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Abstract: In this paper, we study the intrinsic relations between the global injectivity of the
differentiable local homeomorphism map F and the rate of the Spec(F) tending to zero, where
Spec(F) denotes the set of all (complex) eigenvalues of Jacobian matrix JF(x), for all x ∈ R2.
They depend deeply on the W-condition which extends the ∗-condition and the B-condition. The
W-condition reveals the rate that tends to zero of the real eigenvalues of JF, which can not

exceed O
(
x ln x(ln

ln x
ln ln x

)2
)−1

by the half-Reeb component method. This improves the theorems of
Gutiérrez [16] and Rabanal [27]. The W-condition is optimal for the half-Reeb component method in
this paper setting. This work is related to the Jacobian conjecture.
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1. Introduction

In 1939, Keller ( [19]) stated the following Conjecture:

Conjecture 1.1. (Jacobian conjecture). Let F : kn → kn be a polynomial map, where k is a field
of characteristic 0. If the determinant for its Jacobian matrix of the polynomial map is a non-zero
constant, i.e., det JF(x) ≡ C ∈ k∗, ∀x ∈ kn, then F(x) has a polynomial inverse map.

On the long-standing Jacobian conjecture, it is still open even in the case n = 2.
A very important result, for example, if k = Cn, is the following theorem.

Theorem 1.1. ( [8]) Let F : Cn → Cn is a polynomial map. If F is injective, then F is bijective.
Furthermore the inverse is also a polynomial map.

If k = Rn, then one gets

Conjecture 1.2. (Real Jacobian Conjecture, for short, RJC) If F : Rn → Rn is a polynomial map,
det JF(x) is not zero in Rn, then F is a injective map.
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It is false and Pinchuk [25] constructs a counterexample to RJC for n = 2.
In 2007, Belov-Kanel and Kontsevich [20] proved that Conjecture 1.1 is stably equivant to the

Dixmier conjecture. Conjecture 1.1 is also equivalent to the statement: Any ternary Engel algebra
in characteristic 0 satisfying a system of Capelli identities is a Yagzhev algebra (see [1], Page 263).
Moreover, Conjecture 1.1 is also equivant to some other conjectures, such as the Amazing Image
Conjecture [10], a special case of the Vanishing conjecture [31]. There are many results on it, see for
example ( [2, 3, 9, 15, 17, 25, 28] ).

Fernandes et al. [11] study the Conjecture 1.1 by the eigenvalues of the Jacobian matrix JF(x) in
R2 and obtain:

Theorem 1.2. ( [11]) Let F = ( f , g) : R2 → R2 be a differentiable map. For some ε > 0, if

Spec(F) ∩ [0, ε) = ∅, (1.1)

where Spec(F) denotes the set of all (complex) eigenvalues of Jacobian matrix JF(x), for all x ∈ R2,
then F is injective.

Theorem 1.2 is deep. If the assumption (1.1) is replaced by 0 < Spec (F), then the conclusion is
false, even for polynomial map F, as the counterexample due to Pinchuck [25]. Pmyth and Xavier [30]
proved that there exist n > 2 and a non-injective polynomial map F such that Spec(F) ∩ [0,+∞) = ∅.

Theorem 1.2 adds a new result on Markus-Yamabe conjecture [24]. This Conjecture has been solved
by Gutierrez [13] and Fessler [12] independently in dimension n = 2 in 1993. It is false for n > 3 even
for polynomial vector field, see [7].

Theorem 1.2 also implies that the following conjecture is true in dimension n = 2.

Conjecture 1.3. ( [5], Conjecture 2.1) Let F : Rn → Rn be a C1 map. Suppose there exists ε > 0 such
that |λ| > ε for all the eigenvalues λ of Jacobian matrix JF(x) and all x ∈ Rn. Then F is injective.

The essential technique is to use the concept of the half-Reeb component (see Definition 2.1 below)
to prove Theorem 1.2.

Theorem 1.2 leads to study the eigenvalue conditions of some maps for injectivity in dimension
n = 2. In 2007, Gutiérrez and Chau [16] studied the geometrical behavior of differentiable maps and
the following ∗-condition on the real eigenvalues of JF in R2 by the half-Reeb component method.

