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1. Introduction

In many areas of the objective world, such as target tracking, machine learning system identification,
associative memories, pattern recognition, solving optimization problems, image processing, signal
processing, and so on [1–5], a lot of practical problems can be described by delay differential equations
(DDEs). Therefore, the research of delay differential equations has been the subject of significant
attention [6, 7]. As we all know, time delays are inevitable in population dynamics models. For
example, the maturation period should be considered in the study of simulated biological species [8,9],
incubation periods should be considered in epidemiology area [7], and the synaptic transmission time
among neurons should be considered in neuroscience field [10]. In particular, the dynamic behavior
of most cellular neural network models is significantly affected by time delay, so the investigation on
delayed cellular neural networks has been the world-wide focus.

It should be mentioned that proportional delay is one of important time-varying delays, which is
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unbounded and monotonically increasing, and is more predictable and controllable than constant
delay and bounded time-varying delay. Over past decade, by introducing proportional time delay,
investigations of the following neutral type proportional delayed cellular neural networks (CNNs)
with D operators:

[xi(t) − pi(t)xi(rit)]′ = − ai(t)xi(t) +

n∑
j=1

ei j(t) f j(x j(t)) +

n∑
j=1

bi j(t)g j(x j(qi jt)) + Ii(t),

t ≥ t0 > 0, i ∈ N = {1, 2, · · · , n}, (1.1)

with initial value conditions:

xi(s) = ϕi(s), s ∈ [ρit0, t0], ϕi ∈ C([ρit0, t0],R), ρi = min{ri, min
1≤ j≤n
{qi j}}, i ∈ N, (1.2)

have attracted great attention of some researchers. The main reason is that its successful applications
in variety of areas such as optimization, associative memories, signal processing, automatic control
engineering and so on (see [11–15] and the references therein). Here n is the number of units in a
neural network, (x1(t), x2(t), · · · , xn(t))T corresponds to the state vector, the decay rate at time t is
designated by ai(t), coefficients pi(t), ei j(t) and bi j(t) are the connection weights at the time t, f j and g j

are the activation functions of signal transmission, ri(t) ≥ 0 denotes the transmission delay, ri and qi j

are proportional delay factors and satisfy 0 < ri, qi j < 1, Ii(t) is outside input.
As pointed out by the authors of reference [16], the weighted pseudo almost periodic function

consists of an almost periodic process plus a weighted ergodic component. It is well known that the
weighted pseudo-almost periodic phenomenon is more common in the environment than the periodic,
almost periodic and pseudo-almost periodic phenomenon, so the dynamic analysis of the weighted
pseudo-almost periodic is more realistic [17–20]. Furthermore, when pi(t) ≡ 0, the existence and
exponential stability of weighted pseudo almost periodic solutions (WPAPS) of proportional delayed
cellular neural networks (CNNs)

x′i(t) = −ai(t)xi(t) +

n∑
j=1

ei j(t) f j(x j(t)) +

n∑
j=1

bi j(t)g j(x j(qi jt)) + Ii(t), t ≥ t0 > 0, i ∈ N, (1.3)

have been established in [22] under the following conditions

sup
t∈R

{
− ãi(t) + Ki

[
ξ−1

i

n∑
j=1

(|ei j(t)|L
f
j + |bi j(t)|L

g
j)ξ j

]}
< −γi. (1.4)

Here, for i ∈ N, ãi ∈ C(R, (0, +∞)) is a bounded function, and Ki > 0 is a constant with

e−
∫ t

s ai(u)du ≤ Kie−
∫ t

s ãi(u)du for all t, s ∈ R and t − s ≥ 0.

