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1. Introduction

With the beginning of fuzzy set theory [1], numerous contributions have been done by utilizing
the concept of fuzzy sets from simple theoretical to logical and innovative disciplines. The theoretical
aspect of fuzzy set theory deals as a tool, which extends the classical structure of algebra into the
new form of arithmetical structures such as fuzzy relations, fuzzy equivalence and fuzzy compatible
relations, fuzzy-semigroups and fuzzy-groups. Keeping this in mind, Rosenfeld [2] made excellent
contributions in generalizing groupoids and groups via fuzzy set theory. Since then, many researchers
explored fuzzy relations and fuzzy equivalence relations in general and particular in groups [3–8].
Murali [9] examined fuzzy-relations on sets and lattices properties of fuzzy equivalence relations.

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2021105


1755

Kuroki [10] studied the fuzzy-compatibility on groupoids and generalized it to fuzzy-congruence on
groups employing fuzzy normal subgroups. Fuzzy-congruences on n-ary semigroups, quotient n-ary
semigroups, and isomorphism theorems in n-ary semigroups were established in [11]. They also relate
fuzzy congruences and fuzzy normal ideals, and provided that there is a one-to-one mapping from the
set of all fuzzy normal ideals of the special n-ary semigroups to the set of all fuzzy congruences in an
n-ary semigroup with one zero. The concepts of fuzzy normal congruence and fuzzy coset relation on
a group were explored by Shoar in [12] and provided that a level subset of fuzzy normal congruence is
also a normal congruence.

After the start of AG-groups, a midway structure between an abelian group and quasigroup
investigated by numerous analysts. AG-groups up to order 11 are counted by Shah, and give lower
bound for order 12 [13], it appears that from ordered 3–12 there exist 1, 2, 1, 1, 1, 7, 3, 1, 1 and ≥ 5,
non-associative AG-groups, respectively. As each commutative group is an AG-group, but the
converse isn’t true. In specific, there exist non-abelian AG-groups of order 3, 32 or holding the
squaring property (ab)2 = a2b2 ∀ a, b ∈ G. Moreover, from an abelian group (G, ·) one can easily
obtain an AG-group under “∗” given by:

s ∗ t = t · s−1 or s ∗ t = s−1 · t,

for all s, t ∈ G [14]. The authors of this paper also contributed in AG-groups in many ways see [15–19].
Recently, the notions of congruences and decomposition of the non-associative structure have been
introduced, and then the notions of fuzzy congruences in the non-associative structure are also been
introduced [20,21]. Further, various other notions like fuzzy normal and self-conjugate are investigated
by them and show that fuzzy kernel and traces of a congruence provided a congruence pair. Congruence
is one of the fundamental concepts in number theory; used in business, computer science, physics,
chemistry, biology, music, and to design round-robin tournaments [22–24]. However, congruence
arithmetic has many applications in the foundation of modern cryptography in public-key encryption,
secret sharing, wireless authentication, and many other applications for data security [25, 26]. Based
on this, the notion of fuzzy congruences is extended to AG-groups.

2. Preliminaries

A fuzzy set is defined by:

S = {(x, β(x)) : x ∈ X, β(x) ∈ [0, 1]} ,

where the set of all fuzzy sets over X is denoted by FP(X). A function β : X × X → [0, 1] is a fuzzy
relation on X [27]. Let β and γ be any fuzzy relations on X. Then their product is represented by:

β ◦ γ(p, q) = max
r∈X

(β(p, r) ∧ γ(r, q)) .