For each θ ∈ R, we denote the linear rotation Rθ by

Rθ :=
(
cos θ − sin θ
sin θ cos θ

)
(1.2)

and define the map Fθ = Rθ ◦ F ◦ R−θ.

Definition 1.1. ( [16], ∗-condition) A differentiable F satisfies the ∗-condition if for each θ ∈ R, there
does not exist a sequence R2 3 zk → ∞ such that, Fθ(zk) → T ∈ R2 and JFθ(zk) has a real eigenvalue
λk → 0.

Theorem 1.3. ( [16]) Suppose that F : R2 → R2 is a differentiable local homeomorphism.
(i) If F satisfies the ∗-condition, then F is injective and its image is a convex set.
(ii) F is a global homeomorphism of R2 if and only if F satisfies the ∗-condition and its image F(R2)

is dense in R2.
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Since the ∗-condition is somewhat weaker than the condition (1.1), we can obtain Theorem 1.2 from
Theorem 1.3 (i) by a standard procedure.

For other new cases, the essential difficulty is how to prove that the eigenvalues of JF which may
be tending to zero imply F is injective. Rabanal [27] extended the ∗-condition to the following B-
condition.

Definition 1.2. ( [27], B-condition) The differentiable map F : R2 → R2 satisfies the B-condition if for
each θ ∈ R, there does not exist a sequence (xk, yk) ∈ R2 with xk → +∞ such that Fθ(xk, yk) → T ∈ R2

and JFθ(xk, yk) has a real eigenvalue λk satisfying λkxk → 0.

If one replaced the ∗-condition by the B-conditon, then Theorem 1.3 also holds. Moreover, Rabanal
obtained the following theorem.

Theorem 1.4. ( [27]) Suppose that the differentiable map F : R2 → R2 satisfies the B-condition and
det JF(z) , 0,∀z ∈ R2, then F is a topological embedding.

In fact, Theorem 1.4 improves the main result of Gutiérrez [16], see also [26, 29].
In 2014, Braun and Venato-Santos [4] considered the relations between the half-Reeb component

and the Palais-Smale condition for global injectivity.
Many references on other aspects of the half Reeb component including higher dimensional

situations (see [14, 21–23, 28]).
For example, Gutiérrez and Maquera considered the half-Reeb component for the global injectivity

in dimension 3.

Theorem 1.5. ( [14]) Let Y = ( f , g, h) : R3 → R3 be a polynomial map such that Spec(Y) ∩ [0, ε) = ∅,
for some ε > 0. If codim(S Y) > 2, then Y is a bijection.

Recently, W. Liu prove the following theorem by the Minimax method.

Theorem 1.6. ( [22]) Let F : Rn → Rn be a C1 map, n > 2. If for some ε > 0,

0 < Spec(F) and Spec(F + FT ) ⊆ (−∞,−ε) or (ε,+∞),

then F is globally injective.

Let us return to study the eigenvalues of JF approaching to zero by the half-Reeb component
method in R2.

In this paper, we first define the W-condition. For the convenience of our statement, let us denote
the set
P :=

{
P

∣∣∣ R+ → R+, P is nondecreasing and ∀M > 0, there exists a large constant N which depends

on M and P, such that
∫ N

2

1
P(x)

dx > M
}
.

Obviously, P contains many functions, such as 1, x, x ln(x + 1), x ln(1 + x) ln
(
1 + ln(1 + x)

)
and it

doesn’t include xα,∀α > 1; x lnβ(x + 1),∀β > 1.

Definition 1.3. (W-condition)
A differentiable map F satisfies the W-condition if for each θ ∈ R (see (1.2)), there does not exist

a sequence (xk, yk) ∈ R2 with xk → +∞ such that Fθ(xk, yk) → T ∈ R2 and JFθ(xk, yk) has a real
eigenvalue λk satisfying λkP(xk)→ 0, where P ∈ P.
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Remark 1.1. The W-condition obviously contains the ∗-condition and the B-condition. Let P(x) =

x ln(x+1) ∈ P, the W-condition with the function P is weaker than the ∗-condition and the B-condition.
It seems can’t be improved in this setting by making use of the half-Reeb component method. The W-
condition profoundly reveals the optimal rate that tends to zero of eigenvalues of JF must be in the

interval
(
O(x lnβ x)−1,∀β > 1, O

(
x ln x

(
ln ln x

ln ln x

)2
)−1]

by the half-Reeb component method.

