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Abstract: In this paper, we solve the additive ρ-functional inequalities:

‖ f (x + y) − f (x) − f (y)‖ ≤ ‖ρ(2 f (
x + y

2
) − f (x) − f (y))‖,

‖2 f (
x + y

2
) − f (x) − f (y)‖ ≤ ‖ρ( f (x + y) − f (x) − f (y))‖,

where ρ is a fixed non-Archimedean number with |ρ| < 1. More precisely, we investigate the solutions
of these inequalities in non-Archimedean 2-normed spaces, and prove the Hyers-Ulam stability of
these inequalities in non-Archimedean 2-normed spaces. Furthermore, we also prove the Hyers-Ulam
stability of additive ρ-functional equations associated with these inequalities in non-Archimedean 2-
normed spaces.
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1. Introduction and preliminaries

The study of stability problems for functional equations is related to a question of Ulam [23] in
1940 concerning the stability of group homomorphisms.

The functional equation

f (x + y) = f (x) + f (y) (1.1)

is called Cauchy functional equation. Every solution of the Cauchy functional equation is said to be
an additive mapping. In 1941, Hyers [10] gave the first affirmative answer to the question of Ulam for
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Banach spaces. Hyers’ result was generalized by Aoki [1] for additive mappings and by Rassias [20]
for linear mappings by considering an unbounded Cauchy difference. In 1994, Găvruţă [3] provided a
further generalization of the Rassias’ theorem in which he replaced the unbounded Cauchy difference
by a general control function.

The following functional equation

2 f (
x + y

2
) = f (x) + f (y) (1.2)

is called Jensen functional equation. See [15, 16, 19, 22] for more information on functional equations.
Gilányi [7] and Rätz [21] showed that if f satisfies the functional inequality

‖2 f (x) + 2 f (y) − f (xy−1)‖ ≤ ‖ f (xy)‖, (1.3)

then f satisfies the Jordan-Von Neumann functional equation

2 f (x) + 2 f (y) = f (xy) + f (xy−1).

Fechner [2] and Gilányi [8] proved the generalized Hyers-Ulam stability of the functional inequality
(1.1). Park et al. [17] investigated the generalized Hyers-Ulam stability of functional inequalities
associated with Jordon-Von Neumann type additive functional equations. Kim et al. [11] solved the
additive ρ-functional inequalities in complex normed spaces and proved the Hyers-Ulam stability of
the additive ρ-functional inequalities in complex Banach spaces. In 2014, Park [14] considered the
following two additive ρ-functional inequalities

‖ f (x + y) − f (x) − f (y)‖ ≤ ‖ρ(2 f (
x + y

2
) − f (x) − f (y))‖, (1.4)

‖2 f (
x + y

2
) − f (x) − f (y)‖ ≤ ‖ρ( f (x + y) − f (x) − f (y))‖ (1.5)

in non-Archimedean Banach spaces and in complex Banach spaces, where ρ is a fixed
non-Archimedean number with |ρ| < 1 or ρ is a fixed complex number with |ρ| < 1.

In this paper, we establish the solution of the additive ρ-functional inequalities (1.4) and (1.5),
and prove the Hyers-Ulam stability of the additive ρ-functional inequalities (1.4) and (1.5) in non-
Archimedean 2-Banach spaces. Moreover, we prove the Hyers-Ulam stability of additve ρ-functional
equations associated with the additive ρ-functional inequalities (1.4) and (1.5) in non-Archimedean
2-Banach spaces.

Gähler [4, 5] has introduced the concept of linear 2-normed spaces in the middle of the 1960s. Then
Gähler [6] and White [24, 25] introduced the concept of 2-Banach spaces. Following [9, 12, 13, 18], we
recall some basic facts concerning non-Archimedean normed space and non-Archimedean 2-normed
space and some preliminary results.

By a non-Archimedean field we mean a field K equipped with a function (valuation) | · | from K into
[0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r||s|, and |r + s| ≤ max{|r|, |s|} for r, s ∈ K. Clearly
|1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. By the trivial valuation we mean the function | · | taking
everything but 0 into 1 and |0| = 0.

Definition 1.1. (cf. [9, 13]) Let X be a linear space over a scalar field K with a non-Archimedean
non-trivial valuation | · |. A function ‖ · ‖ : X → R is called a non-Archimedean norm (valuation) if it
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satisfies the following conditions:
(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖rx‖ = |r|‖x‖ for all r ∈ K, x ∈ X;
(iii) the strong triangle inequality; namely,

‖x + y‖ ≤ max{‖x‖, ‖y‖}

for all x, y ∈ X. Then (X, ‖ · ‖) is called a non-Archimedean normed space.

