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Abstract: The reaction-diffusion Gierer-Meinhardt system in one dimensional bounded domain is
considered in the present paper. The Hopf bifurcation is investigated, which is found to be degenerate.
With the aid of Maple, the normal form associated with the degenerate Hopf bifurcation is obtained
to determinate the existence of Bautin bifurcation. We get the universal unfolding for the Bautin
bifurcation so that we can identify the stability of periodic solutions. Then, the existence of the
codimension-two Turing-Hopf bifurcation is further investigated. To research the spatiotemporal
dynamics of the model near the Turing-Hopf bifurcation point, the method of the multiple time scale
analysis is adopted to derive the amplitude equations. It is noted that the Gierer-Meinhardt model
may show the spatial, temporal or the spatiotemporal patterns, such as the nonconstant steady state,
spatially homogeneous periodic solutions and the spatially inhomogeneous periodic solutions. Finally,
some numerical simulations are presented to demonstrate the applicability of the theoretical results.
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1. Introduction

As we know, the development of an organism is a complicated phenomenon involving a set of more
elementary processes, one of which in embryology and regeneration is the formation of a spatial pattern
of tissues. For a long time many researchers tried to find the underlying mechanisms and explain the
formation of organs. In 1950s, the British mathematician Turing [1] explained the mechanism of
pattern formation of chemical or morphogen concentrations, and showed that the coupled reaction
diffusion equations could cause the spatial patterns due to the effect of diffusion. In 1972, an activator-
inhibitor reaction-diffusion system was proposed by Gierer and Meinhardt [2] during their study of
relatively simple molecular mechanisms based on auto- and cross catalysis. In 1974, they obtained
some sufficient conditions to ensure the formation of spatial patterns in [3]. Since then, the Gierer-
Meinhardt model was frequently utilized to present the formation of morphogenesis. Generally, the
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Gierer-Meinhardt model is described as follows ∂U(x,t)
∂t = D1

∂2U(x,t)
∂x2 + ρ0ρ + cρUm(x,t)

Vn(x,t) − θ1U(x, t),
∂V(x,t)
∂t = D2

∂2V(x,t)
∂x2 + c1ρ1

U l(x,t)
Vk(x,t) − θ2V(x, t),

(1.1)

where m, n, k and l are non-negative integers. Now consider the Gierer-Meinhardt model with m = l =

2, n = 1 and k = 0. Then, the above model reduces to ∂U(x,t)
∂t = D1

∂2U(x,t)
∂x2 + ρ0ρ + cρU2(x,t)

V(x,t) − θ1U(x, t),
∂V(x,t)
∂t = D2

∂2V(x,t)
∂x2 + c1ρ1U2(x, t) − θ2V(x, t),

(1.2)

where U(x, t) and V(x, t) denote the concentrations of activator and inhibitor, respectively; ρ0ρ is the
exogenous source of activator; θ1 and θ2 are the degradation coefficients of the activator and inhibitor;
cρ and c1ρ1 are cross-reaction coefficients; D1 and D2 are the diffusion coefficients of activator and
inhibitor, respectively; cρU2(x,t)

V(x,t) denotes the interaction of two reactants, U2(x, t) in the numerator stands
for the self-catalysis of activator and V(x, t) in the denominator represents the effect of activator by
inhibitor; c1ρ1U2(x, t) is the effect of autocatalysis of activator on inhibitor.

For the Gierer-Meinhardt system (1.2) with the saturating term, Song et al. [4] identified the
parameter region where possible Turing instability could happen and obtained the amplitude equations
at the critical value of bifurcation through the multiple scale method. Then they found that some
patterns, such as spot-like pattern, stripe-like pattern and the coexistence pattern, could appear. Chen
et al. [5] worked on the Gierer-Meinhardt system with a saturation in the activator production and
investigated the stability of the unique positive constant steady state solution, Hopf bifurcations and
steady state bifurcations. They obtained a global bifurcation diagram of non-trivial periodic orbits
and steady state solutions. For the Gierer-Meinhardt system (1.2) without the saturating term, some
related works have been reported. Wu et al. [6] investigated the effects of diffusion on the stability
of equilibrium and the bifurcated limit cycle from Hopf bifurcation. Moreover, with some conditions,
the diffusion can drive the Turing instability and those diffusion-driven instabilities would lead to the
occurrence of various patterns. In [7], the authors considered the Gierer-Meinhardt model without the
saturation term and investigated the Turing instability of the positive equilibrium, the existence of the
Turing-Hopf and spatial resonance bifurcation. Ruan [8] considered the Gierer-Meinhard model of
morphogenesis, showing that the homogeneous equilibrium solution and the homogeneous periodic
solution could turn to be diffusively unstable, if the diffusion coefficients of the two substances
were chosen suitably. Liu et al. [9] studied the Hopf bifurcation and steady state bifurcation of
a reaction-diffusion Gierer-Meinhardt model of morphogenesis subject to Dirichlet fixed boundary
conditions in a one-dimensional spatial domain, obtained the spatially nonhomogenous periodic orbits
and nonconstant positive steady state solutions.

In [10], the activator-inhibitor model with different sources was considered with the exogenous
sources of activator being zero, that is to say, this activation-inhibition model is formed in a sealed
circumstance. By the non-dimension scaling transformation [10], then the Gierer-Meinhardt system
could be simplified into {

∂u
∂t = D∆u + u2

v − u,
∂v
∂t = ∆v + Gu2 − Ev,

(1.3)

Based on multiple scale analysis and the obtained amplitude equations, it was showed that the model
could admit spotted patterns, stripe patterns and the coexistence of spotted and stripe patterns. For
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the model (1.3) with a saturation in the activator production, Chen et al. [11] proved that the unique
constant steady state solution was globally attractive by employing an upper and lower solution method.
They showed that the parameter area for the formation of spatiotemporal patterns would be limited.
Yang et al. [12] investigated the conditions of the stability of the unique positive equilibrium in a
diffusive activator-inhibitor model, the existence of Hopf and steady state bifurcations. They obtained
the normal forms corresponding to the Hopf bifurcation and steady state bifurcation. Results about
other bifurcations for the Gierer-Meinhardt model with different saturation terms were also reported in
[13, 14].

However, the direction of Hopf bifurcation for the model (1.3) in the references was not reported
in detail and only the spatial patterns induced by Turing instability were presented. So it is worth
considering whether the exogenous sources of activators will cause the spatiotemporal patterns to
happen. We will find that the Hopf bifurcation in (1.3) is degenerate, and the bifurcation analysis
could still be processed.

