2.6, we have that

γ(I−ε∞ (u)) ≥ γ(S ρ0 ∩ Xk) = k. (3.4)

Thus we obtain I−ε∞ (u) ⊂ Σk and c = ck ≤ −ε < 0. Using Lemma 2.4, we know I∞(u) satisfies the (PS )c

condition if c < 0, which implies Kc is a compact set.
Next, by using the idea in [11, 12], we give two claims, which are crucial to prove Theorem 1.1.
Claim 1. If k, l ∈ N are such that c = ck = ck+1 = · · · = ck+l, then γ(Kc) ≥ l + 1.
Arguing by contradiction that γ(Kc) ≤ l, then there exists a closed, symmetric set U with Kc ⊂ U

and γ(U) ≤ l. Since I∞(u) is even, by Lemma 2.5, we can assume an odd homeomorphism

η : [0, 1] × D1,2 → D1,2

such that η(Ic+δ
∞ \U) ⊂ Ic−δ

∞ for some δ ∈ (0,−c). By the hypothesis c = ck+l, we know there exists an
A ∈ Σk+l such that

sup
u∈A

I∞(u) < c + δ,
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that is to say A ∈ Ic+δ
∞ . Furthermore, we get

η(A\U) ⊂ η(Ic+δ
∞ \U) ⊂ Ic−δ

∞ . (3.5)

By Lemma 2.6, we know

γ(η(A\U) ≥ γ(A\U) ≥ γ(A) − γ(U) ≥ k.

Therefore, η(A\U) ⊂ Σk. Then from (3.5) we can obtain

c = ck ≤ supu∈η(A\U) I∞(u) ≤ c − δ,

which is a contradiction. Thus we complete the proof of Claim 1.
Claim 2. If ck < 0 is a critical value of I∞(u), then there exists a subsequence of {ck}, still denoted

by {ck} (k ∈ N), which satisfies

ck → 0, as k → ∞.

Indeed, since I∞(u) is bounded from below, it holds that ck > −∞, and we know that Σk+1 ⊂

Σk and ck ≤ ck+1 < 0. Therefore {ck} has a limit, denoted by c∞ and c∞ ≤ 0. If c∞ < 0, we set

K = {u ∈ D1,2| I′∞(u) = 0, I∞(u) ≤ c∞}.

From above analysis, we know that K is compact, symmetric and 0 < K on account of c∞ < 0. By
Lemma 2.6 (7), we choose δ > 0 small enough such that

γ(Nδ(K)) = γ(K) = m < +∞,

where Nδ(K) = {u ∈ D1,2| dist(u,K) ≤ δ}. By Lemma 2.5 (5) with c = c∞, there exist ε > 0 and η1 such
that

η1(Ic∞+ε
∞ \Nδ(K)) ⊂ Ic∞−ε

∞ . (3.6)

Fix an integer q ∈ N such that
c∞ − ε < cq. (3.7)

Choose Â ∈ Σm+q such that
sup
u∈Â

I∞(u) < cm+q + ε. (3.8)

Setting B = Â\Nδ(K), using (3.6) and (3.8), we have

I∞(η1(B)) ≤ c∞ − ε. (3.9)

It follows from Lemma 2.6 that γ(B) ≥ γ(Â) − γ(Nδ(K)) ≥ q, so B ∈ Σq. Denoting D = η1(B), then we
have D ∈ Σq. Using (3.7) and (3.9), we get

c∞ − ε < cq ≤ sup
u∈D

I∞(u) ≤ c∞ − ε,

which is absurd. Therefore, c∞ = 0.
Now, we conclude the proof of Theorem1.1. For all k ∈ N, we have Σk+1 ⊂ Σk and ck ≤ ck+1 < 0. If