Therefore, a fuzzy relation on X is a fuzzy equivalence relation: if ∀p, q, r ∈ X. i. β(p, p) = 1 (fuzzy
reflexive), ii. β(p, q) = β(q, p) (fuzzy symmetric) and iii. β ◦ β ≤ β (fuzzy transitive) [28]. A fuzzy
relation β is fuzzy left (fuzzy right) compatible if β(rp, rq) ≥ β(p, q) (β(pr, qr) ≥ β(p, q)); and is fuzzy
compatible if β(pr, qs) ≥ (β(p, q) ∧ β(r, s)) for all p, q, r, s ∈ S where S is a semigroup [29]. Further,
if β is fuzzy left (fuzzy right) compatible and fuzzy equivalence relation on S , then β is called a fuzzy
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left (fuzzy right) congruence relation on S ; and is fuzzy congruence if and only if it is both fuzzy left
and fuzzy right congruence [29]. Simply, a fuzzy compatible and a fuzzy equivalence relation on S is
called a fuzzy congruence, where FC(S ) represents the set of all fuzzy congruences on S . In the rest of
the paper, G represents an AG-group where e be the left identity of G. An AG-groupoid G containing
left identity and the inverse of each element in G is called an AG-group. A fuzzy AG-group is defined
as follow. Let β ∈ FP(G). Then β is a fuzzy AG-group on G if, for all s, t ∈ G, β(st) ≥ (β(s) ∧ β(t))
and β(s−1) ≥ β(s) or β(st−1) ≥ (β(s) ∧ β(t))∀ s, t ∈ G. From now on F(G) will represent the set of all
fuzzy AG-groups on G [16].

Example 1. Let G = {0, 1, 2, 3} be an AG-group, under the multiplication table:

· 0 1 2 3
0 0 1 2 3
1 3 0 1 2
2 2 3 0 1
3 1 2 3 0

Clearly, ν ∈ F(G) where ν is defined by: ν(0) = 0.7, ν(1) = ν(2) = ν(3) = 0.5.

Example 2. Let G = {a0, a1, a2, a3, a4, a5} be an AG-group, under the multiplication table:

· a0 a1 a2 a3 a4 a5

a0 a0 a1 a2 a3 a4 a5

a1 a5 a0 a1 a2 a3 a4

a2 a4 a5 a0 a1 a2 a3

a3 a3 a4 a5 a0 a1 a2

a4 a2 a3 a4 a5 a0 a1

a5 a1 a2 a3 a4 a5 a0

Clearly, ν ∈ F(G), where ν(a0) = 0.5, ν(a2) = 0.4 = ν(a4), ν(a1) = ν(a3) = ν(a5) = 0.2.

From fuzzy AG-group the following are obvious [16]:

(1) Let β, γ ∈ FP(G), then (β ◦ γ)(p) = (γ ◦ β)(pe)∀ p ∈ G.
(2) Let β ∈ F(G), then β(pq) = β(qp)∀ p, q ∈ G.
(3) Let β ∈ F(G), then, β(e) ≥ β(p), and β(p−1) = β(p)∀ p ∈ G.
(4) Let β ∈ FP(G), then β ∈ F(G)⇔ β ◦ β ⊆ β and β−1 = β.

Let δ ∈ F(G). If for any a, x ∈ G

δ
(
(ax)a−1

)
= δa(x),

then δ is called a fuzzy normal AG-subgroup of G [15]. Henceforth, FN(G) will represent the set of
all fuzzy normal AG-subgroup of G.

Theorem 1. [15] Let δ ∈ F(G). The following are equivalent ∀ a, x ∈ G,

(i) δ
(
(ax)a−1

)
= δ(x);
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(ii) δ
(
(ax)a−1

)
≥ δ(x);

(iii) δ
(
(ax)a−1

)
≤ δ(x).

Definition 1. Let φ : S → T be a homomorphism on semigroups S and T . Then, Ker(φ) = {(s1, s2) ∈
S × S : φ(s1) = φ(s2)} is a congruence on S [30].

3. Results and discussions

In this section we provide some new results about fuzzy congruences on AG-groups.

Theorem 2. Let ν1, ν2 ∈ F(G). Then ν1 ◦ ν2 ∈ F(G).

Proof. Let ν1 ◦ ν2 ∈ F(G). Using left invertive law we have

(ν1 ◦ ν2) ◦ (ν1 ◦ ν2) = ((ν1 ◦ ν2) ◦ ν2) ◦ ν1

= ((ν2 ◦ ν2) ◦ ν1) ◦ ν1

= (ν1 ◦ ν1) ◦ (ν2 ◦ ν2)
≤ (ν1 ◦ ν2).