The normal form theory and center manifold reduction [15] are commonly used to determine the
direction of the Hopf bifurcation and the stability of the bifurcated periodic solution, see, for example,
[16, 17]. Since the Hopf bifurcation is degenerate in the present paper, we will use the formal procedure
in Maple to get the unfolding of Hopf bifurcation. The normal form associated with the degenerated
Hopf bifurcation could be established, then by analyzing the obtained normal form, one can analyze
the degenerate Hopf bifurcation, and the stability of bifurcated periodic solutions. Moreover, to obtain
richer and more complex spatiotemporal dynamical behaviors of the Gierer-Meinhardt system, we will
find that the spatiotemporal dynamics will be exhibited in the model near the Turing-Hopf bifurcation
point by the multiple time scale analysis.

To this end, a diffusion activator-inhibitor model with Neumann boundary conditions and positive
initial conditions can be formulated as follows

∂u(x,t)
∂t = D1∆u(x, t) +

u2(x,t)
v(x,t) − u(x, t), x ∈ Ω, t > 0,

∂v(x,t)
∂t = D2∆v(x, t) + eu2(x, t) − gv(x, t), x ∈ Ω, t > 0,

∂u(0,t)
∂x =

∂v(0,t)
∂x =

∂u(π,t)
∂x =

∂v(π,t)
∂x = 0, t ≥ 0,

u(x, 0) = ψ1(x) > 0, v(x, 0) = ψ2(x) > 0, x ∈ Ω,

(1.4)

where D1 and D2 are diffusion coefficients of activator u(x, t) and inhibitor v(x, t) at position x and time
t, respectively; ∆ = ∂2

∂x2 denotes the Laplacian operator; Ω = (0, π) is a bounded domain in R with the
boundary ∂Ω. Parameters D1, D2, g and e are positive. In the present paper, we will use the standard
multiple scale analysis [18] to investigate the dynamical behaviors of Gierer-Meinhardt model.

The rest of this paper is organized as follows. In Section 2, the ordinary differential equations
(ODEs) of model (1.4) will be first focused on. The normal form associated with the Hopf bifurcation
will be given by using the symbolic language Maple to determine the existence of the Bautin
bifurcation. Moreover, we will get the universal unfolding of the ODEs of model (1.4) for the Bautin
bifurcation, so that we could identify the bifurcation. Then for the partial differential equations (PDEs)
of model (1.4), by choosing the parameters g and D2 as the Turing and Hopf bifurcation parameters,
the codimension-two Turing-Hopf bifurcation point in the (D2, g) plane will be located. The existence
of the Turing-Hopf bifurcation will be discussed in detail. In Section 3, the multiple time scale
analysis is adopted to get the amplitude equations near the Turing-Hopf bifurcation point. In Section
4, numerical simulations are carried out to illustrate the theoretical analysis. Finally, some discussions
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and conclusions are made in Section 5.

2. Existence of the Turing-Hopf bifurcatin

2.1. Analysis of the corresponding ODE system

In this subsection, we consider the ODE system with respect to (1.4){
du
dt = u2

v − u,
dv
dt = eu2 − gv.

(2.1)

It is not difficult to find that system (2.1) has one organism-free equilibrium: E0 := (0, 0) and a positive
equilibrium E∗ := (u∗, v∗) = ( g

e ,
g
e ), normally we are interested in the positive equilibrium. The Jacobian

matrix of (2.1) evaluated at the positive equilibrium E∗ is

J(E∗) =

(
1 −1

2g −g

)
.

Therefore the corresponding characteristic equation for J(E∗) is

λ2 − tr(J(E∗))λ + detJ(E∗) = 0,

the eigenvalues are

λ1,2 =
tr(J(E∗)) ±

√
tr2(J(E∗)) − 4detJ(E∗)

2
,

where tr(J(E∗)) = 1 − g, detJ(E∗) = g > 0.

Theorem 2.1. The positive equilibrium E∗ of system (2.1) is locally asymptotically stable if

g > 1,

and is unstable if

g < 1,

Moreover, the Hopf bifurcation will occur at the point E∗ in system (2.1) when g = 1.

Proof. If g > 1 holds, the eigenvalues have negative real parts, thus the equilibrium E∗ of system (2.1)
is locally asymptotically stable; if g < 1 holds, then the eigenvalues have positive real parts, thus the
equilibrium E∗ of system (2.1) is unstable; if g = 1 holds, then tr(J(E∗)) = 1−g = 0, so the eigenvalues
are a pair of conjugate pure imaginary roots λ1,2 = ±iω∗ = ±i

√
g = ±i. Note that

Re
{
∂λ

∂g

}
= Re

{
−

i + 1
2i

}
= −

1
2
< 0, (2.2)

then we choose g as the Hopf bifurcation parameter, the Hopf bifurcation may occur in system (2.1)
on the critical line L1 : g = 1. �
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In the following, we will employ the method in [15] to obtain the direction of Hopf bifurcation. Put
ū = u − g

e and v̄ = v − g
e into system (2.1), then we have( dū

dt
dv̄
dt

)
= J(E∗)

(
ū
v̄

)
+

(
f1(ū, v̄)
f2(ū, v̄)

)
, (2.3)

where

f1(ū, v̄) =
e
g

ū2 −
2e
g

ūv̄ +
e
g

v̄2 −
e2

g2 v̄3 −
e2

g2 ū2v̄ +
2e2

g2 ūv̄2,

f2(ū, v̄) = eū2,

when g = 1, we have λ1,2 = ±iω∗ = ±i
√

g, and (ω∗)2 = g = 1 > 0. Let T be the matrix that transforms
the Jacobian matrix into a standard form

T =

(
1 0
1 −1

)
.

Under the transformation (
ū
v̄

)
= T

(
u
v

)
,

system (2.3) becomes ( du
dt
dv
dt

)
= T−1JT

(
u
v

)
+ T−1

(
f1T (u, v)
f2T (u, v)

)
=

(
0 1
−1 0

) (
u
v

)
+

(
f3(u, v)
f4(u, v)

)
,

where (
f3(u, v)
f4(u, v)

)
=

(
f1(u, u − v)

f1(u, u − v) − f2(u, u − v)

)
,

f1(u, u − v) =ev2 + e2v3 − e2uv2,

f2(u, u − v) =eu2,

therefore

f3(u, v) =ev2 + e2v3 − e2uv2,

f4(u, v) = − eu2 + ev2 + e2v3 − e2uv2.