every ck is distinct, then γ(Kck) ≥ 1 and we know {ck} is a sequence of distinct negative critical values
of I∞(u). If for some k0 ∈ N, there exists a l ≥ 1 such that c = ck0 = ck0+1 = · · · = ck0+l, then by Claim 1,
we obtain γ(Kc) ≥ l+1, which implies that Kc contains infinitely many distinct elements. Moreover, by
Claim 2, we know there exists a subsequence of {ck}, still denoted by {ck}, satisfying ck → 0 as k → ∞.
By Lemma 2.4 we know that I(u) = I∞(u) if I∞(u) < 0. Hence we conclude that there exist infinitely
many critical points of I(u) and the sequence of the negative critical values converges to zero. Thus,
we complete our proof of Theorem 1.1.
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4. Proof of Theorem 1.2

We denote D1,2
T = {u ∈ D1,2 : u(τx) = u(x), τ ∈ O(3)} and L6

T = {u ∈ L6 : u(τx) = u(x), τ ∈ O(3)},
where T ⊂ O(3) is a subgroup. By the principle of symmetric criticality, we have the following results.

Lemma 4.1. ( [25]) If I′(u) = 0 in D1,2
T , then I′(u) = 0 in D1,2.

Lemma 4.2. If |T | = ∞, s(0) = 0 and lim
|x|→∞

s(x) = 0, then I satisfies the (PS )c condition for all c ∈ R,

where |T | := inf
x∈R3,x,0

|Tx|.

Proof. Since the proof is similar to Lemma 2.3, we just give a sketch of the proof. Let {un} be a (PS )c

sequence of I. An argument similar to the one used in proving Lemma 2.3 shows that {un} is bounded
and there exists a measure ν such that (2.10) holds. We claim that the concentration of ν cannot occur
at any a , 0 (a ∈ R3). Assuming that ak , 0 is a singular point of ν, we can obtain νk = ν(ak) > 0.
Since ν is T -invariant, then ν(τak) = νk for all τ ∈ T . And we can know the sum in (2.11) is infinite
due to |T | = ∞, which is a contradiction. On the other hand, by νi ≤ s(ai)νi and s(0) = 0, we get
ν0 := ν(0) = 0.

Next, we prove that the concentration of ν cannot occur at infinity. Since lim
|x|→∞

s(x) = 0, we deduce

that

lim
R→∞

lim sup
n→∞

∫
|x|>R

s(x)|un|
6dx = 0.

By (2.29), we have µ∞ = 0. From S ν
1
3
∞ ≤ µ∞, we obtain ν∞ = 0. Thus we get un → u in D1,2

T as
n→ ∞. �

Since D1,2
T is a separable Banach space, there exists a linearly independent sequence {e j} such that

D1,2
T =

⊕
j≥1 D1,2

j , D1,2
j := span{e j}.

Denote Yk =
⊕
j≤k

D1,2
j and Zk =

⊕
j≥k

D1,2
j .

Lemma 4.3. ( [25]) Let I ∈ C1(D1,2
T ,R) be an even functional satisfying the (PS )c condition for every

c > 0. If for every k ∈ N there exist ρk > rk > 0 such that

(a) αk := max
u∈Yk ,‖u‖=ρk

I(u) ≤ 0,

(b) βk := inf
u∈Zk ,‖u‖=rk

I(u)→ ∞ as k → ∞,

then I has a sequence of critical values which converges to∞.

Proof of Theorem 1.2. It is easy to see that I(u) is even and I(u) ∈ C1(D1,2
T ,R). By Lemma 4.2, we

know I(u) satisfies the (PS )c condition for every c > 0. From the definition of Yk and s(x) > 0 a.e. in
R3, which imply that there exists a constant εk > 0 such that for all w ∈ Yk with ‖w‖ = 1, we have∫

R3
s(x)|w|6dx ≥ εk. (4.1)
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On the one hand,

I(u) =
1
2

∫
R3
|∇u|2dx −

1
4

∫
R3

k(x)φuu2dx −
λ

p

∫
R3

h(x)|u|pdx −
1
6

∫
R3

s(x)|u|6dx

≤
1
2
‖u‖2 −

1
6

∫
R3

s(x)|u|6dx.
(4.2)