Definition 1.2. (cf. [12, 18]) Let X be a linear space over a scalar field K with a non-Archimedean
non-trivial valuation | · | with dim X > 1. A function ‖·, ·‖ : X → R is called a non-Archimedean 2-norm
(valuation) if it satisfies the following conditions:
(NA1) ‖x, y‖ = 0 if and only if x, y are linearly dependent;
(NA2) ‖x, y‖ = ‖y, x‖;
(NA3) ‖rx, y‖ = |r|‖x, y‖;
(NA4) ‖x, y + z‖ ≤ max{‖x, y‖, ‖x, z‖};
for all r ∈ K and all x, y, z ∈ X. Then (X, ‖·, ·‖) is called a non-Archimedean 2-normed space.

According to the conditions in Definition 1.2, we have the following lemma.

Lemma 1.3. Let (X, ‖·, ·‖) be a non-Archimedean 2-normed space. If x ∈ X and ‖x, y‖ = 0 for all y ∈ X,
then x = 0.

Definition 1.4. A sequence {xn} in a non-Archimedean 2-normed space (X, ‖·, ·‖) is called a Cauchy
sequence if there are two linearly independent points y, z ∈ X such that

lim
m,n→∞

‖xn − xm, y‖ = 0 and lim
m,n→∞

‖xn − xm, z‖ = 0.

Definition 1.5. A sequence {xn} in a non-Archimedean 2-normed space (X, ‖·, ·‖) is called a convergent
sequence if there exists an x ∈ X such that

lim
n→∞
‖xn − x, y‖ = 0

for all y ∈ X. In this case, we call that {xn} converges to x or that x is the limit of {xn}, write {xn} → x
as n→ ∞ or lim

n→∞
xn = x.

By (NA4), we have

‖xn − xm, y‖ ≤ max{‖x j+1 − x j, y‖ : m ≤ j ≤ n − 1}, (n > m),

for all y ∈ X. Hence, a sequence {xn} is Cauchy in (X, ‖·, ·‖) if and only if {xn+1 − xn} converges to zero
in a non-Archimedean 2-normed space (X, ‖·, ·‖).

Remark 1.6. Let (X, ‖·, ·‖) be a non-Archimedean 2-normed space. One can show that conditions (NA2)
and (NA4) in Definition 1.2 imply that

‖x + y, z‖ ≤ ‖x, z‖ + ‖y, z‖ and |‖x − z‖ − ‖y, z‖| ≤ ‖x − y, z‖

for all x, y, z ∈ X.
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We can easily get the following lemma by Remark1.6.

Lemma 1.7. For a convergent sequence {xn} in a non-Archimedean 2-normed space (X, ‖·, ·‖),

lim
n→∞
‖xn, y‖ = ‖ lim

n→∞
xn, y‖

for all y ∈ X.

Definition 1.8. A non-Archimedean 2-normed space, in which every Cauchy sequence is a convergent
sequence, is called a non-Archimedean 2-Banach space.

Throughout this paper, let X be a non-Archimedean 2-normed space with dim X > 1 and Y be
a non-Archimedean 2-Banach space with dim Y > 1. Let N = {0, 1, 2, . . . , }, and ρ be a fixed non-
Archimedean number with |ρ| < 1.

2. Solutions and stability of the inequality (1.4)

In this section, we solve and investigate the additive ρ-functional inequality (1.4) in
non-Archimedean 2-normed spaces.

Lemma 2.1. A mapping f : X → Y satisfies

‖ f (x + y) − f (x) − f (y), ω‖ ≤ ‖ρ(2 f (
x + y

2
) − f (x) − f (y)), ω‖ (2.1)

for all x, y ∈ X and all ω ∈ Y if and only if f : X → Y is additive.

Proof. Suppose that f satisfies (2.1). Setting x = y = 0 in (2.1), we have ‖ f (0), ω‖ ≤ ‖0, ω‖=0 for all
ω ∈ Y and so ‖ f (0), ω‖ = 0 for all ω ∈ Y . Hence we get

f (0) = 0.