This implies that (ν1 ◦ ν2) ◦ (ν1 ◦ ν2) ≤ (ν1 ◦ ν2). Also we have

(ν1 ◦ ν2)−1(p) = (ν1 ◦ ν2)(p−1)
= max

p−1=st
(ν1(s) ∧ ν2(t))

= max
p=(st)−1

(ν1(s) ∧ ν2(t))

= max
p=s−1t−1

(
ν1(s−1) ∧ ν2(t−1)

)
; ν1, ν2 ∈ F(G)

= (ν1 ◦ ν2)(p).

This implies that (ν1 ◦ ν2)−1 = (ν1 ◦ ν2). Hence, by the result stated above in (4), ν1 ◦ ν2 ∈ F(G). �

Thus unlike group, the composition of two “fuzzy AG-subgroups” is also “fuzzy AG-subgroups”
without the condition of commutativity.

Example 3. Consider an AG-group defined in Example 1. Clearly, µ : G ×G → [0, 1] defined by

µ 0 1 2 3

0 1 1
2

3
4

1
2

1 1
2 1 1

2
3
4

2 3
4

1
2 1 1

2

3 1
2

3
4

1
2 1

is fuzzy congruence on G.

Example 4. Consider an AG-group defined in Example 2. Clearly, µ : G ×G → [0, 1] defined by
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µ 0 1 2 3 4 5

0 1 1
6

3
5

1
6

3
5

1
6

1 1
6 1 1

6
3
5

1
6

3
5

2 3
5

1
6 1 1

6
3
5

1
6

3 1
6

3
5

1
6 1 1

6
3
5

4 3
5

1
6

3
5

1
6 1 1

6

5 1
6

3
5

1
6

3
5

1
6 1

Then, µ ∈ FC(G).

Lemma 1. Let β and γ be fuzzy compatible on G, then β ◦ γ is also fuzzy compatible on G.

Proof. For any p, q, r, s ∈ G we have β(pr, qs) ≥ (β(p, q) ∧ β(r, s)) and γ(pr, qs) ≥ (γ(p, q) ∧ γ(r, s)) as
β and γ are compatible. Now,

(β ◦ γ)(pr, qs) =

= max
t∈G

(β(pr, t) ∧ γ(t, qs))

= max
t=uv∈G

(β(pr, uv) ∧ γ(uv, qs))

≥ max
z=uv∈G

[
(β(p, u) ∧ β(r, v)) ∧ (γ(u, q) ∧ γ(v, s))

]
=

(
max
u∈G

(β(p, u) ∧ γ(u, q))
)
∧

(
max
v∈G

(β(r, v) ∧ γ(v, s))
)

= (β ◦ γ)(p, q) ∧ (β ◦ γ)(r, s).

This implies that (β ◦ γ)(pr, qs) ≥ ((β ◦ γ)(p, q) ∧ (β ◦ γ)(r, s)). Hence, β ◦ γ is fuzzy compatible on
G. �

Lemma 2. A fuzzy relation β on G is fuzzy congruence⇔ β is fuzzy left and fuzzy right compatible.

Proof. Consider β ∈ FC(G), then, β(p, q) = β(p, q)∧β(r, r) ≤ β(pr, qr) and β(p, q) = β(r, r)∧β(p, q) ≤
β(rp, rq)∀ p, q, r ∈ G. Hence, β is fuzzy left and fuzzy right compatible.

Conversely, consider β is fuzzy left and fuzzy right compatible, then ∀ p, q, u, v ∈ G,

β(p, q) ∧ β(u, v) = β(p, q) ∧ β(u, u) ∧ β(q, q) ∧ β(u, v)
≤ β(pu, qu) ∧ β(qu, qv)
≤ β(pu, qv).

Hence, β ∈ FC(G). �

Theorem 3. If β, γ ∈ FC(G) and β ◦ γ = γ ◦ β. Then β ◦ γ ∈ FC(G).

Proof. Consider β, γ ∈ FC(G), such that β ◦ γ = γ ◦ β. First we show that β ◦ γ is an equivalence
relation. Clearly, β ◦ γ(s, s) = 1. For symmetry take any s, t ∈ G,

(β ◦ γ)(s, t) = max
u∈G

(β(s, u) ∧ γ(u, t))
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= max
u∈G

(γ(u, t) ∧ β(s, u))

= max
u∈G

(γ(t, u) ∧ β(u, s)) ; (β, γ ∈ FC(G))

= (γ ◦ β)(t, s)
= (β ◦ γ)(t, s).