In addition, f j and g j are the activation functions with Lipschitz constants L f
j and Lg

j obeying

| f j(u) − f j(v)| ≤ L f
j |u − v|, |g j(u) − g j(v)| ≤ Lg

j |u − v| for all u, v ∈ R, i ∈ N.
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It should be mentioned that the authors in [22] use (1.4) to show that there exists a constant λ ∈
(0,min

i∈N
ã−i ) such that

Πi(λ) = sup
t∈R

{
λ − ãi(t) + Ki

[
ξ−1

i

n∑
j=1

(|ei j(t)|L
f
j + |bi j(t)|L

g
je
λ(1−qi j)t)ξ j

]}
< 0, i ∈ N. (1.5)

With the aid of the fact that lim
t→+∞

eλ(1−qi j)t = +∞, it is easy to see that (1.4) can not lead to (1.5).
Meanwhile, Examples 4.1 and 4.2 in [22] also have the same error, where

bi j(t) =
1

10(i + j)
sin 2t, i, j = 1, 2,

and
b1 j(t) = 1

100 (cos(1 + j)t), b2 j(t) = 1
100 (cos(1 + j)t + cos

√
2t),

b3 j(t) = 1
100 (cos(1 + j)t + sin

√
2t),

}
j = 1, 2, 3,

can not also meet (1.5). For detail, the biological explanations on equations (1.4) and (1.5) can be
found in [22]. Now, in order to improve [22], we will further study the existence and exponential
stability of weighted pseudo almost periodic solutions for (1.1) which includes (1.3) as a special case.
Moreover, this class of models has not been touched in the existing literature.

On account of the above considerations, in this article, we are to handle the existence and
generalized exponential stability of weighted pseudo almost periodic solutions for system (1.1).
Readers can find the following Remark 2.1 for extensive information. In a nutshell, the contributions
of this paper can be summarized as follows. 1) A class of weighted pseudo almost periodic cellular
neural network model with neutral proportional delay is proposed; 2) Our findings not only correct
the errors in [22], but also improve and complement the existing conclusions in the recent
publications [22, 23]; 3) Numerical simulations including comparison analyses are presented to verify
the obtained theoretical results.

The remainder of the paper is organized as follows. We present the basic notations and assumptions
in Section 2. The existence and exponential stability of weighted pseudo almost periodic solutions for
the addressed neural networks models are proposed in Section 3. The validity of the proposed method
is demonstrated in Section 4, and conclusions are drawn in Section 5.

2. Notations and assumptions

Notations. R and Rn denote the set of real numbers and the n-dimensional real spaces. For any x =

{xi j} ∈ R
mn, let |x| denote the absolute value vector given by |x| = {|xi j|}, and define ‖x‖ = max

i j∈J
|xi j(t)|.

Given a bounded continuous function h defined on R, let h+ = sup
t∈R
|h(t)|, h− = inf

t∈R
|h(t)|. We define U

be the collection of functions (weights) µ : R→ (0,+∞) satisfying

U∞ :=
{
µ | µ ∈ U, inf

x∈R
µ(x) = µ0 > 0

}
,

and
U+
∞ :=

{
µ|µ ∈ U∞, lim sup

|x|→+∞

µ(αx)
µ(x)

< +∞, lim sup
r→+∞

µ([−αr, αr])
µ([−r, r])

< +∞, ∀α ∈ (0,+∞)
}
.
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Let BC(R,Rn) denote the collection of bounded and continuous functions from R to Rn. Then
(BC(R,Rn), ‖ · ‖∞) is a Banach space, where ‖ f ‖∞ := sup

t∈R
‖ f (t)‖. Also, this set of the almost periodic

functions from R to Rn will be designated by AP(R,Rn). Furthermore, the class of functions
PAPµ

0(R,Rn) be defined as

PAPµ
0(R,Rn) =

{
ϕ ∈ BC(R,Rn)| lim

r→+∞

1
µ([−r, r])

∫ r

−r
µ(t)|ϕ(t)|dt = 0

}
.

