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1. Introduction

The sets T and S € R \ {0} are called convex and harmonically convex, respectively if

sg+(1—-¢)zeT forall ¢g,zeT and ¢e€]0,1];

—§q+(qf_g)z €S forall ¢,zeS and ¢e€][0,1].
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Whenever used, we shall always consider T as a convex set and S as a harmonically convex set. Let
m € N. Recall that a function ¢ : T — R is said to be m-polynomial convex [31] on T if

m

e(sq+(1-¢)2) < %; 1=(1-¢)|plq)+ lZ[l - ¢"| ()

9=1

for all g,z € S and ¢ € [0, 1]. For this class of functions, Toplu et al. established the following double
inequality of the Hermite-Hadamard type.

Theorem 1 ( [31] ). Let ¢ : T — R be an m-polynomial convex function. If £,6 € T with & < 9, and ¢
is Lebesgue integrable on (&, 6], then the following Hermite—Hadamard type inequality holds:

27m E+0 1 P + @) v 9
m+2—m—1“’(2)S(s—gff"o(r)drS m ;ﬂﬂ' (D

The inequality (1.1) boils down to the classical Hermite—-Hadamard inequality for convex functions
if we take m = 1. Recently, Awan et al. [2] introduced the notion of m-polynomial harmonically convex
functions as follows: a real valued function ¢ : S — R* := [0, c0) is m-harmonically convex if

m

P Jo@+ - > [1-6"] 62 (12)
U=

=1

g0(§q+(1 —g)Z)

for all g,z € S and ¢ € [0,1]. In the same paper, the authors established the following Hermite—
Hadamard type inequality for this class of functions:

Theorem 2 ( [2] ). Let ¢ : S — R* be an m-polynomial harmonically convex function. If £,6 € S
with 0 < & < 6, and ¢ is Lebesgue integrable on (&, 6], then the following Hermite—Hadamard type
inequality holds:

27'm (265) L& so(r) 90(§)+90(6)Zm1 )
m+2m—1"\éE+6)~ 6-¢ m d+1

In the sequel, we will denote the sets of all m-polynomial convex and m-polynomial harmonically
convex functions from A into B by XP, (A, B) and HXP, (A, B), respectively. The classical
Hermite—Hadamard inequality has generated load of generalizations and extensions to other class of
convexity. There are dozens of articles in this direction. We invite the interested reader to see the
following articles [3-6, 8, 10-20,22-30,32—34] and the references cited therein.

Now, recall that the left- and right-sided {-Riemann-Liouville fractional integral operators ;J . and
(Js- of order € > 0, for a real valued continuous function ¢(r), are defined as ( [21]):

(Jee(r) = ff (r—9) o) ds, r>¢,

1
4 Fg(f)

and

)
(Js-(r) = f (c—-nNi'e)ds, 1<,

{Te(e)
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where ¢ > 0, and I'; is the {-gamma function given by

00 g{
Ly (r) = f ¢ et dg, Re(r)>0,
0
with the properties I'y(r + {) = rI'/(r) and I'x({) = 1. If { = 1, we simply write
1Jqp=TJee and 1 J50=Ts¢.
The beta function B is defined by

1
Bu,v) = f ¢l -¢)Vtds for Re(u) > 0,Re(v) > 0. (1.3)
0

Another fractional integral operators of interest is the Caputo—Fabrizio operators [1]: let L2(¢, 6) be
the space of square integrable functions on the interval (¢, 6) and

H'(¢,6):={glg e L’(¢,0) and ¢ € L*(£.0)).

If o € H'(£,6), € < 6 and u € [0, 1], then the left- and right-sided Caputo—Fabrizio fractional integral
operators “/ I'; and ¢/ I’ are defined by

. 1- N
T (s) = B—(;)tw(sﬂ BL(#) ff o(r)dr (1.4)
and
1 -
I Thp(s) = B—(ﬂ‘)‘msn BL(#) f e(r)dr, (15)

where B : [0, 1] — (0, o) is a normalization function satisfying B(0) = B(1) = 1.

Using these fractional integral operators in (1.4) and (1.5), Giirbiiz et al. established the following
fractional version of the Hermite—Hadamard inequality:

Theorem 3 ([7] ). Let ¢ : T — R be a convex function onT. If €,6 € T with & < 6, and ¢ is Lebesgue
integrable on &, 6], then the following double inequality holds:

£+5\ B 21 - 6(&) + 9(0)
o5 )Sﬂ(é—f) B =T 2

where u € [0, 1], s € [£,0] and B(u) > 0 is a normalization function.