Putting y = x in (2.1), we get

‖ f (2x) − 2 f (x), ω‖ ≤ ‖0, ω‖ (2.2)

for all x ∈ X and all ω ∈ Y . Thus we have

f (
x
2

) =
1
2

f (x) (2.3)

for all x ∈ X. It follows from (2.1) and (2.3) that

‖ f (x + y) − f (x) − f (y), ω‖ ≤ ‖ρ(2 f (
x + y

2
) − f (x) − f (y)), ω‖

= |ρ|‖ f (x + y) − f (x) − f (y), ω‖ (2.4)

for all x, y ∈ X and all ω ∈ Y . Hence, we obtain

f (x + y) = f (x) + f (y)

for all x, y ∈ X.
The converse is obviously true. This completes the proof of the lemma. �
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The following corollary can be found in [14, Corollary 2.2].

Corollary 2.2. A mapping f : X → Y satisfies

f (x + y) − f (x) − f (y) = ρ(2 f (
x + y

2
) − f (x) − f (y)) (2.5)

for all x, y ∈ X if and only if f : X → Y is additive.

Theorem 2.3. Let ϕ : X2 → [0,∞) be a function such that

lim
j→∞

1
|2| j

ϕ(2 jx, 2 jy) = 0 (2.6)

for all x, y ∈ X. Suppose that f : X → Y be a mapping satisfying

‖ f (x + y) − f (x) − f (y), ω‖ ≤ ‖ρ(2 f (
x + y

2
) − f (x) − f (y)), ω‖ + ϕ(x, y) (2.7)

for all x, y ∈ X and all ω ∈ Y. Then there exists a unique additive mapping A : X → Y such that

‖ f (x) − A(x), ω‖ ≤ sup
j∈N
{

1
|2| j+1ϕ(2 jx, 2 jx)} (2.8)

for all x ∈ X and all ω ∈ Y.

Proof. Letting y = x in (2.6), we get

‖ f (2x) − 2 f (x), ω‖ ≤ ϕ(x, x) (2.9)

for all x ∈ X and all ω ∈ Y . So

‖ f (x) −
1
2

f (2x), ω‖ ≤
1
|2|
ϕ(x, x) (2.10)

for all x ∈ X and all ω ∈ Y . Hence

‖
1
2l f (2lx) −

1
2m f (2mx), ω‖

≤ max{‖
1
2l f (2lx) −

1
2l+1 f (2l+1x), ω‖, · · · , ‖

1
2m−1 f (2m−1x) −

1
2m f (2mx), ω‖}

≤ max{
1
|2|l
‖ f (2lx) −

1
2

f (2l+1x), ω‖, · · · ,
1
|2|m−1 ‖ f (2m−1x) −

1
2

f (2mx), ω‖}

≤ sup
j∈{l,l+1,...}

{
1
|2| j+1ϕ(2 jx, 2 jx)} (2.11)

for all nonnegative integers m, l with m > l and for all x ∈ X and all ω ∈ Y . It follows from (2.11) that

lim
l,m→∞

‖
1
2l f (2lx) −

1
2m f (2mx), ω‖ = 0
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for all x ∈ X and all ω ∈ Y . Thus the sequence { f (2n x)
2n } is a Cauchy sequence in Y . Since Y is a

non-Archimedean 2-Banach space, the sequence { f (2n x)
2n } converges for all x ∈ X. So one can define the

mapping A : X → Y by

A(x) := lim
n→∞

f (2nx)
2n

for all x ∈ X. That is,

lim
n→∞
‖

f (2nx)
2n − A(x), ω‖ = 0

for all x ∈ X and all ω ∈ Y .
By Lemma 1.7, (2.6) and (2.7), we get

‖A(x + y) − A(x) − A(y), ω‖

= lim
n→∞

1
|2|n
‖ f (2n(x + y)) − f (2nx) − f (2ny), ω‖

≤ lim
n→∞

1
|2|n
‖ρ(2 f (

2n(x + y)
2

) − f (2nx) − f (2ny)), ω‖ + lim
n→∞

1
|2|n

ϕ(2nx, 2ny)

= ‖ρ(2A(
x + y

2
) − A(x) − A(y)), ω‖ (2.12)

for all x, y ∈ X and all ω ∈ Y . Thus, the mapping A : X → Y is additive by Lemma 2.1.
By Lemma 1.7 and (2.11), we have

‖ f (x) − A(x), ω‖ = lim
m→∞
‖ f (x) −

f (2mx)
2m , ω‖ ≤ sup

j∈N
{

1
|2| j+1ϕ(2 jx, 2 jx)}

for all x ∈ X and all ω ∈ Y . Hence, we obtain (2.8), as desired.
To prove the uniqueness property of A, Let A′ : X → Y be an another additive mapping satisfying