A function f ∈ BC(R,Rn) is said to be weighted pseudo almost periodic if there exist h ∈ AP(R,Rn)
and ϕ ∈ PAPµ

0(R,Rn) satisfying
f = h + ϕ,

where h and ϕ are called the almost periodic component and the weighted ergodic perturbation of
weighted pseudo almost periodic function f , respectively. We designate the collection of such
functions by PAPµ(R,Rn). In addition, fixed µ ∈ U+

∞, (PAPµ(R,Rn), ‖.‖∞) is a Banach space and
AP(R,Rn) is a proper subspace of PAPµ(R,Rn). For more details about the above definitions can be
available from [17, 18] and the references cited therein.

In what follows, for i, j ∈ N, we shall always assume that ei j, bi j, pi, Ii ∈ PAPµ(R,R), and

ai ∈ AP(R,R), M[ai] = lim
T→+∞

1
T

∫ t+T

t
ai(s)ds > 0. (2.1)

For i, j ∈ N, we also make the following technical assumptions:
(H1) there are a positive function ãi ∈ BC(R,R) and a constant Ki > 0 satisfying

e−
∫ t

s ai(u)du ≤ Kie−
∫ t

s ãi(u)du for all t, s ∈ R and t − s ≥ 0.

(H2) there exist nonnegative constants L f
j and Lg

j such that

| f j(u) − f j(v)| ≤ L f
j |u − v|, |g j(u) − g j(v)| ≤ Lg

j |u − v| for all u, v ∈ R.

(H3) µ ∈ U+
∞, we can find constants ξi > 0 and Λi > 0 such that

sup
t∈R

1
ãi(t)

Ki[|ai(t)pi(t)| + ξ−1
i

n∑
j=1

(|ei j(t)|L
f
j + |bi j(t)|L

g
j)ξ j] < Λi,

sup
t≥t0
{−ãi(t) + Ki[|ai(t)pi(t)| 1

1−p+
i

+ ξ−1
i

∑n
j=1 |ei j(t)|L

f
j ξ j

1
1−p+

j

+ξ−1
i

∑n
j=1 |bi j(t)|L

g
jξ j

1
1−p+

j
]} < 0,

and
p+

i + Λi < 1, i ∈ N.

Remark 2.1. From (H1) and (H2), one can use an argument similar to that applied in Lemma 2.1
of [24] to demonstrate that every solution of initial value problem (1.1) and (1.2) is unique and exists
on [t0, +∞).
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3. Results

In this section, we will establish some results about the global generalized exponential stability of
the weighted pseudo almost periodic solutions of (1.1). To do this end, we first show the following
Lemma.

Lemma 3.1. (see[ [22], Lemma 2.1]). Assume that f ∈ PAPµ(R,R) and β ∈ R \ {0}. Then,
f (βt) ∈ PAPµ(R,R).

Using a similar way to that in lemma 2.3 of [22], we can show the following lemma:
Lemma 3.2. Assume that (H1) and (H2) hold. Then, the nonlinear operator G:

(Gϕ)i(t) =

∫ t

−∞

e−
∫ t

s ai(u)du[−ai(s)pi(s)ϕi(ris) + ξ−1
i

n∑
j=1

ei j(s) f j(ξ jϕ j(s))

+ ξ−1
i

n∑
j=1

bi j(s)g j(ξ jϕ j(qi js)) + ξ−1
i Ii(s)]ds, i ∈ N, ϕ ∈ PAPµ(R,Rn),

maps PAPµ(R,Rn) into itself.
Theorem 3.1. Suppose that (H1), (H2) and (H3) are satisfied. Then, system (1.1) has exactly one

WPAPS x∗(t) ∈ PAPµ(R,Rn), which is globally generalized exponentially stable, that is, for every
solution x(t) agreeing with (1.1) − (1.2), there exists a constant σ ∈ (0,min

i∈N
ã−i ) such that

xi(t) − x∗i (t) = O((
1

1 + t
)σ) as t → +∞ for all i ∈ N.