Then the stability of Hopf bifurcation in system (2.1) at E∗ is determined by the sign of the following
quantity

σ =
1

16
( f3uuu + f4uuv + f3uvv + f4vvv) +

1
16ω∗

[
f3uv( f3uu + f3vv) − f4uv( f4uu + f4vv) − f3uu f4uu + f3vv f4vv

]
,
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where all partial derivatives are calculated at the bifurcation point (u, v, g) = (0, 0, 1).
By calculation, we find that

f3uuu = 0, f3uvv = −2e2, f4uuv = 0, f4vvv = 6e2,

f3uv = 0, f3uu = 0, f3vv = 2e,

f4uv = 0, f4uu = −2e, f4vv = 2e,

then

σ1 =
1

16
(0 + 0 − 2e2 + 6e2) −

1
4

e2 = 0.

This implies that Hopf bifurcation is degenerate [19, 20].
Next, the technique in [21] will be employed to analyze the degenerate bifurcation. First the normal

form of system (2.1) under the Hopf bifurcation condition should be presented. In [21], the author
mainly introduced how to use a perturbation technique to find a unique normal form for a given set of
differential equations, the procedure is formulated as the Maple code. Now assume g = 1, that is to
say, the Hopf bifurcation occurs in model (2.1), then system (2.1) becomes{

du
dt = u2

v − u,
dv
dt = eu2 − v,

(2.4)

and (2.3) turns into ( dū
dt
dv̄
dt

)
= J(E∗)

(
ū
v̄

)
+

(
f1(ū, v̄)
f2(ū, v̄)

)
, (2.5)

where

J(E∗) =

(
1 −1
2 −1

)
,

and (
f1(ū, v̄)
f2(ū, v̄)

)
=

(
eū2 − 2eūv̄ + ev̄2 − e2v̄3 − e2ū2v̄ + 2e2ūv̄2

eū2

)
.

Since the linear part of the system is not the standard form, therefore from the above transformation,
then we have

f3(u, v) =ev2 + e2v3 − e2uv2,

f4(u, v) = − eu2 + ev2 + e2v3 − e2uv2.

Let u = x1, v = x2 then we have{ dx1
dt = x2 + ex2

2 − e2x1x2
2 + e2x3

2,
dx2
dt = −x1 − ex2

1 + ex2
2 − e2x1x2

2 + e2x3
2,

(2.6)

Before using Maple, we need to determine the data in the input file. The input file contains the data
of the input functions fi, the number of the real eigenvalues M1, the number of the pairs of complex
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conjugate eigenvalues M2, and the order of the normal forms. Therefore, for system (2.6), M1 = 0
is the number of the non-zero real eigenvalues, and M2 = 0 is the number of the pairs of complex
conjugate eigenvalues. The system (2.4) is dimension N = 2 + 0 + 2× 0 = 2, indicating that the system
has only a pair of purely imaginary eigenvalues(±iω∗ = ±i). Order = 5 indicates that the procedure
will be executed up to sixth order approximations. The input file is represented as that in Table 1,
which is shown below.

Table 1. The input file to Maple source code.

M1 := 0;
M2 := 0;
N := 2+M1+M2*2;

Order := 5;
f unc[1] := x[2] + e ∗ x[2]2 − e2 ∗ x[1] ∗ x[2]2 + e2 ∗ x[2]3;
f unc[2] := −x[1] − e ∗ x[1]2 + e ∗ x[2]2 − e2 ∗ x[1] ∗ x[2]2 + e2 ∗ x[2]3;

Now, after executing the Maple source code program1 which is mentioned in [21] and the input file
(see Table 1), one has the output file, which includes Dir, Diφ and the solutions xi. The results:

D1r = D3r = D5r = 0, D2r = 0, D4r =
e4

3
r5, (2.7)

D1φ = D3φ = D5φ = 0, D2φ = −
e2

12
r2, D4φ =

1555e4

1728
r4, (2.8)

and

x1 = r cos θ + e
3r2(cos 2θ − sin 2θ) − e2

16r3(cos 3θ + 4 sin 3θ)
− e3

1080r4(540 − 215 cos 2θ − 595 sin 2θ + 236 cos 4θ + 52 sin 4θ) · ··,
x2 = −r sin θ − e

6r2(3 + cos 2θ + 4 sin 2θ) − e2

96r3(32 cos 3θ + 22 sin 3θ + 40 cos θ)
+ e3

2160r4(840 + 520 sin 2θ + 925 cos 2θ + 208 sin 4θ − 641 cos 4θ) · ··,

(2.9)

where the fifth and sixth order terms are omitted for simplicity. From Eqs (2.7) and (2.8), under g = 1
the normal form can be obtained

dr
dt = D0r + εD1r + ε2D2r + ε3D3r + ε4D4r + ε5D5r

= e4

3 r5,
dθ
dt = ωc

dT0
dt + D0φ + εD1φ + ε2D2φ + ε3D3φ + ε4D4φ + ε5D5φ

= 1 − e2

12r2
(
1 − 1555e2

144 r2
)
.

(2.10)

From Eq (2.10), we know that the the second Lyapunov coefficient associated with degenerated Hopf
bifurcation σ2 = e4

3 , 0. So the Bautin bifurcation may arise from E∗ at g = g∗ = 1. Up to now, we
need to further calculate the universal unfolding of system (2.1) for Bautin bifurcation so that we can
identify the stability of periodic solutions. From the above discussion, we know that g and e are chosen
as bifurcation parameters and two small perturbations τ = (τ1, τ2) should be introduced to system (2.1),
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namely g = 1 + τ1, e = 1 + τ2. Then using the parameter transformation g = 1 + τ1, e = 1 + τ2 and the
variable transformation (

ū
v̄

)
= T

(
x1

x2

)
,

we can transform system (2.3) into the following system dx1
dt = x2 + τ2+1

τ1+1 x2
2 +

(τ2+1)2

(τ1+1)2 x3
2 −

(τ2+1)2

(τ1+1)2 x1x2
2,

dx2
dt = −x1 − τ1x1 − τ1x2 − (τ2 + 1)x2

1 + τ2+1
τ1+1 x2

2 +
(τ2+1)2

(τ1+1)2 x3
2 −

(τ2+1)2

(τ1+1)2 x1x2
2.

(2.11)

Now, the Maple program can be applied to Eqs (2.11) to obtain the normal form. The normal form
is obtained from the output in the following

dr
dt

= D0r + D2r3 + D4r5, (2.12)

where

D0 =
τ1√

4 − 4τ1 − τ
2
1

, D2 = −
τ1(τ2 + 1)2(τ1 + 3)
2(τ1 − 3)(τ1 + 1)2 ,

D4 =
(−24τ7

1 + 248τ6
1 − 313τ5

1 − 5573τ4
1 − 1065τ3

1 − 1947τ2
1 − 2366τ1 + 2304)(τ2 + 1)4

32(τ1 − 8)(τ1 − 3)3(τ1 + 1)5 .