(2.8). Then we have

‖A(x) − A′(x), ω‖ = ‖
1
2n A(2nx) −

1
2n A′(2nx), ω‖

≤ max{‖
1
2n A(2nx) −

1
2n f (2nx), ω‖, ‖

1
2n f (2nx) −

1
2n A′(2nx), ω‖}

≤ sup
j∈N
{

1
|2|n+ j+1ϕ(2n+ jx, 2n+ jx)},

which tends to zero as n → ∞ for all x ∈ X and all ω ∈ Y . By Lemma 1.3, we can conclude that
A(x) = A′(x) for all x ∈ X. This proves the uniqueness of A. �

Corollary 2.4. Let r, θ be positive real numbers with r > 1, and let f : X → Y be a mapping such that

‖ f (x + y) − f (x) − f (y), ω‖ ≤ ‖ρ(2 f (
x + y

2
) − f (x) − f (y)), ω‖ + θ(‖x‖r + ‖y‖r)‖ω‖ (2.13)

for all x, y ∈ X and all ω ∈ Y. Then there exists a unique additive mapping A : X → Y such that

‖ f (x) − A(x), ω‖ ≤
2
|2|
θ‖x‖r‖ω‖ (2.14)

for all x ∈ X and all ω ∈ Y.
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Proof. The proof follows from Theorem 2.3 by taking ϕ(x, y) = θ(‖x‖r + ‖y‖r)‖ω‖ for all x, y ∈ X and
all ω ∈ Y , as desired. �

Theorem 2.5. Let ϕ : X2 → [0,∞) be a function such that

lim
j→∞
|2| jϕ(

x
2 j ,

y
2 j ) = 0 (2.15)

for all x, y ∈ X. Suppose that f : X → Y be a mapping satisfying

‖ f (x + y) − f (x) − f (y), ω‖ ≤ ‖ρ(2 f (
x + y

2
) − f (x) − f (y)), ω‖ + ϕ(x, y) (2.16)

for all x, y ∈ X and all ω ∈ Y. Then there exists a unique additive mapping A : X → Y such that

‖ f (x) − A(x), ω‖ ≤ sup
j∈N
{|2| jϕ(

x
2 j+1 ,

x
2 j+1 )} (2.17)

for all x ∈ X and all ω ∈ Y.

Proof. It follows from (2.9) that

‖ f (x) − 2 f (
x
2

), ω‖ ≤ ϕ(
x
2
,

x
2

) (2.18)

for all x ∈ X and all ω ∈ Y . Hence

‖2l f (
x
2l ) − 2m f (

x
2m ), ω‖

≤ max{‖2l f (
x
2l ) − 2l+1 f (

x
2l+1 ), ω‖, · · · , ‖2m−1 f (

x
2m−1 ) − 2m f (

x
2m ), ω‖}

≤ max{|2|l‖ f (
x
2l ) − 2 f (

x
2l+1 ), ω‖, · · · , |2|m−1‖ f (

x
2m−1 ) − 2 f (

x
2m ), ω‖}

≤ sup
j∈{l,l+1,...}

{|2| jϕ(
x

2 j+1 ,
x

2 j+1 )} (2.19)

for all nonnegative integers m, l with m > l and for all x ∈ X and all ω ∈ Y . It follows from (2.19) that

lim
l,m→∞

‖2l f (
x
2l ) − 2m f (

x
2m ), ω‖ = 0

for all x ∈ X and all ω ∈ Y . Thus the sequence {2n f ( x
2n )} is a Cauchy sequence in Y . Since Y is a

non-Archimedean 2-Banach space, the sequence {2n f ( x
2n )} converges for all x ∈ X. So one can define

the mapping A : X → Y by

A(x) := lim
n→∞

2n f (
x
2n )

for all x ∈ X. That is,

lim
n→∞
‖2n f (

x
2n ) − A(x), ω‖ = 0

for all x ∈ X and all ω ∈ Y . By Lemma 1.7 and (2.19), we have

‖ f (x) − A(x), ω‖ = lim
m→∞
‖ f (x) − 2m f (

x
2m ), ω‖ ≤ sup

j∈N
{|2| jϕ(

x
2 j+1 ,

x
2 j+1 )}

for all x ∈ X and all ω ∈ Y . Hence, we obtain (2.17), as desired. The rest of the proof is similar to that
of Theorem 2.3 and thus it is omitted. �
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Corollary 2.6. Let r, θ be positive real numbers with r < 1, and let f : X → Y be a mapping satisfying
(2.13) for all x, y ∈ X and all ω ∈ Y. Then there exists a unique additive mapping A : X → Y such that

‖ f (x) − A(x), ω‖ ≤
2
|2|r

θ‖x‖r‖ω‖ (2.20)

for all x ∈ X and all ω ∈ Y.