Proof. With the help of (H3), it is easy to see that there are constants σ, λ ∈ (0, min
i∈N

ã−i ) such that

p+
i eσ ln 1

ri < 1, sup
t∈R

eλ

ãi(t)
Ki[|ai(t)pi(t)| + ξ−1

i

n∑
j=1

(|ei j(t)|L
f
j + |bi j(t)|L

g
j)ξ j] < Λi, i ∈ N, (3.1)

and

sup
t≥t0
{σ − ãi(t) + Ki[|ai(t)pi(t)|

1

1 − p+
i eσ ln 1

ri

eσ ln 1
ri + ξ−1

i

n∑
j=1

|ei j(t)|L
f
j ξ j

1

1 − p+
j eσ ln 1

r j

+ ξ−1
i

n∑
j=1

|bi j(t)|L
g
jξ j

1

1 − p+
j eσ ln 1

r j

eσ ln( 1
qi j

)]} < 0, i ∈ N, (3.2)

which, along with the inequalities

σ

1 + t
≤ σ, ln(

1 + t
1 + rit

) ≤ ln
1
ri
, ln(

1 + t
1 + qi jt

) ≤ ln
1

qi j
for all t ≥ 0, i, j ∈ N,

yield

sup
t≥t0

{
σ

1 + t
− ãi(t) + Ki[|ai(t)pi(t)|

1

1 − p+
i eσ ln 1

ri

eσ ln 1+s
1+rit
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+ ξ−1
i

n∑
j=1

|ei j(t)|L
f
j ξ j

1

1 − p+
j eσ ln 1

r j

+ ξ−1
i

n∑
j=1

|bi j(t)|L
g
jξ j

1

1 − p+
j eσ ln 1

r j

eσ ln( 1+t
1+qi jt

)]
}

≤ sup
t≥t0

{
σ − ãi(t) + Ki[|ai(t)pi(t)|

1

1 − p+
i eσ ln 1

ri

eσ ln 1
ri

+ ξ−1
i

n∑
j=1

|ei j(t)|L
f
j ξ j

1

1 − p+
j eσ ln 1

r j

+ ξ−1
i

n∑
j=1

|bi j(t)|L
g
jξ j

1

1 − p+
j eσ ln 1

r j

eσ ln( 1
qi j

)]
}
< 0, i ∈ N. (3.3)

Consequently, applying a transformation:

yi(t) = ξ−1
i xi(t), Yi(t) = yi(t) − pi(t)yi(rit), i ∈ N,

leads to

Y ′i (t) = − ai(t)Yi(t) − ai(t)pi(t)yi(rit) + ξ−1
i

n∑
j=1

ei j(t) f j(ξ jy j(t))

+ ξ−1
i

n∑
j=1

bi j(t)g j(ξ jy j(qi jt)) + ξ−1
i Ii(t), i ∈ N. (3.4)

Now, define a mapping P : PAPµ(R,Rn)→ PAPµ(R,Rn) by setting

(Pϕ)i(t) = pi(t)ϕi(rit) + (Gϕ)i(t) for all i ∈ N, ϕ ∈ PAPµ(R,Rn), (3.5)

it follows from Lemma 3.1 and Lemma 3.2 that Pϕ ∈ PAPµ(R,Rn).
Moreover, by means of (H1), (H2) and (H3), for ϕ, ψ ∈ PAPµ(R,Rn), we have

|(Pϕ)i(t) − (Pψ)i(t)|

= |pi(t)[ϕi(rit) − ψi(rit)] +

∫ t

−∞

e−
∫ t

s ai(u)du[ξ−1
i

n∑
j=1

ei j(s)( f j(ξ jϕ j(s)) − f j(ξ jψ j(s)))