Remark 1.2. If xk exchanges yk in definition 1.3, then the W-condition is also vaild.

Remark 1.3. For example, let g(x, y) be a C1 function such that g(x, y) =
y

x ln x where x > 2. The map
F(x, y) = (e−x, g(x, y)) satisfies det JF = −e−x 1

x ln x , 0. Then, for {xk} ⊆ [2,+∞), F(xk, 0) = (e−xk , 0)→
P = (0, 0), as xk → +∞. JF(xk, 0) has a real eigenvalue

1
xk ln xk

= λk → 0.

However, the limit of the product xk ln xk is away from zero.

We use the W-condition and obtain the main result.

Theorem 1.7. Let F : R2 → R2 be a differentiable local homeomorphism. If F satisfies the W-
condition, then F is injective and F(R2) is convex.

Obviously, Theorem 1.7 implies Theorems 1.3 and 1.4(i). Moreover, we have:

Theorem 1.8. Let F : R2 → R2 be a differentiable Jacobian map. If F satisfies the W-condition, then
F is a globally injective, measure-preserving map with convex image.

It improves the main results of Gutiérrez [16], Rabanal [27] and Gutiérrez [18] .
Because of the injectivity of map F in Theorem 1.8, we obtain the following fixed point theorem.

Corollary 1.1. If F is as in Theorem 1.8 and Spec(F) ⊆ {z ∈ C
∣∣∣|z| < 1} , then F has at most one fixed

point.

Another important property on the Keller map as in corollary 1.1 is the theorem B by Cima et al. [6].
They proved that a global attractor for the discrete dynamical system has a unique fixed point.

By the Inverse Function Theorem, the map F in Theorem 1.7 is locally injective at any point in R2.
However, in general, it’s not a global injective map. So our goal is to give the sufficient conditions to
obtain the global injectivity of F. Here, we also use the W condition as a sufficient condition to obtain
the following results.

Theorem 1.9. Let F = ( f , g) : R2 → R2 be a local homeomorphism such that for some s > 0, F|R2\Ds

is differentiable. If F satisfies the W-condition, then it is a globally injective and F(R2) is a convex set.

Remark 1.4. If the graph of F is an algebraic set , then the injectivity of F must be the bijectivity of
F.

The W condition can be also devoted to studying the differentiable map F : R2\Ds → R
2 whose

Spec(F) is disjoint with [0,+∞).

Theorem 1.10. Let F = ( f , g) : R2\Dσ → R
2 be a differential map which satisfies the W-condition.

If Spec(F) ∩ [0,+∞) = ∅ or Spec(F) ∩ (−∞, 0] = ∅, then there exists s > σ such that F|R2\Ds can be
extended to an injective local homeomorphism F̃ = ( f̃ , g̃) : R2 → R2.
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All these works are related to the Jacobian conjecture which can be reduce to that for any dimension
n > 2, a polynomial map F : Cn → Cn of the form F = x + H, where H is cube-homogeneous and JH
is symmetry, is injective if Spec(F) = {1} (see [3]).

In order to prove our theorems, we need to use the definition and some propositions of the half-Reeb
component.

2. Half-Reeb component

In this section, we will introduce some preparation work on the eigenvalue conditions of Spec(F).
Let h0(x, y) = xy and we consider the set

B = {(x, y) ∈ [0, 2] × [0, 2]
∣∣∣0 < x + y 6 2}.

Definition 2.1. (half-Reeb component [13]) Let F be a differentiable map from R2 → R2 and det JFp ,

0, ∀p ∈ R2, Given h ∈ { f , g}, we will say thatA ⊆ R2 is a half-Reeb component for F (h)
(
or simply a

hRc for F (h)
)
if there exists a homeomorphism H : B→ A which is a topological equivalence between

F (h)|A and F (h0)|B and such that:
(1) The segment{(x, y) ∈ B : x + y = 2} is sent by H onto a transversal section for the foliation F (h)

in the complement of H(1, 1); this section is called the compact edge ofA;
(2) Both segments {(x, y) ∈ B : x = 0} and {(x, y) ∈ B : y = 0} are sent by H onto full half-trajectories

of F (h). These two semi-trajectories of F (h) are called the noncompact edges ofA.