Let A(x, y) := f (x + y) − f (x) − f (y) and B(x, y) := ρ(2 f ( x+y
2 ) − f (x) − f (y)) for all x, y ∈ X. For

x, y ∈ X and ω ∈ Y with ‖A(x, y), ω‖ ≤ ‖B(x, y), ω‖, we have

‖A(x, y), ω‖ − ‖B(x, y), ω‖ ≤ ‖A(x, y) − B(x, y), ω‖.

For x, y ∈ X and ω ∈ Y with ‖A(x, y), ω‖ > ‖B(x, y), ω‖, we have

‖A(x, y), ω‖ = ‖A(x, y) − B(x, y) + B(x, y), ω‖
≤ max{‖A(x, y) − B(x, y), ω‖, ‖B(x, y), ω‖}
= ‖A(x, y) − B(x, y), ω‖
≤ ‖A(x, y) − B(x, y), ω‖ + ‖B(x, y), ω‖.

So we can obtain

‖ f (x + y) − f (x) − f (y), ω‖ − ‖ρ(2 f (
x + y

2
) − f (x) − f (y)), ω‖

≤ ‖ f (x + y) − f (x) − f (y) − ρ(2 f (
x + y

2
) − f (x) − f (y)), ω‖.

As corollaries of Theorems 2.3 and 2.5, we obtain the Hyers-Ulam stability results for the additive
ρ-functional equation associated with the additive ρ-functional inequality (1.4) in non-Archimedean
2-Banach spaces.

Corollary 2.7. Let ϕ : X2 → [0,∞) be a function and let f : X → Y be a mapping satisfying (2.6) and

‖ f (x + y) − f (x) − f (y) − ρ(2 f (
x + y

2
) − f (x) − f (y)), ω‖ ≤ ϕ(x, y) (2.21)

for all x, y ∈ X and all ω ∈ Y. Then there exists a unique additive mapping A : X → Y satisfying (2.8)
for all x ∈ X and all ω ∈ Y.

Corollary 2.8. Let r, θ be positive real numbers with r > 1, and let f : X → Y be a mapping such that

‖ f (x + y) − f (x) − f (y) − ρ(2 f (
x + y

2
) − f (x) − f (y)), ω‖ ≤ θ(‖x‖r + ‖y‖r)‖ω‖ (2.22)

for all x, y ∈ X and all ω ∈ Y. Then there exists a unique additive mapping A : X → Y satisfying (2.14)
for all x ∈ X and all ω ∈ Y.

Corollary 2.9. Let ϕ : X2 → [0,∞) be a function and let f : X → Y be a mapping satisfying (2.15)
and (2.21) for all x, y ∈ X and all ω ∈ Y. Then there exists a unique additive mapping A : X → Y
satisfying (2.17) for all x ∈ X and all ω ∈ Y.

Corollary 2.10. Let r, θ be positive real numbers with r < 1, and let f : X → Y be a mapping satisfying
(2.22) for all x, y ∈ X and all ω ∈ Y. Then there exists a unique additive mapping A : X → Y satisfying
(2.20) for all x ∈ X and all ω ∈ Y.

AIMS Mathematics Volume 6, Issue 2, 1905–1919.



1913

3. Solutions and stability of the inequality (1.5)

In this section, we solve and investigate the additive ρ-functional inequality (1.5) in
non-Archimedean 2-normed spaces.

Lemma 3.1. A mapping f : X → Y satisfies f (0) = 0 and

‖2 f (
x + y

2
) − f (x) − f (y), υ‖ ≤ ‖ρ( f (x + y) − f (x) − f (y)), υ‖ (3.1)

for all x, y ∈ X and all υ ∈ Y if and only if f : X → Y is additive.