[Cf Thp(s) + Tgp(s) -

Since the classes of convexity introduced here are new, much work have not been done in this sense.
This work is geared towards further development around inequalities for these classes. In view of this,
we aim to achieve the following objectives:

1. To establish new Hermite—Hadamard type inequalities for the class of m-polynomial convex
functions involving the Caputo—Fabrizio integral operators. Our first result in this direction
generalizes and extends Theorem 3.

2. To obtain inequalities of the Hermite-Hadamard type for functions that are m-polynomial
harmonically convex functions via the {-Riemann-Liouville fractional integral operators. This,
in turn, also complement and generalize some existing results in the literature.
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2. Main results

2.1. Inequalities for m-polynomial convex functions

Inequalities of the Hermite—Hadamard type, for m-polynomial convex functions, are hereby
presented. The results, presented herein, involve the Caputo—Fabrizio operators.

Theorem 4. Let ¢ : T — R be a Lebesgue integrable function on [€,0] with é < 6 and £,6 € T. If
¢ € XP,, (T, R), then

27'm (§+6)< B(u)
m+2m -1 2 )7 ws-¢

&)+ ) v P
= m ;ﬂ+1’

where u € (0, 1], s € [£,0] and B(u) > 0 is a normalization function.

Proof. Given that ¢ € XP,, (T, R), it follows from (1.1) that

m E+0 2 0
< d
m+2""—1"0( 2 )‘5—5[5"0(” !

= %_f[j:gp(r)dr+fgo(r)dr].

Multiplying both sides of (2.1) by "z(g(j)) gives:

pé -8 m E+6\ s 5
2B(u) m+2—m—1‘p( 2 )S B(u) [fg w(r)d”fs 9"(r)dr]- (2.2)

c c 2(1 =)
[ TTeo(s) + Tils) = =pro=e(s)

2.1)

By adding 2y )go(s) to both sides of (2.2), we get:

B(w)
2(1 = p) @6 — &) m £+
B O 2B mezoi ( 2 )

< 2(;(/:)#)go(s)+ BL(H) [j:go(r)dr+ fgo(r)dr]

= e
_[ B(u) (”B(m WW]

(1-p)
+[B(m w()+B—(ﬂ) so(r)dr]

= Tip(s) + Tie(s).

This implies that

2(1 —p) u@6 - &) m £+0
B Y 2B mrano1 ( 2 )

< I Tpp(s) + T I5e(s).

(2.3)
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On the other hand, we also get from (1.1) the following inequality:

90(§)+90(5)
5 gf‘p(r)d Zﬂ+1

If we multiply (2.4) by 5= ©9 and then add 24 ——¢(s) to the resulting inequality, we obtain:

2B B

MG — &) p(&) + ¢(5) Z 0111 L=

ITeols)+ I Thpls) < S o

@(s).

Hence, the desired result is obtained by combining (2.3) and (2.5).

Remark 1. By taking m = 1, Theorem 4 becomes Theorem 3.

(2.4)

(2.5)

Theorem 5. Let ¢, v : T — R be two functions such that v is Lebesgue integrable function on [&, 0]

with & < 8 and £,6 € T. If p € XP,, (S,R), v € XP,,, (T,R), then

B 2(1 — )
wo —¢) B(u)

1
< fo [A1(§)¢(§)v(§) + A (9)(HU(0) + As(S)p(d)u(é) + A4(§)90(5)v(5)] dg,

[Cf Tip(s)u(s) + Thp(syu(s) - sD(S)v(S)]

where u € (0, 1], s € [, 6] and B(u) > 0 is a normalization function, and

() == — Z 1-(1-¢)] 2[ (1-6)]
=1 9=1
1 m nmy
A(e)=—— > [1-(1-¢) ?
s z[ DAIEN
As(s) = —I—Z[l—gﬂ]Z[l—(l—g) ]
=1 =1
e (BEI DI
9=1 9=1
Proof. Let ¢ € XP,,, (T,R) and v € XP,,, (T, R). Then for ¢ € [0, 1], we have:
@€ + (1 - 6)0) < mi Z [1- (-] 6@ + — Z [1-¢"] ¢
1921 m 3
and
u(sé + (1= 6)9) < mi S -9 |u@+ —>[1 -’ |veo.
) M

(2.6)

2.7)
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Multiplying (2.6) and (2.7) gives:
o(c€ + (1 - )8) v(s& + (1 - )5)