⇒ β ◦ γ is fuzzy symmetric.
Using medial law, we get (β◦γ)◦ (β◦γ) = (β◦β)◦ (γ◦γ) ≤ β◦γ. Therefore, β◦γ is an equivalence

relation and by Lemma 1, β ◦ γ is compatible. Hence, β ◦ γ ∈ FC(G). �

Corollary 1. Let β, γ ∈ FC(G). If β ◦ γ ∈ FC(G), then β ◦ γ = β ∨ γ.

Proof. Consider β ◦ γ ∈ FC(G) where β, γ ∈ FC(G). To show that β ◦ γ = β ∨ γ, take any p, q ∈ G

(β ◦ γ)(s, t) = max
u∈G

(β(s, u) ∧ γ(u, t))

≥ β(s, t) ∧ γ(t, t)
= β(s, t).

This implies that β ◦γ ≥ β. Similarly, β ◦γ ≥ γ. Now take δ ∈ FC(G) such that δ ≥ β and δ ≥ γ. Then,

(β ◦ γ)(s, t) = max
u∈G

(β(s, u) ∧ γ(u, t))

≤ max
u∈G

(δ(s, u) ∧ δ(u, t))

= δ(s, t).

This implies that β ◦ γ ≤ δ. Thus, β ◦ γ = β ∨ γ. �

Theorem 4. If β, γ ∈ FC(G). Then show that the following conditions are equivalent:

(1) β ◦ γ is a fuzzy congruence.
(2) β ◦ γ is a fuzzy equivalence.
(3) β ◦ γ is a fuzzy symmetric.
(4) β ◦ γ = γ ◦ β.

Proof. Obviously, (1)⇒ (2)⇒ (3).
To show that (3)⇒ (4), take any p, q ∈ G,

(β ◦ γ)(p, q) = ∨
r∈G

(β(p, r) ∧ γ(r, q))

= ∨
r∈G

(γ(r, q) ∧ β(p, r))

= ∨
r∈G

(γ(q, r) ∧ β(r, p)); (β, γ ∈ FC(G))

= (γ ◦ β)(q, p)
= (γ ◦ β)(p, q).

This implies that β ◦ γ = γ ◦ β.
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Now consider (4) holds. We show that β ◦ γ ∈ FC(G). As (β ◦ γ)(p, p) = ∨
q∈G

(β(p, q) ∧ γ(q, p)) ≥

β(p, p)∧ γ(p, p) = 1, so that (β ◦ γ)(p, p) = 1. Thus, β ◦ γ is fuzzy reflexive. Now for any p, q ∈ G, we
have

(β ◦ γ)(p, q) = (γ ◦ β)(p, q)
= max

r∈G
(γ(p, r) ∧ β(r, q))

= max
r∈G

(β(r, q) ∧ γ(p, r))

= max
r∈G

(β(q, r) ∧ γ(r, p)); (β, γ ∈ FC(G))

= (β ◦ γ)(q, p).

Thus, β ◦ γ is fuzzy symmetric. Using medial law and fuzzy transitivity we have,

(β ◦ γ) ◦ (β ◦ γ) = ((β ◦ γ) ◦ γ)) ◦ β
= ((γ ◦ γ) ◦ β) ◦ β
= (β ◦ β) ◦ (γ ◦ γ)
≤ β ◦ γ.

Therefore, β ◦ γ is a fuzzy equivalence relation on G. Compatibility follows by Lemma 1. Hence,
β ◦ γ ∈ FC(G). �

Theorem 5. If β, γ ∈ FC(G). Then β ◦ γ = γ ◦ β.