Hence if u ∈ Yk, u , 0 and writing u = tkw with ‖w‖ = 1, by (4.1) and (4.2), we have

I(u) ≤ 1
2 t2

k −
εk
6 t6

k ≤ 0

for tk large enough. Thus we have proved (a) of Lemma 4.3.
In the following part, we want to verify (b) of Lemma 4.3. Define

υk := sup
u∈Zk ,‖u‖=1

(∫
R3

s(x)|u|6dx
) 1

6

(4.3)

and

γk := sup
u∈Zk ,‖u‖=1

(∫
R3

k(x)φuu2dx
) 1

4

. (4.4)

It is clear that 0 ≤ υk+1 ≤ υk and υk → υ0 ≥ 0. And for every k ≥ 1, there exists a uk ∈ Zk with ‖uk‖ = 1
such that (∫

R3
s(x)|uk|

6dx
) 1

6

≥
υ0

2
. (4.5)

By the definition of Zk, we get uk ⇀ 0 as k → ∞ in D1,2
T . Therefore, there exists ν such that (2.11)

holds. Combining the arguments used in Lemma 4.2 with the fact that |T | = ∞, we see that the
concentration of the measure ν can only occur at 0 and ∞, thus we have uk → 0 in L6(Ω), where
Ω = {x ∈ R3 : r < |x| < R} for each 0 < r < R. Since s(0) = 0, lim

|x|→∞
s(x) = 0, by (A3), for each ε > 0,

we can choose r small and R large, such that(∫
{x∈R3:|x|<r}

s(x)|uk|
6dx

) 1
6

<
ε

2
,

(∫
{x∈R3:|x|>R}

s(x)|uk|
6dx

) 1
6

<
ε

2
.

Hence by Sobolev embedding theorem, we can obtain(∫
R3

s(x)|uk|
6dx

) 1
6

→ 0, as k → ∞.

Using (4.3), we get υ0 = 0.
By Lemma 2.1(5), we obtain γk → 0 as k → ∞. Since h(x) ≥ 0, s(x) > 0 a.e. in R3 and λ > 0, for

u ∈ Zk, by (4.3), Sobolev and Young inequalities, we have

I(u) =
1
2

∫
R3
|∇u|2dx −

1
4

∫
R3

k(x)φuu2dx −
λ

p

∫
R3

h(x)|u|pdx −
1
6

∫
R3

s(x)|u|6dx

≥
1
2
‖u‖2 −

1
4
γ4

k‖u‖
4 −

λ

p
‖h(x)‖ 6−p

6
‖u‖p −

υ6
k

6
‖u‖6

≥
1
2
‖u‖2 −

1
192
−

2
3
γ6

k‖u‖
6 −

λ

p
‖h(x)‖ 6−p

6
‖u‖p −

υ6
k

6
‖u‖6

=
1
2
‖u‖2 −

(
1

192
+
λ

p
‖h(x)‖ 6−p

6
‖u‖p

)
−

(
2
3
γ6

k +
υ6

k

6

)
‖u‖6.

(4.6)
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On the other hand, since 1 < p < 2, then there exists R > 0 such that 1
4‖u‖

2 ≥ 1
192 + λ

p‖h(x)‖ 6−p
6
‖u‖p

for any ‖u‖ ≥ R. Taking ‖u‖ = rk :=
(

3
16γ6

k +4υ6
k

) 1
4
, by υk → 0 and γk → 0, we get rk → ∞ as k → ∞.

Furthermore, we have

I(u) ≥
1
4
‖u‖2 −

(
2
3
γ6

k +
υ6

k

6

)
‖u‖6 =

1
8
‖u‖2 =

1
8

r2
k → ∞, as k → ∞. (4.7)

This concludes the proof of Theorem 1.2.
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