< milmiz :1 [1-(-97] Z; [1- (-9 | e
T 2 (1= =97 31 = et
; milmiz > [1-¢] ; [1- 1 - 9| @@
+ milmiz D15 1= oo

= AM(©)@(V(E) + A ()p(E)v(6) + Az(S)p(0)u(&) + As(S)p(0)u(6).
This implies that

o(s€ + (1 = ¢)0) u(sé + (1 - ¢)9)

< A1(©)p(Gu(§) + Aa(S)p(§)u(0) + A3 (S)p(0)u(§) + As(§)p(6)u(9).
Integrating both sides of (2.8) with respect to ¢ over [0, 1] results to:

2 9
— d
5_§ fg (V) dr

1
<2 f [A1(©@OUE) + Da(§)pEN(6) + Ax()pO)(E) + Aa()p(dW(6)| ds
0

= N(,0).
That is,

s 0
é [f; e(ru(r)dr + f; e(ru(r) dr]

< N(,0).
Now, multiplying (2.9) by “2(;;? and then adding 22(;’; )cp(s)v(s) to the result to obtain:
m [ L ) dr + f () dr| + 2(;(;)” Lo(syus)
M6 - &) 2(1 — )
< 2B N, 06) + BQ) e(s)u(s).
Hence, _
I Tep(su(s) + L Tip(s)u(s)
(@ — &) 20 -
< 2B00) N(,0) + B e($)u(s),

from which we get the intended inequality.

Remark 2. Set m; = m, = 1 in Theorem 5. Then we recover [7, Theorem 3].

(2.8)

2.9)
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2.2. Inequalities for m-polynomial harmonically convex functions

In this subsection, we present some new Hermite—Hadamard type results involving the {-Riemann—
Liouville fractional integral operators.

Theorem 6. Let ¢ : S — R* be a Lebesgue integrable function on [£,5] with 0 < é < § and &,6 € S.
If p e HXP,, (S,R*) and {, e > 0, then

(22
o naeaffoenf])

SO@W@Z[ =75l ﬁ”)]’

where §(r) = % and B is the beta function defined by (1.3).

Proof. Given that ¢ € HXP,, (S,R*), we get the following relation:

2qz 1 « 1
14 (m) s ; [1 - F] (9@ + ) (2.10)
Now, let g = 52— and z = £ Then (2.10) becomes:
266 1 © 1 &5 £6
(’D(f—ﬂi) : %;(1 } ?){"D(g& (- g)é) +"0(g‘6+ a —g)f)}' 1D
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Multiplying both sides of (2.11) by ¢t ' and integrating with respect to ¢ over [0, 1], we get:

1
fogz_lso(;—is ds
T A
m 1
o B I e I
1
e
" ¢ b ot
O I ACE
A& LA
:$;(1 72 )(L“rgl(a (__r) o)
O
+§Fg(6) é(r—g) "0(;) dl’}

5 -3 ool 5]

9=1

~im

where @(r) = % This implies that

1 266
m+ 2 — 1 ‘0(5+5)

Te+0)( & \¢ 1 q (2.12)
€ Z
(H (8 Y orenofl ool
Next, substituting ¢ = £ and z = ¢ in (1.2) gives
‘55 1 =z 3 o l m _
(m) EZI [1--¢]e@ + ﬁzl[l §"] ¢ (). (2.13)
Reversing the role of £ and ¢ in (2.13) produces:
L l ) —(1- l N _ 0
S0(5‘5+ (1- g)é) Z 1 (1=¢) ]9”(5) + Z [1 S ]<p(§). (2.14)

=1 17 1

If we now add (2.13) and (2.15), multiply the resulting inequality by ¢¢ ' and integrate with respect to

AIMS Mathematics Volume 6, Issue 2, 1889-1904.
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¢ € [0, 1], then we obtain:

1
o &6 s
4 _ - < d
fog {""(gfm—g>6)+"”(ga+(1—g>§)} :
90(§)+90(5)Zf g) +19—1] d¢ 2.15)

S90(6)+<,0(<5)Z[§_ { _B(f,ﬁ_”) .
€ €+9 ’

From (2.15), we get:

Fg(6+§)( &0 )2 [gj;(goosﬁ)(é) +:~7§(9”°¢)(é)]

m 0-¢
o5 (2.16)
G w()z[ __B( ﬁ+1).
i €+ 4“19 ¢\
Combining (2.12) and (2.16), we get the desired result. O

Remark 3. If we take € = £ = 1, then Theorem 6 reduces to Theorem 2. If, on the other hand, we let
m = 1, then we get from Theorem 6 the following corollary:

Corollary 1. Let ¢ : S — R" be a Lebesgue integrable function on [£,0] withé < d and €,6 € S. If ¢
is harmonically convex and , € > 0, then

(255

E+96

Te+O( & \[ ., . [1 .1
= 462 (5‘5_5) [gjy((ﬁos@)(g)ﬂjé(90°<P)(5)]
L 9E) +¢()

_T.