Proof. Let p, q ∈ G, then

(β ◦ γ)(p, q) = max
r∈G

(β(p, r) ∧ γ(r, q))

= max
r∈G

(γ(r, q) ∧ β(p, r))

= max
r=(ps−1)q∈G

(
γ((ps−1)q, q) ∧ β(p, (ps−1)q)

)
= max

r=(ps−1)q∈G

(
γ((ps−1)q, eq) ∧ β(ep, (ps−1)q)

)
= max

r=(qs−1)p∈G

(
γ
(
(qs−1)p, ((ss−1)q)

)
∧ β

(
(ss−1)p, (ps−1)q

))
= max

r=(qs−1)p∈G

(
γ
(
(qs−1)p, (qs−1)s)

)
∧ β

(
(ps−1)s, (ps−1)q

))
= max

s∈G
(γ(up, us) ∧ β(vs, vq))

≥ max
s∈G

(γ(p, s) ∧ β(s, q))

= (γ ◦ β)(p, q).

Similarly, we can show that γ ◦ β ≥ β ◦ γ. Hence, β ◦ γ = γ ◦ β. �

Theorem 6. Let β ∈ FC(G). Then β
(
u−1, v−1

)
= β (u, v) ∀ u, v ∈ G.

Proof. For any u, v ∈ G,

β
(
u−1, v−1

)
= β

(
eu−1, ev−1

)
AIMS Mathematics Volume 6, Issue 2, 1754–1768.
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= β
(
(v−1v)u−1, (u−1u)v−1

)
= β

(
(u−1v)v−1, (u−1u)v−1

)
≥ β

(
u−1v, u−1u

)
≥ β (v, u)

= β (u, v) ; β ∈ FC(G).

This implies β
(
u−1, v−1

)
≥ β (u, v). Also,

β (u, v) = β (v, u) ; β ∈ FC(G).
= β

(
(uu−1)v, (vv−1)u

)
= β

(
(vu−1)u, (vv−1)u

)
≥ β

(
vu−1, vv−1

)
≥ β

(
u−1, v−1

)
.

This implies that β (u, v) ≥ β
(
u−1, v−1

)
. Hence, β

(
u−1, v−1

)
= β (u, v) ∀ u, v ∈ G. �

Theorem 7. Let γ ∈ FN(G). Define a fuzzy relation by β(p, q) = γ(pq−1)∀ p, q ∈ G. Then β ∈ FC(G).

Proof. Consider γ ∈ FN(G), and a fuzzy relation β defined by: β(p, q) = γ(pq−1)∀ p, q ∈ G. We show
that β ∈ FC(G). Let p ∈ G. Since, β(p, p) = γ(pp−1) = γ(e) = 1, β is fuzzy reflexive. Let p, q ∈ G,
then

β(p, q) = γ(pq−1)
= γ

(
(pq−1)−1

)
;

(
γ(u−1) = γ(u)∀ u ∈ G

)
= γ

(
p−1q

)
= γ

(
qp−1

)
; (γ(ab) = γ(ba)∀ a, b ∈ G)

= β(q, p),

β is fuzzy symmetric. Let p, q, r ∈ G, then

(β ◦ β) (p, q) = ∨
r∈G
{β(p, r) ∧ β(r, q)}

= ∨
r∈G
{γ(pr−1) ∧ γ(rq−1)}

≤ ∨
r∈G

{
γ
(
(r−1 p)(rq−1)

)}
= γ(r−1r)(pq−1); (by medial law)
= γ

(
e(pq−1)

)
= γ(pq−1)
= β(p, q).
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Therefore, β is fuzzy transitive as β ◦ β ≤ β. Hence, β is fuzzy equivalence on G. Since γ ∈ FN(G).
Therefore, for fuzzy compatibility, we have

β(rp, rq) = γ((rp)(rq)−1)
= γ((rq)−1(rp))
= γ

((
r−1q−1

)
(rp)

)
= γ

((
r−1r

)
(q−1 p)

)
= γ

(
e · (q−1 p)

)
≥ γ (e) ∧ γ(q−1 p)
= γ(q−1 p); (γ(e) = 1)

= γ(pq−1)
= β(p, q).

This implies that β(rp, rq) ≥ β(p, q). Similarly, β(pr, qr) ≥ β(p, q). Hence, β ∈ FC(G). �

Theorem 8. Let β ∈ FC(G), for any fuzzy set δ of G defined by δ(p) = β(p, e)∀ p ∈ G. Then δ is fuzzy
normal.