From [22], we have the universal unfolding of system (2.1) for Bautin bifurcation is

dr
dt

= αr + βr3 ± r5, (2.13)

where

α =
D0

2π
, β = D2

√
|D4|.

Therefore, from the universal unfolding (2.13) we can study the distribution of limit cycles in system
(2.1).

Remark 2.1. Since σ = 0 at the parameter value g = 1, system (2.1) undergoes the Buatin bifurcation.
The bifurcation diagram of Bautin bifurcation can be found in some literatures [23, 24]. System (2.1)
always has an equilibrium, may have no, one or two limit cycles. Here, one of two limit cycles is stable
and another is unstable.

Now the numerical simulations are carried out to illustrate the Hopf bifurcation. The results are
shown in Figure 1A and 1B. Take parameters as g = 1.5, e = 1 in Figure 1A, parameters are g = 1,
e = 1 in Figure 1B.
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1.499988 1.49999 1.499992 1.499994 1.499996 1.499998 1.5 1.500002 1.500004 1.500006

u(t)

1.499985

1.49999

1.499995

1.5

1.500005

1.50001

 v
(t

)

(A)

0.998 0.9985 0.999 0.9995 1 1.0005 1.001 1.0015 1.002

u(t)

0.997

0.998

0.999

1

1.001

1.002

1.003

v
(t

)

(B)

Figure 1. The equilibrium E∗ is stable and the stable periodic solution occur in system (2.1).
Here (A) for the stable equilibrium and (B) for Hopf bifurcation.

2.2. Existence of the Turing-Hopf bifurcation

In this subsection, we will study the diffusive effects on the stability of the positive equilibrium and
show the existence of the Turing-Hopf bifurcation. From the above discussion, system (1.4) has the
only positive equilibrium E∗ = (g

e ,
g
e ). So the characteristic equation for the positive equilibrium E∗ is

∆n(λ) = λ2 + Tnλ + Jn = 0, n ∈ N0 , {0, 1, 2, 3, · · · }, (2.14)

where

Tn = (D1 + D2)n2 + T0, Jn = D1D2n4 − (D2 − gD1)n2 + J0,

with

T0 = g − 1, J0 = g,

so the eigenvalues are

λ1,2 =
−Tn ±

√
T 2

n − 4Jn

2
,

In what follows, we mainly research the diffusion-driven instability and the Turing-Hopf bifurcation
analysis of system (1.4).
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Theorem 2.2. Assume that D1,D2 > 0, there are a diffusion-driven Turing instability and the Turing-
Hopf bifurcation of system (1.4) at P∗ = (Dn∗

2 , g
∗), where Dn

2, gn(D2) are defined by (2.15), (2.16) and n∗
is the critical wave number for the Turing-Hopf bifurcation defined below. Then we have the following
stability and instability results for system (1.4).
(1) The positive equilibrium E∗ is locally asymptotically stable for (D2, g) ∈ R1 and unstable for
(D2, g) ∈ R2. Here R1 and R2 are defined by

R1 = {(D2, g)|g > 1, 0 < D2 ≤ Dn∗
2 } ∪ {(D2, g)|g > gn∗(D2), D2 > Dn∗

2 },

R2 = {(D2, g)|1 ≤ g < gn∗(D2), D2 > Dn∗
2 } ∪ {(D2, g)|0 < g < 1, D2 > 0},

with

Dn
2 =

D1n2 + 1
n2(1 − D1n2)

, (2.15)

gn(D2) =
n2(1 − D1n2)

D1n2 + 1
D2, (2.16)

and

n∗ =


n1 = 1, i f 0 < D1 ≤

√
2 − 1 and k(n1) ≤ k(n2),

n2 =

[√
1

D1

] { if 0 < D1 ≤
√

2 − 1 and k(n1) > k(n2),
if
√

2 − 1 < D1 < 1,
(2.17)

where

k(n) =
n2(1 − D1n2)

1 + D1n2 . (2.18)

(2) The critical line of the Turing instability is defined by L2 : g = gn∗(D2),D2 > 0; the Turing
instability occurs for (D2, g) ∈ R̃2, where

R̃2 =
{
(D2, g)|1 < g < gn∗(D2), D2 > Dn∗

2

}
.

(3) System (1.4) undergoes the Turing-Hopf bifurcation at the point (Dn∗
2 , g

∗).

Proof. From Theorem 2.1, the Hopf bifurcation occurs at the line defined by L1 : g = 1. To make sure
the occurrence of Turing bifurcation, it is necessary that g > 1 and there exists some n ∈ N0/{0} such
that Jn < 0, which means g < gn(D2). Thus the critical parameter value of the Turing instability is
defined by Jn = 0, which leads to the Turing critical line

L2 : g = gn(D2) ,
n2(1 − D1n2)

D1n2 + 1
D2, D2 > 0.

It is noted that the line L2 : g = gn(D2) is linear and its slope k(n) is given by

k(n) =
n2(1 − D1n2)

D1n2 + 1
.

To make the lines L1 and L2 intersect, it is necessary that k(n) > 0 must be satisfied. That is to say,

1 − D1n2 > 0, n ∈
(
0,

√
1

D1

)
. If n ∈

(
0,

√
1

D1

)
exists which means 0 < D1 < 1, then there is the Turing
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instability. Otherwise there is no Turing instability. Therefore when n ∈
(
0,

√
1

D1

)
and 0 < D1 < 1, the

Turing instability exists.
The critical lines of Hopf and Turing bifurcations intersect at the point P∗ = (Dn

2, g
∗) where Dn

2 = 1+D1n2

n2(1−D1n2) ,

g∗ = 1,

and when n ∈
(
0,

√
1

D1

)
, 0 < D1 < 1, the intersecting point P∗ exists. In the following, we are going to

choose n which minimizes k(n) as the critical wave number for the Turing-Hopf bifurcation. Now we
provide some instructions about the monotone intervals of k(n). Differentiating k(n) with respect to n,
we have

∂k(n)
∂n

=
2 − (D1n2 + 1)2

(D1n2 + 1)2 .

Then we get the following instructions.

Case (1) 0 < D1 ≤
√

2 − 1, then when n ∈
(
0,

[√ √
2−1
D1

]]
, k(n) is monotonically increasing; when

n ∈
([√ √

2−1
D1

]
,
√

1
D1

)
, k(n) is monotonically decreasing;

Case (2)
√

2 − 1 < D1 < 1, then when n ∈
(
0,

√
1

D1

)
, k(n) is monotonically decreasing,

where [·] is the integer part function. Let n1 = 1 and n2 =

[√
1

D1

]
.