+ ξ−1
i

n∑
j=1

bi j(s)(g j(ξ jϕ j(qi js)) − g j(ξ jψ j(qi js)))]ds|

≤ {p+
i +

∫ t

−∞

e−
∫ t

s ãi(u)duKi[ξ−1
i

n∑
j=1

(|ei j(s)|L f
j + |bi j(s)|Lg

j)ξ j]ds}‖ϕ(t) − ψ(t)‖∞

≤ {pi + Λi

∫ t

−∞

e−
∫ t

s ãi(u)du 1
eλ

ãi(s)ds}‖ϕ(t) − ψ(t)‖∞

≤ {pi + Λi
1
eλ
}‖ϕ(t) − ψ(t)‖∞,
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which and the fact that 0 < max
i∈N
{p+

i + Λi} < 1 suggest that the contraction mapping P possesses a
unique fixed point

y∗ = {y∗i (t)} ∈ PAPµ(R,Rn), Py∗ = y∗.

Thus, (1.5) and (3.5) entail that x∗ = {x∗i (t)} = {ξiy∗i (t)} ∈ PAPµ(R,Rn) is a weighted pseudo almost
periodic solution of (1.1).

Finally, we demonstrate that x∗ is exponentially stable.
Designate x(t) = {xi(t)} be an arbitrary solution of (1.1) with initial value ϕ(t) = {ϕi(t)} satisfying

(1.2).

Label

xi(t) = ϕi(t) = ϕi(σit0), for all t ∈ [riσit0, σit0], (3.6)

yi(t) = ξ−1
i xi(t), y∗i (t) = ξ−1

i x∗i (t), zi(t) = yi(t) − y∗i (t)),Zi(t) = zi(t) − pi(t)zi(rit), i ∈ N.

Then

Z′i (t) = − ai(t)Zi(t) − ai(t)pi(t)zi(rit) + ξ−1
i

n∑
j=1

ei j(t)( f j(ξ jy j(t)) − f j(ξ jy∗j(t)))

+ ξ−1
i

n∑
j=1

bi j(t)(g j(ξ jy j(qi jt)) − g j(ξ jy∗j(qi jt))), i ∈ N. (3.7)

Without loss of generality, let

‖ϕ − x∗‖ξ = max
i∈N
{ sup
t∈[ρit0,t0]

ξ−1
i |[ϕi(t) − pi(t)ϕi(rit)] − [x∗i (t) − pi(t)x∗i (rit)]|} > 0, (3.8)

and M be a constant such that

M >

N∑
i=1

Ki + 1. (3.9)

Consequently, for any ε > 0, it is obvious that

|Zi(t)| < M(‖ϕ − x∗‖ξ + ε)e−σ ln 1+t
1+t0 for all t ∈ (ρit0, t0], i ∈ N. (3.10)

Now, we validate that

‖Z(t)‖ < M(‖ϕ − x∗‖ξ + ε)e−σ ln 1+t
1+t0 for all t > t0. (3.11)

Otherwise, there must exist i ∈ N and θ > t0 such that |Zi(θ)| = M(‖ϕ − x∗‖ξ + ε)e−σ ln 1+θ
1+t0 ,

‖Z(t)‖ < M(‖ϕ − x∗‖ξ + ε)e−σ ln 1+t
1+t0 for all t ∈ (ρit0, θ).

(3.12)

Furthermore, from (3.6), we obtain

eσ ln 1+ν
1+t0 |z j(ν)| ≤ eσ ln 1+ν

1+t0 |z j(ν) − p j(ν)z j(r jν)| + eσ ln 1+ν
1+t0 |p j(ν)z j(r jν)|
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≤ eσ ln 1+ν
1+t0 |Z j(ν)| + p+

j eσ ln 1+ν
1+r jν eσ ln

1+r jν
1+t0 |z j(r jν)|

≤ M(‖ϕ − x∗‖ξ + ε) + p+
j eσ ln 1

r j sup
s∈[r jρ jt0, r jt]

eσ ln 1+s
1+t0 |z j(s)|

≤ M(‖ϕ − x∗‖ξ + ε) + p+
j eσ ln 1

r j sup
s∈[ρit0, t]

eσ ln 1+s
1+t0 |z j(s)|, (3.13)

for all ν ∈ [ρ jt0, t], t ∈ [t0, θ), j ∈ J, which entails that

eσ ln 1+t
1+t0 |z j(t)| ≤ sup

s∈[ρ jt0, t]
eσ ln 1+s

1+t0 |z j(s)| ≤
M(‖ϕ − x∗‖ξ + ε)