Proof. Since, β ∈ FC(G). Therefore, by fuzzy transitivity, for any p, q ∈ G, we have

δ(pq) = β(pq, e)
= β(pq, q−1q)
≥ β(p, q−1)
≥ (β ◦ β)(p, q−1)
= ∨

r∈G

(
β(p, r) ∧ β(r, q−1)

)
≥ β(p, e) ∧ β(e, q−1)
= β(p, e) ∧ β(qq−1, eq−1)
≥ β(p, e) ∧ β(q, e)
= δ(p) ∧ δ(q).

This implies that δ(pq) ≥ δ(p) ∧ δ(q). Using fuzzy symmetry,

δ(p−1) = β(p−1, e)
= β(ep−1, pp−1)
≥ β(e, p)
= β(p, e)
= δ(p).

This implies that δ(p−1) ≥ δ(p). Replacing p−1 by p we get δ(p) ≥ δ(p−1). This implies that
δ(p−1) = δ(p). Therefore, δ ∈ F(G). For fuzzy normality we have
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δ((pq)p−1) = β((pq)p−1, e)
= β((qp)p−1, pp−1)
≥ β(qp, p) = β(qp, ep)
≥ β(q, e)
= δ(q).

This implies that δ((pq)p−1) ≥ δ(q). Therefore, by Theorem 1 we get δ ∈ FN(G). �

Theorem 9. Show that the set of all fuzzy congruences on G is semilattice.

Proof. Let β, γ ∈ FC(G) and for any p, q ∈ G. Then

(β ◦ γ)(p, q) = max
r∈G

(β(p, r) ∧ γ(r, q))

= max
r∈G

(γ(r, q) ∧ β(p, r))

= max
r∈G

(
γ(er, (rr−1)q) ∧ β((rr−1)p, er)

)
= max

r∈G

(
γ(er, (qr−1)r) ∧ β((pr−1)r, er)

)
≥ max

r∈G

(
γ
(
e, qr−1

)
∧ β

(
(pr−1), e

))
= max

r∈G

(
γ
(
pp−1, (p−1 p)(qr−1)

)
∧ β

(
(q−1q)(pr−1), qq−1

))
= max

r∈G

(
γ
(
pp−1, ((qr−1)p)p−1

)
∧ β

(
((pr−1)q)q−1, qq−1

))
≥ max

r∈G
(γ(p, (qr−1)p) ∧ β((pr−1)q, q))

= max
r∈G

(γ(p, (pr−1)q) ∧ β((pr−1)q, q))

= (γ ◦ β)(p, q).

This implies that (β ◦ γ) ≥ (γ ◦ β). Similarly, (γ ◦ β) ≥ (β ◦ γ). Thus, (β ◦ γ) = (γ ◦ β), and by
Theorem 4, β ◦ γ ∈ FC(G). On the other hand,

(β ◦ β) (p, q) = ∨
r∈G
{β(p, r) ∧ β(r, q)}

≥ (β(p, p) ∧ β(p, q))
= 1 ∧ β(p, q)
= β(p, q).

This implies that β ◦ β ≥ β. As β ∈ FC(G) therefore, β ◦ β ≤ β. Thus β ◦ β = β. Hence, FC(G) is
semilattice. �

Now in the following section fuzzy factor AG-group are discussed and find out the application of
fuzzy factor AG-group and provided fuzzy homomorphism theorem of fuzzy AG-groups.

Theorem 10. Show that there exists one-to-one correspondence between FN(G) and FC(G).

Proof. The proof follows from Theorem 5.2.10 [31]. �
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4. Fuzzy quotient AG-group

Definition 2. Let ρ be a binary relation on G, then the characteristic function represented by χρ and
defined by:

χρ(s, t) =

1 if (s, t) ∈ ρ,
0 if (s, t) < ρ.

Lemma 3. A relation ρ on G is an equivalence⇔ χρ is a fuzzy equivalence.