The following Propositions connect the half-Reeb components and injectivity of the map F.

Proposition 2.1. ( [11]) Suppose that F = ( f , g) : R2 → R2 is a differentiable map such that 0 <
Spec(F). If F is not injective, then both F ( f ) and F (g) have half-Reeb components.

Proposition 2.2. ( [11]) Let F = ( f , g) : R2 → R2 be a non-injective, differentiable map such that
0 < Spec(F). LetA be a hRc of F ( f ) and let ( fθ, gθ) = Rθ ◦ F ◦ R−θ, where θ ∈ R and Rθ is in (1.2). If
Π(x, y) = x is bounded, where Π : R2 → R is given by Π(x, y) = x, then there is an ε > 0 such that, for
all θ ∈ (−ε, 0) ∪ (0, ε); F ( fθ) has a hRcAθ such that Π(Aθ)is an interval of infinite length.

3. Half-Reeb component and W-condition

In this section, we will establish the essential fact that the W-condition implies non-existence of
half-Reeb component.

Let F = ( f , g) : R2 → R2 be a local homeomorphism of R2. For each θ ∈ R, we denoted by Rθ the
linear rotation

(
see (1.2)

)
:

(x, y)→ (x cos θ − y sin θ, x sin θ + y cos θ),

and
Fθ := ( fθ, gθ) = Rθ ◦ F ◦ R−θ.

In other words, Fθ represents the linear rotation Rθ in the linear coordinates of R2.
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Proposition 3.1. A differentiable local homeomorphism F : R2 → R2 which satisfies the W-condition
has no half-Reeb components.

Proof. Suppose by contradiction that F has a half-Reeb component. In order to obtain this result, we
consider the map ( fθ, gθ) = Fθ. From Proposition 2.2, there exists some θ ∈ R, such that F (Aθ) has
a half-Reeb component which Π(A) is unbounded interval, where Π(A) denote orthgonal projection
onto the first coordinate inA. Therefore ∃ b and a half-Reeb componentA, such that [b,+∞) ⊆ Π(A).
Then, for large enough a > b and any x > a, the vertical line Π−1(x) intersects exactly the one trajectory
αx ∩ [x,+∞) = x, i.e. x is maximum of the the trajectory Παx . If x > a, the intersection αx ∩ Π−1(x) is
compact subset inA.

Thus, we can define the function H : (a,+∞)→ R by

H(x) = sup{y : (x, y) ∈ Π−1(x) ∩ αx}.

As F ( fθ) is a foliation, one gets

Φ : (a,+∞)→ A by Φ(x) = fθ
(
x,H(x)

)
.

We can know that Φ is a bounded, monotone strictly function such that, for a full measure subset
M ⊆ (a,+∞).

Since the image of Φ is contained in fθ(Γ) where Γ is compact edge of hRc A, the function Φ is
bounded in (a,+∞). Furthermore, Φ is continuous because F ( fθ) is a C0 foliation. Since F ( fθ) is
transversal to Γ, we have Φ is monotone strictly.

For the measure subset M ⊆ (a,+∞), such that Φ(x) is differentiable on M and the Jacobian matrix
of Fθ(x, y) at

(
x,H(x)

)
is

JFθ(x,H(x)) =

(
Φ′(x) 0

∂xgθ
(
x,H(x)

)
∂ygθ

(
x,H(x)

)) .
Therefore, ∀x ∈ M, Φ′(x) = ∂x fθ

(
x,H(x)

)
is a real eigenvalue of JFθ(x,H(x)) and we denote it by

λ(x) := Φ′(x).
Since F is local homeomorphism, without loss of generality, we assume Φ is strictly monotone

increasing, i.e. Φ′(x) > 0,∀x ∈ M. Let any function P ∈ P, where
P =

{
P

∣∣∣ R+ → R+, P is nondecreasing and ∀M > 0, there exists large constant N which depends

on M and P, such that
∫ N

2

1
P(x)

dx > M
}
.