Next, under Case (1), that is 0 < D1 ≤
√

2−1. We will discuss the value of the critical wave number
n∗ in the following cases.

1© if k(n1) ≤ k(n2), then we choose n∗ = n1 = 1;
2© if k(n1) > k(n2), then we choose n∗ = n2 =

[√
1

D1

]
.

Under Case (2), we know that then when n ∈
(
0,

√
1

D1

)
, k(n) is monotonically decreasing, then

we choose n∗ = n2 as the critical wave number. In the rest, taking g as a parameter we consider the
transversality condition below

dRe{λ(g)}
dg

∣∣∣∣
g=gn(D2)

= −
1 + D1n2

Tn(g)
< 0. (2.19)

Through the above analysis, when (D2, g) = (Dn∗
2 , g

∗), ∆0(λ) = 0 has a pair of purely imaginary roots
±i
√

J0, and ∆n∗(λ) = 0 has a root λ = 0 with a negative root λ = −Tn∗(g). For the other wave number
n , 0, n∗, all roots of ∆n(λ) = 0 have negative real parts. Together with the transversality conditions
(2.2) and (2.19), then we can arrive at the conclusion that system (1.4) undergoes the Turing-Hopf
bifurcation at (D2, g) = (Dn∗

2 , g
∗), then the proof is completed. �

3. Amplitude equations for the Turing-Hopf bifurcation

In this subsection, the spatiotemporal dynamics near the Turing-Hopf bifurcation point (D2, g) =

(Dn∗
2 , g

∗) will be explored by using the multiple time scale method [18]. From Theorem 2.2, for given
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parameters g, D1 and D2, we can obtain the critical wave number n∗ in terms of (2.17) and (2.19). In
the following, the process to get the the amplitude equations will be divided into three steps.
Step 1. Putting u = u − u∗, v = v − v∗ into system (1.4), then we can obtain ∂u

∂t = D1∆u + u − v + e
gu2 − 2e

g uv + e
gv2 − e2

g2 u2v + 2e2

g2 uv2,
∂v
∂t = D2∆v + 2gu − gv + eu2.

(3.1)

Let U = (u, v)T , then the system (3.1) can be transformed into

∂U
∂t

= LU + N, (3.2)

where

L =

(
D1∇

2 + 1 −1
2g D2∇

2 − g

)
,

N =

 e
gu2 − 2e

g uv + e
gv2 − e2

g2 u2v + 2e2

g2 uv2

eu2

 .
Set

L = Lg + LD2

=

(
0 0

2g −g

)
+

(
D1∇

2 + 1 −1
0 D2∇

2

)
,

(3.3)

and
Lg = L∗g + (g − g∗)M∗

g

=

(
0 0

2g∗ −g∗

)
+ (g − g∗)

(
0 0
2 −1

)
,

(3.4)

LD2 = L∗D2
+ (D2 − Dn∗

2 )M∗
D2

=

(
D1∇

2 + 1 −1
0 Dn∗

2 ∇
2

)
+ (D2 − Dn∗

2 )
(

0 0
0 ∇2

)
.

(3.5)

Step 2. The solution of system (3.2) near the Turing-Hopf bifurcation point (Dn∗
2 , g

∗) can be represented
by

U = W1eiω∗t + W2ein∗x + W̄1e−iω∗t + W̄2e−in∗x, (3.6)

where W1 is the amplitude of Hopf mode, W2 is the amplitude of Turing mode and n∗ represents the
critical wave number. To obtain the solution, we need to express it by the original parameters. First of
all, we expand the solution U in the following forms with a small parameter ε:

U = ε

(
u1

v1

)
+ ε2

(
u2

v2

)
+ ε3

(
u3

v3

)
+ o(ε3). (3.7)

In the same way, expand the Turing-Hopf bifurcation parameters D2, g and the nonlinear term N in the
small neighborhood with the small parameter ε. Then we have

D2 − Dn∗
2 = ε2d2 + ε3d3 + o(ε3),

g − g∗ = ε2g2 + ε3g3 + o(ε3),
N = ε2h2 + ε3h3 + o(ε3),

(3.8)
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where

h2 =

( e
g∗u

2
1 −

2e
g∗ u1v1 + e

g∗ v
2
1

eu2
1

)
,

h3 =

 2e
g∗ u1u2 −

2e
g∗ (u1v2 + u2v1) + 2e

g∗ v1v2 −
e2

(g∗)2 v3
1 −

e2

(g∗)2 u2
1v1 + 2e2

(g∗)2 u1v2
1

2eu1u2

 .
Next, we expand the time scale of system (3.2). Let T0 = t, T2 = ε2t, and T0, T2 can be regard
as independent variables, then the form of the derivative with respect to time t can be represented as
follows

∂

∂t
=

∂

∂T0
+ ε2 ∂

∂T2
. (3.9)

After that, substitute (3.3)-(3.5) and (3.7)-(3.9) into (3.2), then expanding equation with respect to
different orders of ε, comparing with the coefficients of ε on the both sides of equation, we get

∂

∂T0

(
u1

v1

)
− L∗g

(
u1

v1

)
− L∗D2

(
u1

v1

)
= 0, (3.10)

collecting the coefficients of ε2 on the both sides of equation, we have

∂

∂T0

(
u2

v2

)
− L∗g

(
u2

v2

)
− L∗D2

(
u2

v2

)
= h2, (3.11)

comparing with the coefficients of ε3 on the both sides of equation, we obtain

∂

∂T0

(
u3

v3

)
− L∗g

(
u3

v3

)
− L∗D2

(
u3

v3

)
= −

∂

∂T2

(
u1

v1

)
+ g2M∗

g

(
u1

v1

)
+ d2M∗

D2

(
u1

v1

)
+ h3. (3.12)

From Eq (3.10), the general solution can be represented as

U1 =

(
u1

v1

)
= W1(T2)a1eiω∗T0 + W2(T2)a2ein∗x + c.c., (3.13)

where the c.c. represents conjugate terms. Substituting (3.13) into (3.10), one has

a1 =

(
a11

a12

)
=

(
1

1 − i

)
, a2 =

(
a21

a22

)
=

(
1

1 − D1n2
∗

)
.