Proof. Assume that χρ is fuzzy equivalence. Therefore, by Definition 2, χρ(p, p) = 1⇒ (p, p) ∈ ρ⇒ ρ

is reflexive. Let (p, q) ∈ ρ ⇒ χρ(p, q) = 1 ⇒ χρ(q, p) = 1 ⇒ (q, p) ∈ ρ ⇒ ρ is symmetric. Also let
(p, r) and (r, q) ∈ ρ ⇒

(
χρ ◦ χρ

)
(p, q) = max

r∈G

(
χρ(p, r) ∧ χρ(r, q)

)
= 1 ⇒ (p, q) ∈ ρ ⇒ ρ is transitive.

Therefore ρ is a equivalence relation.
Conversely, consider ρ is an equivalence, then by Definition 2, χρ(p, p) = 1, as (p, p) ∈ ρ. Also

χρ(p, q) = 1 = χρ(q, p), as (p, q) ∈ ρ⇒ (q, p) ∈ ρ ∀ p, q ∈ G, and(
χρ ◦ χρ

)
(p, q) = max

r∈G

(
χρ(p, r) ∧ χρ(r, q)

)
= 1 ∧ 1 = 1 = χρ(p, q),

as (p, r) ∈ ρ and (r, q) ∈ ρ ⇒ (q, p) ∈ ρ ∀ p, q, r ∈ G. This implies that χρ ◦ χρ ≤ χρ. Hence, χρ is a
fuzzy equivalence relation. �

Theorem 11. Any binary relation ρ on G is a congruence if and only if χρ is a fuzzy congruence.

Proof. Consider ρ ∈ FC(G). As ρ is an equivalence, therefore, by Lemma 3 χρ is fuzzy equivalence.
Now for fuzzy compatibility let (p, q) ∈ ρ ⇒ (pr, qr) ∈ ρ and (rp, rq) ∈ ρ∀p, q, r ∈ G. If (p, q) < ρ,
then

χρ(pr, qr) ≥ 0 = χρ(p, q),

and

χρ(rp, rq) ≥ 0 = χρ(p, q).

Therefore, χρ ∈ FC(G) on G.
Conversely, let χρ ∈ FC(G). Therefore, by Lemma 3, ρ is an equivalence as χρ is fuzzy equivalence.

For compatibility of ρ, let (p, q) ∈ ρ ⇒ χρ(rp, rq) ≥ χρ(p, q) = 1, and χρ(pr, qr) ≥ χρ(p, q) = 1.
Therefore, χρ(rp, rq) = 1 and χρ(pr, qr) = 1⇒ (pr, qr) ∈ ρ and (rp, rq) ∈ ρ. Hence, ρ is a congruence
on G. �

Definition 3. Let β be a fuzzy equivalence relation on G. If a fuzzy set βu on G, is defined by:

βu(p) = β(u, p)∀ u, p ∈ G,

is called fuzzy equivalence class of β containing u ∈ G.

Theorem 12. For any fuzzy equivalence relation β on G, βu = βv ⇔ β(u, v) = 1∀ u, v ∈ G.
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Proof. For any fuzzy equivalence relation β on G, assume that βu = βv, to show that β(u, v) = 1. By
Definition 3, β(u, v) = βu(v) = βv(v) = β(v, v) = 1; which is required result.

Conversely, consider β(u, v) = 1. Then, ∀ p ∈ G,

βu(p) = β(u, p) ≥ (β ◦ β)(u, p) = ∨
r∈G

(β(u, r) ∧ β(r, p))

≥ (β(u, v) ∧ β(v, p))

= 1 ∧ β(v, p) = β(v, p) = βv(p)⇒ βu ≥ βv,

now β(v, u) = β(u, v) = 1, as β is symmetric. Thus, βv ≥ βu. Hence, βu = βv. �

Theorem 13. Let β ∈ FC(G). Then, the set
G

β
= {βa : a ∈ G} forms an AG-group under “?” defined

by βa ? βb = βab for all βa, βb ∈
G

β
.