1 − p+
j eσ ln 1

r j

, (3.14)

for all t ∈ [ρit0, θ), j ∈ N.
Note that

Z′i (s) + ai(s)Zi(s)

= − ai(s)pi(s)zi(ris) + ξ−1
i

n∑
j=1

ei j(s)( f j(ξ jy j(s)) − f j(ξ jy∗j(s)))

+ ξ−1
i

n∑
j=1

bi j(s)(g j(ξ jy j(qi js)) − g j(ξ jy∗j(qi js))), s ∈ [t0, t], t ∈ [t0, θ]. (3.15)

Multiplying both sides of (3.15) by e
∫ s

t0
ai(u)du, and integrating it on [t0, t], we get

Zi(t) = Zi(t0)e−
∫ t

t0
ai(u)du

+

∫ t

t0
e−

∫ t
s ai(u)du[−ai(s)pi(s)zi(ris)+

ξ−1
i

n∑
j=1

ei j(s)( f j(ξ jy j(s)) − f j(ξ jy∗j(s)))

+ ξ−1
i

n∑
j=1

bi j(s)(g j(ξ jy j(qi js)) − g j(ξ jy∗j(qi js)))]ds, t ∈ [t0, θ].

Thus, with the help of (3.3), (3.9), (3.12) and (3.14), we have

|Zi(θ)| =
∣∣∣∣∣Zi(t0)e−

∫ θ
t0

ai(u)du
+

∫ θ

t0
e−

∫ θ
s ai(u)du[−ai(s)pi(s)zi(ris)+

ξ−1
i

n∑
j=1

ei j(s)( f j(ξ jy j(s)) − f j(ξ jy∗j(s)))

+ ξ−1
i

n∑
j=1

bi j(s)(g j(ξ jy j(qi js)) − g j(ξ jy∗j(qi js)))]ds
∣∣∣∣∣

≤ (‖ϕ − x∗‖ξ + ε)Kie
−

∫ θ
t0

ãi(u)du

+

∫ θ

t0
e−

∫ θ
s ãi(u)duKi[| − ai(s)pi(s)zi(ris)| + ξ−1

i

n∑
j=1

|ei j(s)|L f
j ξ j|z j(s)|
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+ ξ−1
i

n∑
j=1

|bi j(s)|Lg
jξ j|z j(qi js)|]ds

≤ (‖ϕ − x∗‖ξ + ε)Kie
−

∫ θ
t0

ãi(u)du

+

∫ θ

t0
e−

∫ θ
s ãi(u)duKi[|ai(s)pi(s)|

M(‖ϕ − x∗‖ξ + ε)

1 − p+
i eσ ln 1

ri

e−σ ln 1+ri s
1+t0

+ ξ−1
i

n∑
j=1

|ei j(s)|L f
j ξ j

M(‖ϕ − x∗‖ξ + ε)

1 − p+
j eσ ln 1

r j

e−σ ln 1+s
1+t0

+ ξ−1
i

n∑
j=1

|bi j(s)|Lg
jξ j

M(‖ϕ − x∗‖ξ + ε)