Theorem 7. Let ¢, v : S — R* be two functions such that gu is Lebesgue integrable function on [£, 6]
with) <& <dandé,6 €8S. If o € HXP,,, (S,R"), v € HXP,,, (S,R") and {, € > O, then

(e fromeagcsyomeo]

6-¢&

. D& 9) 7 (£,96)

— ({Ty(e) {Ty(e)
where D(&,0) := p(E)U(€) + p(0)u(0), T (£,0) := @(&)v(d) + p(O)u(€), @ is as defined in Theorem 6, and
Ai(s), j = 1,4, as defined in Theorem 5.

Proof. Given that ¢ € HXP,, (S,R") and v € HXP,,, (S,R"), we get:

“1[ () + Au(s) | ds +

1
s Ax() + Ms(9) | ds.
0

&6 1 & 1 1 L 1
o(seriimas) = o 2l -9l 331 -0
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and
1 mi my )
(m) m—Z 1-(1-¢’ v<§>+—l;[ ~ ¢"| (o).
This implies:
leri=ms) (=)
e+ (1-6)5) \s€+(1-¢)05
Li C _ _ 9 S _ _ 9
< ﬂ:l[l (1 g)];[l (1 -9 @@ne)
11 < -
- 1_ 1-— ﬁ )
b M 1-¢) ; "] e@n(o)
1 1 ¢ o
— ) [1-¢* 1-(1-¢)"|e@
+m1m2ﬁ:1[ g];[ (1- 9] @@
11y, Ny
s 2 1 g];[l NEOXE
= AlPEVE) + Ar()PEW(S) + As()p(S)U(E) + Aa(6)p(S)u(D).
This gives:

e P
\ee+(1-90) \cex (1= 2.17)
< AL)QEWE) + Ar(S)P(EW(S) + As(S)p(O)(E) + A(S)p()(D).

Similarly, we also have

[t (i)
Ao ra-0¢) "o+ T-0e (2.18)
< ASPOUE) + Ay()pE(S) + Aa(SP@UE) + Ar(S)p(B)U(6).

Adding (2.17) and (2.18), we get

=) ) eler ) Fo
eer(1-90) e+ (1-05) “\es+(1-9¢) g5+ (1 -9k
< (¢@v(&) + e(©)(6))[Ai(S) + Au(s)]

+ (£@)v(6) + (E(E))| Aals) + As(s)].

(2.19)
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Now, multiplying both sides of (2.19) by ¢t 'and integrating with respect to ¢ over [0, 1], gives:

{Te(e) (%)g [gﬂ';(sov ° ) (é) + 3';(9011 ° ) (%)]

[t i)
0 €+ -¢)) \¢é€+(-¢)

1
e &0 &0
z d
+fog *”(gm(l—g)&)”(gm(l—g)f) :

1
< (¢@)v(@) + 9O)(5)) fo s Aie) + Aulo)| ds

1
+ (@) + ¢(E)u(©)) fo s Aae) + As(9)| ds

1 1
= D, 0) fo s [Aie) + Au(o)| ds + F . 6) fo i [Aa(e) + As(o)].

Hence, this completes the proof.
]

Corollary 2. Let o, v : S — R* be two functions such that v is Lebesgue integrable function on [£, 6]
with) < ¢ <dand &é,6 € S. If ¢ and v are harmonically convex and {, € > 0, then

L [rwea () s wenl)

6-¢

< DE,6) |1 22 N FE¢o0| 2 2

T Tie) |e €+20 €e+¢ T€) e+l €e+2]
Proof. Let m; = my = 1. Then, Ai(§) = ¢%, Ax(¢) = A3(s) = ¢ —¢? and A4(g) = 1 — 2¢ + ¢2. The
intended result follows by using Theorem 7. O

Theorem 8. Let g, v : S — R* be two functions such that v is Lebesgue integrable function on [£, 6]
with0 <& <dandé, o €8. If p e HXP,, (S,R*), v € HXP,,, (S,R*) and {, € > 0, then

m 2 —Dm+2m -1 \e+s) \e+0

< rg(f + (:) (%)Z |:(j(1f+(‘10v o ¢) (é) +§ jg_((pl} (¢} SZ)) (%)]