Proof. Let β ∈ FC(G). To show that the binary operation “?” is well-defined on
G

β
. Consider, βa = βb

and βc = βd. Then by Theorem 3, we have β(a, b) = β(c, d) = 1. Thus, β(ac, bd) ≥ (β ◦ β)(ac, bd) =

max
e∈G

(β(ac, e) ∧ β(e, bd)) ≥ β(ac, bc) ∧ β(bc, bd) ≥ β(a, b) ∧ β(c, d) = 1 ∧ 1 = 1⇒ β(ac, bd) = 1. Thus
by Theorem 3, we get

βa ? βc = βac = βbd = βb ? βd.

Hence, “?” is well-defined on
G

β
. To show that

G

β
is an AG-group under “?”. Clearly, “?” is closed in

G

β
. Thus,

G

β
is a groupoid. Left invertive law under “?” also hold in

G

β
. That is, for all a, b, c ∈ G, we

have (βa ? βb)?βc = βab?βc = β(ab)c = β(cb)a = β(cb)?βa = (βc ? βb)?βa.Hence,
G

β
is an AG-groupoid.

G

β
under “?” is non-associative as: (βa ? βb)?βc = βab?βc = β(ab)c , βa(bc) = βa?β(bc) = βa? (βb?βc).

For all a ∈ G, (βe ? βa) = βea = βa, but (βa ? βe) = βae , βa. Thus, βe is the left identity of
G

β
. Thus

∀ βa ∈
G

β
∃ βa−1 ∈

G

β
3 (βa ? βa−1) = βaa−1 = βe = β(a−1a) = (βa−1 ? βa). Hence,

G

β
is an AG-group. �

Thus an AG-group
G

β
, defined in the above Theorem 13, is known as fuzzy quotient AG-group.

Theorem 14. Let β ∈ FC(G). Then, β−1(1) = {(a, b) ∈ G ×G : β(a, b) = 1} is congruence on G.

Proof. The proof follows from Theorem 5.3.4 [31]. �

Using Definition 1, and Theorem 11, it is clear that χker(φ) is fuzzy congruence. Keeping in view
this, we define the fuzzy kernel of φ as follow:

χker(φ)(s, t) =

1 if φ(s) = φ(t),
0 if φ(s) , φ(t).

(4.1)
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Theorem 15. If φ : G → G′ be a onto homomorphism on G, then
G

χker(φ)
� G′.

Proof. Let ψ :
G

χker(φ)
→ G′, defined by ψ

(
χker(φ)(g)

)
= φ(g). First we show that the mapping is well-

defined. Let χker(φ)(g1) = χker(φ)(g2), then by Theorem 12, χker(φ)(g1, g2) = 1. Using Equation (4.1), we
get φ(g1) = φ(g2)⇒ ψ

(
χker(φ)(g1)

)
= ψ

(
χker(φ)(g2)

)
. This shows that ψ is well-defined. To see that ψ is

one-to-one, let φ(g1) = φ(g2). Then by Definition 1, (g1, g2) ∈ Ker(φ). Using Equation (4.1), we get
χker(φ)(g1, g2) = 1. Hence by Theorem 12, χker(φ)(g1) = χker(φ)(g2). Thus ψ is one-to-one mapping. At the
end we show that ψ is a homomorphism on G. Take ψ

[(
χker(φ)(g1)

)
?

(
χker(φ)(g2)

)]
= ψ

(
χker(φ)(g1g2)

)
=

φ(g1g2) = φ(g1) · φ(g2) = ψ
(
χker(φ)(g1)

)
· ψ

(
χker(φ)(g2)

)
. As, ψ is a bijective homomorphism, therefore,

G

χker(φ)
� G′. �

5. Conclusion

In this paper, a relation on AG-group particularly congruence relation and fuzzy congruence relation
on AG-group are provided with suitable examples. Moreover, various results on and fuzzy congruences
on AG-groups are explored in the detailed. Further, we prove in the article that fuzzy-congruences and
fuzzy normal subgroups imply each other, and each fuzzy-congruences in AG-group are a semilattice.
We introduce fuzzy equivalence classes on AG-groups and fuzzy quotient AG-group. We also show
fuzzy equivalence classes on AG-groups form an equivalence relation. In the end, some applications
of fuzzy congruences in the form of fuzzy homomorphism theorems are also provided. However, AG-
groups still needed further attention. In future, the idea can be further extended to fuzzy congruences
in rings, near rings and near LA-rings.
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