1 − p+
j eσ ln 1

r j

e−σ ln
1+qi j s
1+t0 ]ds

= M(‖ϕ − x∗‖ξ + ε)e−σ ln 1+θ
1+t0 {

Ki

M
e−

∫ θ
t0

[ãi(u)− σ
1+u ]du

+

∫ θ

t0
e−

∫ θ
s [ãi(u)− σ

1+u ]duKi[|ai(s)pi(s)|
1

1 − p+
i eσ ln 1

ri

eσ ln 1+s
1+ri s

+ ξ−1
i

n∑
j=1

|ei j(s)|L f
j ξ j

1

1 − p+
j eσ ln 1

r j

+ ξ−1
i

n∑
j=1

|bi j(s)|Lg
jξ j

1

1 − p+
j eσ ln 1

r j

eσ ln( 1+s
1+qi j s )]ds}

≤ M(‖ϕ − x∗‖ξ + ε)e−σ ln 1+θ
1+t0 {

Ki

M
e−

∫ θ
t0

[ãi(u)− σ
1+u ]du

+

∫ θ

t0
e−

∫ θ
s [ãi(u)− σ

1+u ]duKi[|ai(s)pi(s)|
1

1 − p+
i eσ ln 1

ri

eσ ln 1
ri

+ ξ−1
i

n∑
j=1

|ei j(s)|L f
j ξ j

1

1 − p+
j eσ ln 1

r j

+ ξ−1
i

n∑
j=1

|bi j(s)|Lg
jξ j

1

1 − p+
j eσ ln 1

r j

eσ ln( 1
qi j

)]ds}

≤ M(‖ϕ − x∗‖ξ + ε)e−σ ln 1+θ
1+t0 [1 − (1 −

Ki

M
)e−

∫ θ
t0

(ãi(u)− σ
1+u )du]

< M(‖ϕ − x∗‖ξ + ε)e−σ ln 1+θ
1+t0 .

This is a clear contradiction of (3.12). Hence, (3.11) holds. When ε −→ 0+, we obtained

‖Z(t)‖ ≤ M‖ϕ − x∗‖ξe
−σ ln 1+θ

1+t0 for all t > t0. (3.17)

Then, using a similar derivation in the proof of (3.13) and (3.14), with the help of (3.17), we can know
that

eσ ln 1+t
1+t0 |z j(t)| ≤ sup

s∈[ρ jt0, t]
eσ ln 1+s

1+t0 |z j(s)| ≤
M‖ϕ − x∗‖ξ

1 − p+
j eσ ln 1

r j

,
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and

|z j(t)| ≤
M‖ϕ − x∗‖ξ

1 − p+
j eσ ln 1

r j

(
1 + t0

1 + t
)σ for all t > t0, j ∈ N.

The proof of the Theorem 3.1 is now finished.
Theorem 3.2. Let µ ∈ U+

∞. Assume that (H1) and (H2) hold, and there exist constants γi, ξi > 0
such that

sup
t∈R
{−ãi(t) + Ki[ξ−1

i

n∑
j=1

(|ei j(t)|L
f
j + |bi j(t)|L

g
j)ξ j]} < −γi for all i ∈ N, (3.18)

holds. Then, system (1.3) has a unique WPAPS x∗(t) ∈ PAPµ(R,Rn), and there is a constant σ ∈
(0,min

i∈N
ã−i ) such that

xi(t) − x∗i (t) = O((
1

1 + t
)σ) as t → +∞,

here i ∈ N, x(t) is an arbitrary solution of system (1.3) with initial conditions:

xi(s) = ϕi(s), s ∈ [ρ∗i t0, t0], ϕi ∈ C([ρ∗i t0, t0],R), ρ∗i = min
1≤ j≤n
{qi j}, i ∈ N.

Proof. From (3.18) we can pick a positive constant Λ∗i such that

sup
t∈R

1
ãi(t)

Ki

[
ξ−1

i

n∑
j=1

(|ei j(t)|L
f
j + |bi j(t)|L

g
j)ξ j

]
< Λ∗i < 1, i ∈ N. (3.19)

According to fact that (1.3) is a special case of (1.1) with p+
i = 0 (i ∈ N), the proof proceeds in the

same way as in Theorem 3.1.
Remark 3.1. Obviously, it is easy to see that all results in [22] are the special case of Theorem 2.2

in this manuscript. In particular, the wrong in (1.5) has been successfully corrected. This indicates that
our results supplement and improve the previous references [22, 23]

4. A numerical example

In order to reveal the correctness and feasibility of the obtained results, an example with the
simulation is introduced in this section.