For Eq (3.11), the right-hand side of (3.11) is h2, which has the formulas of u2
1, u1v1 and v2

1. Since
these formulas contain

W2
1 e2iω∗T0 , |W1|

2, W2
2 e2in∗x, |W2|

2, W1W2eiω∗T0+in∗x, W1W̄2eiω∗T0−in∗x,

and the conjugate terms of the above terms. Thus the solution of Eq (3.11) can be expressed as

U2 =

(
u2

v2

)
= W2

1 b1e2iω∗T0 + |W1|
2b2 + W2

2 b3e2in∗x

+ |W2|
2b4 + W1W2b5eiω∗T0+in∗x + W1W̄2b6eiω∗T0−in∗x + c.c.,

(3.14)
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where b1, b2, b3, b4, b5 and b6 are undetermined coefficients. Putting (3.14) into (3.11), comparing
with the coefficients of similar terms W2

1 e2iω∗T0 , |W1|
2, W2

2 e2in∗x, |W2|
2, W1W2eiω∗T0+in∗x, W1W̄2eiω∗T0−in∗x,

which are on both sides of the equation, then we get

b1 =

(
b11

b12

)
=

 (−2ea12+ea2
12)(2i+1)+2ei
−3

e(2i+1)+2(−2ea12+ea2
12)

−3

 , b2 =

(
b21

b22

)
=

(
−2ea12 + e|a12|

2

e − 4ea12 + 2e|a12|
2

)
,

b3 =

(
b31

b32

)
=


(e−2ea22+ea2

22)(4Dn∗
2 n2
∗+1)−e

(4D1n2
∗−1)(4Dn∗

2 n2
∗+1)+2

e(4D1n2
∗−1)+2(e−2ea22+ea2

22)

(4D1n2
∗−1)(4Dn∗

2 n2
∗+1)+2

 , b4 =

(
b41

b42

)
=

(
−2ea22 + e|a22|

2

e − 4ea22 + 2e|a22|
2

)
,

b5 =

(
b51

b52

)
=


2e(i+1+Dn∗

2 n2
∗)(1−a12−a22+a12a22)−2e

(i+D1n2
∗−1)(i+1+Dn∗

2 n2
∗)+2

2e(i+D1n2
∗−1)+4e(1−a12−a22+a12a22)

(i+D1n2
∗−1)(i+1+Dn∗

2 n2
∗)+2

 , b6 =

(
b61

b62

)
=


2e(i+1+Dn∗

2 n2
∗)(1−a12−ā22+a12ā22)−2e

(i+D1n2
∗−1)(i+1+Dn∗

2 n2
∗)+2

2e(i+D1n2
∗−1)+4e(1−a12−ā22+a12ā22)

(i+D1n2
∗−1)(i+1+Dn∗

2 n2
∗)+2

 .
As for Eq (3.12), putting (3.13) and (3.14) into Eq (3.12), then we obtain

∂

∂T0

(
u3

v3

)
− L∗g

(
u3

v3

)
− L∗D2

(
u3

v3

)
= u1eiω∗T0 + u2ein∗x + NST + c.c, (3.15)

where NST stands for the non-secular terms and

u1 =

(
u11

v12

)
, u2 =

(
u21

v22

)
,

what is more, we have
u11 = −∂W1

∂T2
+ c1W1|W1|

2 + c2W1|W2|
2,

u12 = −a12
∂W1
∂T2

+ g2(2 − a12)W1 + c3W1|W1|
2 + c4W1|W2|

2,

u21 = −∂W2
∂T2

+ c5W2|W2|
2 + c6W2|W1|

2,

u22 = −a22
∂W2
∂T2

+ (g2(2 − a22) − d2n2
∗a22)W2 + c7W2|W2|

2 + c8W2|W1|
2,

where

c3 =2e(b11 + 2Re{b21}),
c4 =2e(2Re{b41} + b51 + b61),
c7 =2e(b31 + 2Re{b41}),
c8 =2e(2Re{b21} + b51 + b̄61),
c1 =2e(b11 + 2Re{b21} − b12 − 2Re{b22} − ā12b11 − 2a12Re{b21})

+ 2e(ā12b12 + 2a12Re{b22}) − 3e2a12|a12|
2 − e2(2a12 + ā12) + 2e2(a2

12 + 2|a12|
2),

c2 =2e(b51 + b61 + 2Re{b41} − b52 − b62 − 2Re{b42} − ā22b51 − a22b61 − 2a12Re{b41}) + 2e(ā22b52

+ a22b62 + 2a12Re{b42}) − 6e2a12|a22|
2 − e2(2a12 + 2a22 + 2ā22) + 2e2(2a12a22 + 2a12ā22 + 2|a22|

2),
c5 =2e(b31 + 2Re{b41} − b32 − 2Re{b42} − ā22b31 − 2a22Re{b41})

+ 2e(ā22b32 + 2a22Re{b42}) − 3e2a22|a22|
2 − e2(2a22 + ā22) + 2e2(a2

22 + 2|a22|
2),

c6 =2e(b51 + b̄61 + 2Re{b21} − b52 − b̄62 − 2Re{b22} − ā12b51 − a12b̄61 − 2a22Re{b21}) + 2e(ā12b52
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+ a12b̄62 + 2a22Re{b22}) − 6e2a22|a12|
2 − e2(2a22 + 2a12 + 2ā12) + 2e2(2a12a22 + 2ā12a22 + 2|a12|

2).

In order to get the unique solution of Eq (3.12), the formula on the right-hand side of (3.15) must
satisfy the Fredholm solvability conditions, that is to say, the following equations must be satisfied

< p∗1,u1 >= 0, < p∗2,u2 >= 0, (3.16)

where

p∗1 =

(
p∗11
p∗12

)
=

(
−1
−1+i
i+1
−2+2i

)
, p∗2 =

(
p∗21
p∗22

)
=

 −2
−2+(D1n2

∗−1)2

−(D1n2
∗−1)

−2+(D1n2
∗−1)2

 ,
and the inner product has the form (p̄∗j)

T u j = 0, j = 1, 2.
Thus, from Eq (3.16), we can get the amplitude equations as follows ∂W1

∂T2
= ϕ1W1 + ϕ2W1|W1|

2 + ϕ3W1|W2|
2,

∂W2
∂T2

= ψ1W2 + ψ2W2|W2|
2 + ψ3W2|W1|

2,
(3.17)

where

ϕ1 =
p̄∗12g2(2 − a12)
p̄∗11 + a12 p̄∗12

, ϕ2 =
p̄∗12c3 + p̄∗11c1

p̄∗11 + a12 p̄∗12
, ϕ3 =

p̄∗12c4 + p̄∗11c2

p̄∗11 + a12 p̄∗12
,

ψ1 =
p∗22g2(2 − a22) − p∗22d2n2

∗a22

p∗21 + a22 p∗22
, ψ2 =

p∗21c5 + p∗22c7

p∗21 + a22 p∗22
, ψ3 =

p∗21c6 + p∗22c8

p∗21 + a22 p∗22
.