Proof. Suppose that f satisfies (3.1). Letting y = 0 in (3.1), we have

‖2 f (
x
2

) − f (x), υ‖ ≤ ‖0, υ‖ = 0 (3.2)

for all x ∈ X and all υ ∈ Y . Thus we have

f (
x
2

) =
1
2

f (x) (3.3)

for all x ∈ X. It follows from (3.1) and (3.3) that

‖ f (x + y) − f (x) − f (y), υ‖ = ‖2 f (
x + y

2
) − f (x) − f (y), υ‖

≤ |ρ|‖ f (x + y) − f (x) − f (y), υ‖ (3.4)

for all x, y ∈ X and all υ ∈ Y . Hence, we obtain

f (x + y) = f (x) + f (y)

for all x, y ∈ X.
The converse is obviously true. This completes the proof of the lemma. �

The following corollary can be found in [14, Corollary 3.2].

Corollary 3.2. A mapping f : X → Y satisfies f (0) = 0 and

2 f (
x + y

2
) − f (x) − f (y) = ρ( f (x + y) − f (x) − f (y)) (3.5)

for all x, y ∈ X if and only if f : X → Y is additive.

Theorem 3.3. Let φ : X2 → [0,∞) be a function such that

lim
j→∞

1
|2| j

φ(2 jx, 2 jy) = 0 (3.6)

for all x, y ∈ X. Suppose that f : X → Y be a mapping satisfying f (0) = 0 and

‖2 f (
x + y

2
) − f (x) − f (y), υ‖ ≤ ‖ρ( f (x + y) − f (x) − f (y)), υ‖ + φ(x, y) (3.7)

for all x, y ∈ X and all υ ∈ Y. Then there exists a unique additive mapping A : X → Y such that

‖ f (x) − A(x), υ‖ ≤ sup
j∈N
{

1
|2| j+1φ(2 j+1x, 0)} (3.8)

for all x ∈ X and all υ ∈ Y.
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Proof. Letting y = 0 in (3.6), we get

‖2 f (
x
2

) − f (x), υ‖ ≤ φ(x, 0) (3.9)

for all x ∈ X and all υ ∈ Y . So

‖ f (x) −
1
2

f (2x), υ‖ ≤
1
|2|
φ(2x, 0) (3.10)

for all x ∈ X and all υ ∈ Y . Hence

‖
1
2l f (2lx) −

1
2m f (2mx), υ‖

≤ max{‖
1
2l f (2lx) −

1
2l+1 f (2l+1x), υ‖, · · · , ‖

1
2m−1 f (2m−1x) −

1
2m f (2mx), υ‖}

≤ max{
1
|2|l
‖ f (2lx) −

1
2

f (2l+1x), υ‖, · · · ,
1
|2|m−1 ‖ f (2m−1x) −

1
2

f (2mx), υ‖}

≤ sup
j∈{l,l+1,...}

{
1
|2| j+1φ(2 j+1x, 0)} (3.11)

for all nonnegative integers m, l with m > l and for all x ∈ X and all υ ∈ Y . It follows from (3.11) that

lim
l,m→∞

‖
1
2l f (2lx) −

1
2m f (2mx), υ‖ = 0

for all x ∈ X and all υ ∈ Y . Thus the sequence { f (2n x)
2n } is a Cauchy sequence in Y . Since Y is a

non-Archimedean 2-Banach space, the sequence { f (2n x)
2n } converges for all x ∈ X. So one can define the

mapping A : X → Y by

A(x) := lim
n→∞

f (2nx)
2n

for all x ∈ X. That is,

lim
n→∞
‖

f (2nx)
2n − A(x), υ‖ = 0

for all x ∈ X and all υ ∈ Y .
By Lemma 1.7, (3.6) and (3.7), we get

‖2A(
x + y

2
) − A(x) − A(y), υ‖

= lim
n→∞

1
|2|n
‖2 f (

2n(x + y)
2

) − f (2nx) − f (2ny), υ‖

≤ lim
n→∞

1
|2|n
‖ρ( f (2n(x + y)) − f (2nx) − f (2ny)), υ‖ + lim

n→∞

1
|2|n

φ(2nx, 2ny)

= ‖ρ(A(x + y) − A(x) − A(y)), υ‖ (3.12)

for all x, y ∈ X and all υ ∈ Y . Thus, the mapping A : X → Y is additive by Lemma 3.1.
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By Lemma 1.7 and (3.11), we have

‖ f (x) − A(x), υ‖ = lim
m→∞
‖ f (x) −

f (2mx)
2m , υ‖ ≤ sup

j∈N
{

1
|2| j+1φ(2 j+1x, 0)}

for all x ∈ X and all υ ∈ Y . Hence, we obtain (3.8), as desired.
To prove the uniqueness property of A, Let A′ : X → Y be an another additive mapping satisfying