1
+ E f(; g‘f‘l {[Am.(g)[\mz(g) + ]\ml(S')Amz(g‘)] D, 6)
+ [ A (O A (S) + Au (A, ()| F(£.6)} ds.,

where ¢ is defined in Theorem 6, Ay(§) = = Y5 [1 —(1- g)ﬁ] and A,(s) = L 3| [1 - gﬁ]'

AIMS Mathematics Volume 6, Issue 2, 1889-1904.
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Proof. We start by noticing that:

- (1 1 m+2"m—1
Aulz|=Anlz) = Epi= ——.
[3)-2() z

Now, let ¢ € [0, 1]. Hence, from (2.11), one gets:

266 &6 &0
‘”(§+6)SE’“‘{‘”(g§+<1—g)a)“”(gm(l—g)g)}
266 £ &6
v(€+5)SEm‘{U(s‘§+(1—g)6)+v(g6+(l—f;)f)}'

(255)(2.55)

o| =—|v|—==

E+0 E+0

SN IR
E+(1-50) \ge+(1-¢)0

ol arirae) (i)

oo+ -9¢)"\so+ (1 -0k
(eriras) (Gva—se)

+E, En, @ v
cé+(1-¢)) \go+(1-¢)

ol arir—se) erir—an)

\so+(1-9&) \s+(1-9)0

& £
< Em B, [‘p(s“f +(1 - g)é)v(gf +(1 - g)a)

ol arrirae) i)
\so+(1-9&) \so+(1-9)k

+ By, Epy {[ A (©0(&) + Ay (©0(0)| [ A (9)0(6) + Ay (9)0E)
+| A (©)¢(0) + A (©)0(&)| [ A (©)(&) + A ()6}

and

= En En,

evit=on) (wir=o)
sé+(1-90)"\g+ =90

ol srirae) (i)
oo+ -9¢)"\so+ (1 -9k

+ Ep E {| A (9A0s($) + A (A (9)] [0 (&) + 0(0)1(6)]
| Am (O An(S) + A, (A, ()] [(&)1(6) + p(O)(&)]}

etr—a)* (eri=s5)
\ee+(1-90)"\ce+(1-¢)0

ol i) vt

s6+(1-¢)¢) \¢o+(1-¢)

+ Ep Epy {| An (9)R0s(€) + A, (9)A1, ()| DIE, )
| A (A (S) + A (A, ()| F (£, 0}

= Ep En,
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This implies that

266 286
(§+ 6) (§+ 5)
£ £0
BN W S W

ol ari—se) i) -
\so+(1-9&) ' \so+(1-9)k

+ EpyEpy {| An (9)R0s($) + A (9)A1, ()| DIE, )
+ A A1) + B (R FE,0))

Multiplying both sides of (2.20) by ¢¢ ' and integrating with respect to ¢ over [0, 1] to get:

’ ( 265 ) ( 2665 )
¢§+5 £+0

ooy

o)

&6
<E’"1E’"2 ["”(gfm—g)é) (g§+<1—g>6)
d
(gd+<1—g>§) (§6+(1—§)§)] ¢
+ Ey Ey, f A ©Ru(6) + Ay (A, ($)| DE. 6)

+[An A (6) + A (A (9)| F (€. 0)} ds
0 ¢ 1 1
e

1
+ EpE,, fo SEH[Am ©A() + A ()M, ()| DIE. )

+ [Aml(g)Amz(g) + [\m1 (g)[\mz(g)] 7:(6, 6)} dg‘.

The required result follows. m|

Corollary 3. Let ¢,v : S — R* be two functions such that v is Lebesgue integrable function on [£, 5]
withQ <& <dandé&,6 €S. If ¢ and v are harmonically convex and {, € > 0, then

265\ [ 266
(&) (e

r 5 \¢ 1 1
< {(€4+§) ((f_f) [gjlﬂ((pvo¢)(—)+§j1‘_(gpvo¢)(—)]
1 € 1 2e€
+§ e+{ +2{ DL 6)+ +2§ +§ F(&0).
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Proof. Letm; = my = 1. Then, A, () = A, () = sand A, (¢) = A,,,(¢) = 1 —¢. The intended result
follows by using Theorem 8. O

3. Conclusion

Utilizing the Caputo—Fabrizio and generalized Riemann-Liouville fractional integral operators, we
proved some inequalities of the Hermite—Hadamard kinds for m-polynomial convex and harmonically
convex functions. Our results generalize, extend and complement results in [7,9, 31].
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