Step 3. Putting the transformations W1 = ρ1eiθ, W2 = ρ2 into system (3.17), we obtain the equivalent
amplitude equations of the Turing-Hopf bifurcation in the real coordinates:

ρ̇1 = Re{ϕ1}ρ1 + Re{ϕ2}ρ
3
1 + Re{ϕ3}ρ1ρ

2
2,

ρ̇2 = Re{ψ1}ρ2 + Re{ψ2}ρ
3
2 + Re{ψ3}ρ2ρ

2
1,

θ̇ = Im{ϕ1} + Im{ϕ2}ρ
2
1 + Im{ϕ3}ρ

2
2.

(3.18)

Let ξ1 = Re{ϕ1}, ξ2 = Re{ψ1}, ξ3 = Im{ϕ1}, A1 = Re{ϕ2}, A2 = Re{ϕ3}, A3 = Re{ψ2}, A4 = Re{ψ3},
A5 = Im{ϕ2}, A6 = Im{ϕ3}, where Re{·} and Im{·} represent the real part and the imaginary part of ·,
respectively. Then after we truncate the third order terms and remove the azimuth terms, the amplitude
equations of the Turing-Hopf bifurcation become{

ρ̇1 = ξ1ρ1 + A1ρ
3
1 + A2ρ1ρ

2
2,

ρ̇2 = ξ2ρ2 + A3ρ
3
2 + A4ρ2ρ

2
1.

(3.19)

4. Numerical simulations

In this section, some numerical simulations are carried out to verify the above theoretical analysis.
In the pervious sections, the amplitude equations of system (1.4) are obtained near the Turing-Hopf
bifurcation. However, what kind of dynamical behaviors will appear in the system near the Turing-
Hopf point (Dn∗

2 , g
∗)? Then what we are going to focus on is what kinds of dynamical patterns of
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system (1.4) near the bifurcation point will occur. We mainly study the amplitude Eq (3.19). First of
all, we set D1 = 0.6, e = 1, g = 1, it follows from Theorem 2.2 that n∗ = 1, Dn∗

2 = 4 and

L1 : g = 1, L2 : g = gn(D2) = 0.25D2, D2 > 0.

The straight line L1 intersects with L2 at the point P∗(4, 1) in the D2 − g plane, system (1.4) will
undergoes the Turing-Hopf bifurcation near the positive equilibrium E∗ at the point P∗. The stable
region for the positive equilibrium E∗ in the D2 − g plane is shown in Figure 2.

R1

R2

R3

R4

R5

R6

g2

T2

T4

d2
T1

T3

Figure 2. Bifurcation diagram near the Turing-Hopf bifurcation point P∗(Dn∗
2 , g

∗) in the plane
of d2 − g2.

According to the calculation procedure in Section 2, by using numerical simulation, we have

ξ1 = −g2, ξ2 =
2

23
d2 −

8
23

g2,

A1 = −7.333, A2 = 91.1469, A3 = −0.7868, A4 = 39.1769.

Then, the amplitude equations truncated to the third order terms are{
ρ̇1 = −g2ρ1 − 7.333ρ3

1 + 91.1469ρ1ρ
2
2,

ρ̇2 = ( 2
23d2 −

8
23g2)ρ2 − 0.7868ρ3

2 + 39.1769ρ2ρ
2
1,

(4.1)

where d2 and g2 are perturbation parameters for the Turing-Hopf point P∗(Dn∗
2 , g

∗).
Next, we will calculate the equilibria of system (4.1). Furthermore, note that ρ1 > 0, and ρ2 is an

arbitrary real number. Hence, the different constant solutions of system (4.1) are:

zero equilibrium point :
Q0 = (0, 0), f or all d2, g2,

three boundary equilibria :
Q1 =

( √
−0.1364g2, 0

)
, f or g2 < 0,

Q±2 =
(
0,±

√
0.1105d2 − 0.4421g2

)
, f or g2 < 0.25d2,

two internal equilibria :
Q±3 =

( √
−(2.2232E − 03)d2 + (9.1134E − 03)g2,±

√
−(1.7887E − 04)d2 + (1.1074E − 02)g2

)
,

f or g2 > 0.2439d2, and g2 > 0.0153d2.
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Therefore, the critical bifurcation lines are performed as follows

T1 : g2 = 0;
T2 : g2 = 0.25d2;
T3 : g2 = 0.2439d2, d2 < 0;
T4 : g2 = 0.0153d2, d2 > 0.

We know that the boundary equilibria Q1 and Q±2 are bifurcated from the origin on the critical line
T1 and T2, respectively. The two internal equilibrium points Q±3 are bifurcated from the boundary
equilibria Q1 and Q±2 on the critical line T3 and T4, respectively. These four straight lines T1, T2, T3

and T4 divide the parameter plane d2 − g2 into six regions marked by R1 −R6, and the parameter plane
d2 − g2 can be shown in Figure 3.

Figure 3. When (d2, g2) = (0.5, 0.01) lies in region R2, the positive equilibrium E∗ =

(1.01, 1.01) is unstable, two stable nonconstant steady states and two unstable spatially
inhomogeneous periodic solutions emerge. Taking u(x, 0) = 1.01 − 0.51 cos(x) and v(x, 0) =

1.01 − 0.51 cos(x). Here (A) and (B) for u(x, t), (C) and (D) for v(x, t).

It is worth noting that the equilibria Q0, Q1, Q±2 and Q±3 of the amplitude equation (4.1) correspond
to the positive constant solution, the spatially homogeneous periodic solution, the nonconstant steady
state and spatially inhomogeneous periodic solution of system (1.4). Therefore, the dynamics of the
system (1.4) near the Turing-Hopf bifurcation point p∗(Dn∗

2 , g
∗) in the parameter plane d2 − g2 can be

identified on the basis of the dynamics of the normal form system (4.1). In the following, we shall
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introduce the dynamics of system (1.4) when the values of the parameters are chosen differently in
these six regions.

In region R1, system (4.1) only has one equilibrium: Q0. The equilibrium Q0 is asymptotically
stable. That means system (1.4) only has a stable constant positive equilibrium E∗. Then, we choose
(d2, g2) = (0.1, 0.5) ∈ R1 and the initial value u(x, 0) = 1.5− 0.001 cos(x), v(x, 0) = 1.5− 0.001 cos(x),
as shown in Figure 4.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

D2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

g

Stable reigon

L1: The Hopf critical line

P*(4,1)

L2: The Turing critical line

Figure 4. Bifurcation diagram in the D2 − g plane.