Example 4.1. Consider the following CNNs with D operator and multi-proportional delays:

[x1(t) − sin t
100 x1( 1

3 t)]′

= −( 1
5 + 3

10 sin 20t)x1(t) + 1
20 (sin 2t + e−t2(sin t)2) 1

20 arctan(x1(t))
+ 1

20 (sin 3t + e−t4(sin t)4) 1
20 arctan(x2(t))

+ 1
20 (cos 2t + e−t2(cos t)2) 1

20 x1( 1
2 t)

+ 1
20 (cos 3t + e−t4(cos t)4) 1

20 x2( 1
3 t) + e−t2 + sin(

√
3t),

[x2(t) − cos t
100 x2( 1

3 t)]′

= −( 1
5 + 3

10 cos 20t)x2(t) + 1
20 (cos 2t + e−t2(cos t)2) 1

20 arctan(x1(t))
+ 1

20 (cos 3t + e−t4(cos t)4) 1
20 arctan(x2(t))

+ 1
20 (cos 3t + e−t6(cos t)6) 1

20 x1( 1
3 t)

+ 1
20 (cos 5t + e−t8(cos t)8) 1

20 x2( 1
4 t) + e−t4 + sin(

√
5t).

(4.1)
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Clearly,

n = 2, qi j = 1
i+ j , t0 = 1, fi(x) = 1

20 arctan x, gi(x) = 1
20 x, i, j = 1, 2.

Then, we can take

ãi(t) =
1
5
, ξi = 1, L f

i = Lg
i =

1
20
, Ki = e

3
10 , µ(t) = t2 + 1, i, j = 1, 2,

such that CNNs (1.1) with (4.1) satisfies all the conditions (H1) − (H3). By Theorem 2.1, we can
conclude that CNNs (4.1) has a unique weighted pseudo almost periodic solution x∗(t) ∈ PAPµ(R,R2),
and every solutions of (4.1) is exponentially convergent to x∗(t) as t → +∞. Here, the exponential
convergence rate σ ≈ 0.01. Simulations in Figure 1 reflect that the theoretical convergence is in
sympathy with the numerically observed behaviors.

1 5 10 15 20 25 30 35 40
−3

−2

−1

0

1

2

3

4

t

x
i
(t
),
i
=

1
,2

 

 

x
1
(t)

x
2
(t)

Figure 1. Numerical solutions x(t) to system (3.1) with initial values: (ϕ1(s), ϕ2(s)) =

(2,−2), (−3, 2), (3,−2), t0 = 1.

As far as we know, the weighted pseudo almost periodic dynamics of cellular neural networks with
D operator and multi-proportional delays has never been studied in the previous literature [29–52]. It
is easy to see that all results in [16–28] cannot be directly applied to show the case that all solutions of
(4.1) converge globally to the weighted pseudo almost periodic solution. In particular, all parameters
in system (4.1) are chosen by applying Matlab software. It should be mentioned that the nonlinear
activation function fi(x) = 1

20 arctan x has been usually used as the sigmoid functions to agree with the
experimental data of signal transmission in the real cellular networks networks.

5. Conclusions

In this paper, we investigate the global dynamic behaviors on a class of neutral type CNNs with D
operator and multi-proportional delays. Some new criteria have been gained to guarantee that the
existence and exponential stability of weighted pseudo almost periodic solutions for the addressed
system by combining the fixed point theorem and some differential inequality techniques. The
obtained results are new and complement some corresponding ones of the existing literature. It should
be mentioned that the technical assumptions can be easily checked by simple algebra methods and
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convenient for application in practice. In addition, this method affords a possible approach to study
the weighted pseudo dynamics of other cellular neural networks with D operator and delays. In the
future, we will make this further research.
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