Claim:
lim inf
xk→+∞

Φ′(xk)P(xk) > 0.

Because P(x) and Φ′(x) are both positive, we can suppose by contradition that
lim infxk→+∞Φ′(xk)P(xk) = 0. There exists a subsequence denoted still by {xk}, such that Φ′(xk)P(xk)→
0, as xk → +∞. That is λ(xk)P(xk) → 0. Since Fθ(A) is bounded, Fθ

(
xk,H(xk)

)
converges to a finite

value T on compact set Fθ(A). This contradicts the W-condition.
Therefore, there exist a constant a0 (a0 > 2) and a small ε0 > 0, such that

Φ′(x)P(x) > ε0, ∀x > a0.
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Since Φ(x) is bounded, there exists L > 0, such that

Φ(x) − Φ(a0) 6 L, ∀x > a0.

By the definiton of P, we can choose C large enough, such that∫ C

a0

1
P(x)

dx >
L
ε0
.

Thus,

L > Φ(C) − Φ(a0) =

∫ C

a0

Φ′(x)dx >
∫ C

a0

ε0

P(x)
dx > L.

It’s a contradiction.
�

4. The proof of Theorems 1.7 and 1.8

The proof of Theorem 1.7. By contradiction, we suppose that F is not injective. By Proposition
2.1, we have F has a half-Reeb component. This contradicts Proposition 3.1 that implies F has no
half-Reeb component if F satisfies the W-condition. Thus, we complete the proof of Theorem 1.7.

The proof of Theorem 1.8. First, we show that the equivalence of the differential Jacobian map
and measure-preserving in any dimension n.

For any nonempty measurable set Ω ⊂ Rn. Since F : Rn → Rn, we can denote V := {F(x) |x ∈ Ω}.
Let the components of F(x) be vi (i = 1, 2...n), i.e. F(x1, ...xn) = (v1(x1, ...xn), ...vn(x1...xn)). So dv =

det JF(x)dx. Since det JF(x) ≡ 1, we have dv = dx.
Therefore,

∫
V

dv =
∫

Ω
dx. It implies F preserves measure.

Inversely, let v = F(x), ∀x ∈ Ω. We still denote V = {F(x) |x ∈ Ω}.

Since F preserves measure, one gets
∫

V
dv =

∫
Ω

dx.
Combining it with dv = det JF(x)dx, we obtain

∫
V

dv =
∫

Ω
det JF(x)dx.

Thus, we have
∫

Ω
dx =

∫
Ω

det JF(x)dx. That is∫
Ω

(
1 − det JF(x)

)
dx = 0, ∀ Ω ⊂ Rn.

Claim: det JF(x) ≡ 1, ∀x ∈ Rn. It’s proof by contradiction. Suppose ∃ x0 ∈ R
n, det JF(x0) , 1.

Without loss of generality, we suppose det JF(x0) > 1, denote C = det JF(x0) − 1 > 0. Since F ∈ C1,
det JF(x) ∈ C. ∃ δ > 0, such that det JF(x) − 1 > C

2 , ∀x ∈ U (x0, δ).
Choosing Ω = U (x0, δ), thus∫

U(x0,δ)
(1 − det JF(x))dx ≤

∫
U(x0,δ)

−
C
2

dx = −
C
2

m(U (x0, δ)) < 0,

it contradicts.
Next, we obtain the global injectiveity of F by the Theorem 1.7. Forthermore, the image of F is

convex.
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5. The proof of Theorems 1.9 and 1.10

Before we show that Theorem 1.9, the following proposition is necessary.

Proposition 5.1. Let F = ( f , g) : R2 → R2 be a local homeomorphism such that for some s >

0, F|R2\Ds . If F satisfies the W condition, then
(1) any half Reeb component of F ( f ) or F (g) is a bounded in R2;

(2) If F extends to a local homemorphism F̃ =
(

f , g
)

: R2 → R2 , F ( f ) and F (g) have no half-Reeb
components.