(3.8). Then we have

‖A(x) − A′(x), υ‖ = ‖
1
2n A(2nx) −

1
2n A′(2nx), υ‖

≤ max{‖
1
2n A(2nx) −

1
2n f (2nx), υ‖, ‖

1
2n f (2nx) −

1
2n A′(2nx), υ‖}

≤ sup
j∈N
{

1
|2|n+ j+1φ(2n+ j+1x, 0)},

which tends to zero as n → ∞ for all x ∈ X and all υ ∈ Y . By Lemma 1.3, we can conclude that
A(x) = A′(x) for all x ∈ X. This proves the uniqueness of A. �

Corollary 3.4. Let s, δ be positive real numbers with s > 1, and let f : X → Y be a mapping satisfying
f (0) = 0 and

‖2 f (
x + y

2
) − f (x) − f (y), υ‖ ≤ ‖ρ( f (x + y) − f (x) − (y)), υ‖ + δ(‖x‖s + ‖y‖s)‖υ‖ (3.13)

for all x, y ∈ X and all υ ∈ Y. Then there exists a unique additive mapping A : X → Y such that

‖ f (x) − A(x), υ‖ ≤
|2|s

|2|
δ‖x‖s‖υ‖ (3.14)

for all x ∈ X and all υ ∈ Y.

Proof. The proof follows from Theorem 3.3 by taking φ(x, y) = δ(‖x‖s + ‖y‖s)‖υ‖ for all x, y ∈ X and
all υ ∈ Y , as desired. �

Theorem 3.5. Let φ : X2 → [0,∞) be a function such that

lim
j→∞
|2| jφ(

x
2 j ,

y
2 j ) = 0 (3.15)

for all x, y ∈ X. Suppose that f : X → Y be a mapping satisfying f (0) = 0 and

‖2 f (
x + y

2
) − f (x) − f (y), υ‖ ≤ ‖ρ( f (x + y) − f (x) − f (y)), υ‖ + φ(x, y) (3.16)

for all x, y ∈ X and all υ ∈ Y. Then there exists a unique additive mapping A : X → Y such that

‖ f (x) − A(x), υ‖ ≤ sup
j∈N
{|2| jφ(

x
2 j , 0)} (3.17)

for all x ∈ X and all υ ∈ Y.
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Proof. It follows from (3.9) that

‖ f (x) − 2 f (
x
2

), υ‖ ≤ φ(x, 0) (3.18)

for all x ∈ X and all υ ∈ Y . Hence

‖2l f (
x
2l ) − 2m f (

x
2m ), υ‖

≤ max{‖2l f (
x
2l ) − 2l+1 f (

x
2l+1 ), υ‖, · · · , ‖2m−1 f (

x
2m−1 ) − 2m f (

x
2m ), υ‖}

≤ max{|2|l‖ f (
x
2l ) − 2 f (

x
2l+1 ), υ‖, · · · , |2|m−1‖ f (

x
2m−1 ) − 2 f (

x
2m ), υ‖}

≤ sup
j∈{l,l+1,...}

{|2| jφ(
x
2 j , 0)} (3.19)

for all nonnegative integers m, l with m > l and for all x ∈ X and all υ ∈ Y . It follows from (3.19) that

lim
l,m→∞

‖2l f (
x
2l ) − 2m f (

x
2m ), υ‖ = 0

for all x ∈ X and all υ ∈ Y . Thus the sequence {2n f ( x
2n )} is a Cauchy sequence in Y . Since Y is a

non-Archimedean 2-Banach space, the sequence {2n f ( x
2n )} converges for all x ∈ X. So one can define

the mapping A : X → Y by

A(x) := lim
n→∞

2n f (
x
2n )

for all x ∈ X. That is,

lim
n→∞
‖2n f (

x
2n ) − A(x), υ‖ = 0

for all x ∈ X and all υ ∈ Y . By Lemma 1.7 and (3.19), we have

‖ f (x) − A(x), υ‖ = lim
m→∞
‖ f (x) − 2m f (

x
2m ), υ‖ ≤ sup

j∈N
{|2| jφ(

x
2 j , 0)}

for all x ∈ X and all υ ∈ Y . Hence, we obtain (3.17), as desired. The rest of the proof is similar to that
of Theorem 3.3 and thus it is omitted. �

Corollary 3.6. Let s, δ be positive real numbers with s < 1, and let f : X → Y be a mapping satisfying
f (0) = 0 and (3.13) for all x, y ∈ X and all υ ∈ Y. Then there exists a unique additive mapping
A : X → Y such that

‖ f (x) − A(x), υ‖ ≤ δ‖x‖s‖υ‖ (3.20)

for all x ∈ X and all υ ∈ Y.