Figure 5. When (d2, g2) = (0.1, 0.5) lies in region R1, the positive equilibrium E∗ = (1.5, 1.5)
is asymptotically stable. Taking u(x, 0) = 1.5− 0.001 cos(x) and v(x, 0) = 1.5− 0.001 cos(x).
Here (A) and (B) for u(x, t), (C) and (D) for v(x, t).

In region R2, system (4.1) has five equilibria: Q0, Q±2 and Q±3 . The equilibria Q0 and Q±3 are

AIMS Mathematics Volume 6, Issue 2, 1920–1942.



1938

unstable, Q±2 is stable. That means the original model (1.4) has an unstable constant steady state
solution, two unstable spatially inhomogeneous periodic solutions and two stable nonconstant steady
state solutions. Then, we choose (d2, g2) = (0.5, 0.01) ∈ R2 and the initial value u(x, 0) = 1.01 −
0.51 cos(x), v(x, 0) = 1.01 − 0.51 cos(x), as shown in Figure 5.

In region R3, system (4.1) has three equilibria: Q0, Q±2 . The equilibria Q0 and Q±2 are stable. That
means the original model (1.4) has a stable constant steady state solution and two stable nonconstant
steady state solutions. Then, we choose (d2, g2) = (0.1, 0.0015) ∈ R2 and the initial value u(x, 0) =

1.0015 − 0.001 cos(x), v(x, 0) = 1.0015 − 0.001 cos(x), as shown in Figure 6.

Figure 6. When (d2, g2) = (−0.01,−0.03) lies in region R4, the positive equilibrium
E∗ = (0.97, 0.97) and the spatially homogeneous periodic solution are unstable, and the
nonconstant steady state solutions are stable. Taking u(x, 0) = 0.97 − 0.001 cos(x) and
v(x, 0) = 0.97 − 0.1 cos(x). Here (A) and (B) for u(x, t), (C) and (D) for v(x, t).

In region R4, system (4.1) has four equilibria: Q0, Q1 and Q±2 . The equilibria Q0 and Q1 are
unstable, Q±2 is stable. That means the original model (1.4) has a unstable constant steady state solution,
a unstable spatially homogeneous periodic solution and two stable nonconstant steady state solutions.
Then, we choose (d2, g2) = (−0.01,−0.03) ∈ R4 and the initial value u(x, 0) = 0.97 − 0.001 cos(x),
v(x, 0) = 0.97 − 0.1 cos(x), as shown in Figure 7.

In region R5, system (4.1) also has four equilibria: Q0, Q1 and Q±2 . The equilibrium Q±2 is stable, and
the equilibria Q0 and Q1 are unstable. That means the original model (1.4) has two stable nonconstant
steady state solutions, a unstable constant steady state solution and a unstable spatially homogeneous
periodic solution. Then, we choose (d2, g2) = (−0.01,−0.00244) ∈ R5 and the initial value u(x, 0) =

0.99756 − 0.0091 cos(x), v(x, 0) = 0.99756 − 0.1 cos(x), as shown in Figure 8.
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Figure 7. When (d2, g2) = (0.1, 0.0015) lies in region R3, the positive equilibrium
E∗ = (1.0015, 1.0015) and the nonconstant steady state solutions are stable. Taking
u(x, 0) = 1.0015 − 0.001 cos(x) and v(x, 0) = 1.0015 − 0.001 cos(x). Here (A) and (B)
for u(x, t), (C) and (D) for v(x, t).

Figure 8. When (d2, g2) = (−0.01,−0.00244) lies in region R5, the positive equilibrium
E∗ = (0.99756, 0.99756) and the spatially homogeneous periodic solution are unstable, and
the nonconstant steady state solutions are stable. Taking u(x, 0) = 0.99756 − 0.0091 cos(x)
and v(x, 0) = 0.99756 − 0.1 cos(x). Here (A) and (B) for u(x, t), (C) and (D) for v(x, t).
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In region R6, system (4.1) also has four equilibria: Q0, Q1 and Q±3 . The equilibrium Q0 and Q1

are stable, and Q±3 is unstable. That means the original model (1.4) has a stable constant steady state
solution, a stable spatially homogeneous periodic solution and two unstable spatially inhomogeneous
periodic solutions. Then, we choose (d2, g2) = (−0.42,−0.02) ∈ R6 and the initial value u(x, 0) =

0.98 − 0.001 cos(x), v(x, 0) = 0.98 − 0.001 cos(x), as shown in Figure 9.

Figure 9. When (d2, g2) = (−0.42,−0.02) lies in region R6, the positive equilibrium
E∗ = (0.98, 0.98) and the spatially homogeneous periodic solution are stable. Two unstable
spatially inhomogeneous periodic solutions emerge. Taking u(x, 0) = 0.98−0.001 cos(x) and
v(x, 0) = 0.98 − 0.001 cos(x). Here (A) and (B) for u(x, t), (C) and (D) for v(x, t).

5. Conclusions and discussions

In this paper, the Gierer-Meinhardt model with different sources with Neumann boundary conditions
has been considered. Firstly, we focus on the ODEs system of the Gierer-Meinhardt model (1.4),
we investigate the condition of the existence for Hopf bifurcation, and find that Hopf bifurcation is
degenerate. Therefore, we further study the order of degenerate Hopf bifurcation. With the aid of the
symbolic language Maple, we get the normal form associated degenerate Hopf bifurcation, we find
that the system (2.1) undergoes a Bautin bifurcation. Furthermore, we get the the universal unfolding
of system (2.1) for Bautin bifurcation so that we can identify the stability of periodic solutions.
Next we mainly consider the diffusive Gierer-Meinhardt model (1.4), the Turing instability and the
existence of the Turing-Hopf bifurcations are investigated. Then, by employing the multiple time
scale technique, we obtain the amplitude equations for the Turing-Hopf bifurcation. Furthermore,
by analyzing the obtained amplitude equations, the spatiotemporal patterns and their stability are
classified. From numerical simulations, we find that the original Gierer-Meinhardt model may exhibit
the nonconstant steady state, spatially homogeneous periodic solution and the spatially inhomogeneous
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periodic solution. The numerical results well confirmed the theoretical analysis we have obtained
above. In our work, we choose D2 and g as the bifurcate parameters. That is to say, the formation of
spatiotemporal patterns is related to the concentrations of inhibitor, and the concentrations of inhibitor
has a direct relationship with the exogenous sources. When the exogenous sources of activator are taken
into account, the same spatiotemporal patterns have been found in [7]. We find that the absence of the
exogenous sources of activator can not change the shape of spatiotemporal patterns, but the exogenous
sources would affect the speed of patterns formation. Then, how about the spatial resonance in the
Gierer-Meinhardt model? The spatial resonance in the Gierer-Meinhardt model need to be discussed
in the future work.
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