Let Ã(x, y) := 2 f ( x+y
2 ) − f (x) − f (y) and B̃(x, y) := ρ( f (x + y) − f (x) − f (y)) for all x, y ∈ X. For

x, y ∈ X and υ ∈ Y with ‖Ã(x, y), υ‖ ≤ ‖B̃(x, y), υ‖, we have

‖Ã(x, y), υ‖ − ‖B̃(x, y), υ‖ ≤ ‖Ã(x, y) − B̃(x, y), υ‖.
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For x, y ∈ X and υ ∈ Y with ‖Ã(x, y), υ‖ > ‖B̃(x, y), υ‖, we have

‖Ã(x, y), υ‖ = ‖Ã(x, y) − B̃(x, y) + B̃(x, y), υ‖
≤ max{‖Ã(x, y) − B̃(x, y), υ‖, ‖B̃(x, y), υ‖}
= ‖Ã(x, y) − B̃(x, y), υ‖
≤ ‖Ã(x, y) − B̃(x, y), υ‖ + ‖B̃(x, y), υ‖.

So we can obtain

‖2 f (
x + y

2
) − f (x) − f (y), υ‖ − ‖ρ( f (x + y) − f (x) − f (y)), υ‖

≤ ‖2 f (
x + y

2
) − f (x) − f (y) − ρ( f (x + y) − f (x) − f (y)), υ‖.

As corollaries of Theorems 3.3 and 3.5, we obtain the Hyers-Ulam stability results for the additive
ρ-functional equation associated with the additive ρ-functional inequality (1.5) in non-Archimedean
2-Banach spaces.

Corollary 3.7. Let φ : X2 → [0,∞) be a function and let f : X → Y be a mapping satisfying f (0) = 0,
(3.6) and

‖2 f (
x + y

2
) − f (x) − f (y) − ρ( f (x + y) − f (x) − f (y)), υ‖ ≤ φ(x, y) (3.21)

for all x, y ∈ X and all υ ∈ Y. Then there exists a unique additive mapping A : X → Y satisfying (3.8)
for all x ∈ X and all υ ∈ Y.

Corollary 3.8. Let s, δ be positive real numbers with s > 1, and let f : X → Y be a mapping satisfying
f (0) = 0 and

‖2 f (
x + y

2
) − f (x) − f (y) − ρ( f (x + y) − f (x) − (y)), υ‖ ≤ δ(‖x‖s + ‖y‖s)‖υ‖ (3.22)

for all x, y ∈ X and all υ ∈ Y. Then there exists a unique additive mapping A : X → Y satisfying (3.14)
for all x ∈ X and all υ ∈ Y.

Corollary 3.9. Let φ : X2 → [0,∞) be a function and let f : X → Y be a mapping satisfying f (0) = 0,
(3.15) and (3.21) for all x, y ∈ X and all υ ∈ Y. Then there exists a unique additive mapping A : X → Y
satisfying (3.17) for all x ∈ X and all υ ∈ Y.

Corollary 3.10. Let s, δ be positive real numbers with s < 1, and let f : X → Y be a mapping
satisfying f (0) = 0 and (3.22) for all x, y ∈ X and all υ ∈ Y. Then there exists a unique additive
mapping A : X → Y satisfying (3.20) for all x ∈ X and all υ ∈ Y.

4. Conclusion

In this paper, we have solved the additive ρ-functional inequalities:

‖ f (x + y) − f (x) − f (y)‖ ≤ ‖ρ(2 f (
x + y

2
) − f (x) − f (y))‖,
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‖2 f (
x + y

2
) − f (x) − f (y)‖ ≤ ‖ρ( f (x + y) − f (x) − f (y))‖,

where ρ is a fixed non-Archimedean number with |ρ| < 1. More precisely, we have investigated the
solutions of these inequalities in non-Archimedean 2-normed spaces, and have proved the Hyers-Ulam
stability of these inequalities in non-Archimedean 2-normed spaces. Furthermore, we have also proved
the Hyers-Ulam stability of additive ρ-functional equations associated with these inequalities in non-
Archimedean 2-normed spaces.
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