Proof. By contradiction, without loss of generality, we consider the F ( f ) has an unbounded half Reed
component. By the process in Proposition 3.1, we assume that F ( f ) has a half Reeb component A
such that Π(A) is unbounded interval. Furthermore,

JF(x,H(x)) =

(
Φ′(x) 0

∂xg
(
x,H(x)

)
∂yg

(
x,H(x)

)) .
If lim infxk→+∞Φ′(xk)P(xk) = 0, where P ∈ P. There exists a subsequence denoted still {xk} with

xk → +∞ such that Φ′(xk)P(xk) → 0. That is λ(xk)P(xk) → 0. Since F(A) is bounded, F
(
xk,H(xk)

)
converges to a finite value T on compact set F (A). This contradicts the W-condition.

If lim infxk→+∞Φ′(xk)P(xk) , 0, then lim infxk→+∞Φ′(xk)P(xk) > 0. Thus, there exists C0 > 0 and
l > 0 such that Φ′(x)P(x) > l,∀x > C0. For C > C0, there exists K > 0, such that∫ C

C0

l
P(x)

dx > K.

Since Φ(C) − Φ(C0) < K, we have

K <

∫ C

C0

l
P(x)

dx ≤
∫ C

C0

Φ′(x)dx < K.

It contradicts. We complete the proof of Proposition 5.1. �

The proof of Theorem 1.9. By Proposition 5.1, it’s very easy to know that the image of F is
convex. This implies that F ( f ) has a half Reeb component. It contradicts the Proposition 3.1. Thus,
we complete the proof.

The proof of Theorem 1.10. By similar procedure, we can prove the Theorem 1.10 by half Reeb
component and Proposition 5.1.

In finally, we prove the Corollary 1.1.
The proof of Corollary 1.1. We consider G : R2 → R2 and G(z) = F(z) − 1,∀z ∈ R2 . Thus,

G(z) has no positive eigenvalue because of Spec(G) ⊂ {z ∈ R2 : Re(z) < 0}. By Theorem 1.7, we have
G is injective. Therefore, F has a fixed point. We complete the proof of the Corollary 1.1.

Remark 5.1. It’s very important and meaningful to study the relations between half-Reeb components
in higher dimensions and the rate of tending to zero of eigenvalues of JF.
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Henri Poincaré, 12 (1995), 627–671.

14. C. Gutiérrez, C. Maquera, Foliations and polynomial diffeomorphisms of R3, Math. Z., 162 (2009),
613–626.

15. C. Gutiérrez, B. Pires, R. Rabanal, Asymototic stability at infinity for differentiable vector fields of
the plane, J. Diff. Equat., 231 (2006), 165–181.

16. C. Gutiérrez, N. Van. Chau, A remark on an eigenvalue condition for the global injectivity of
differentiable maps of R2, Disc. Contin. Dyna. Syst., 17 (2007), 397–402.

17. C. Gutiérrez, R. Rabanal, Injectivity of differentiable maps R2 → R2 at infinity, Bull. Braz. Math.
Soc. New Series, 37 (2006), 217–239.

AIMS Mathematics Volume 6, Issue 2, 1624–1633.



1633

18. C. Gutiérrez, A. Sarmiento, Injectivity of C1 maps R2 → R2 at infinity, Asterisque, 287 (2003),
89–102.

19. O. H. Keller, Ganze gremona-transformation, Monatsh. Math., 47 (1929), 299–306.

20. A. Belov-Kanel, M. Kontsevich, The Jacobian conjecture is stably equivalent to the Dixmier
conjecture, Mosc. Math. J., 7 (2007), 209–218.

21. W. Liu, Q. Xu, A minimax principle to the injectivity of the Jacobian conjecture, arXiv.1902.03615,
2019.

22. W. Liu, A minimax method to the Jacobian conjecture, arXiv.2009.05464, 2020.

23. C. Maquera, J. Venato-Santos, Foliations and global injectivity in Rn, Bull. Braz. Math. Soc. New
Series, 44 (2013), 273–284.

24. L. Markus, H. Yamabe, Global stability criteria for differential system, Osaka Math. J., 12 (1960),
305–317.

25. S. Pinchuk, A counterexamle to the strong real Jacobian conjecture, Math. Z., 217 (1994), 1–4.

26. R. Rabanal, An eigenvalue condition for the injectivity and asymptotic stability at infinity, Qual.
Theory Dyn. Syst., 6 (2005), 233–250.

27. R. Rabanal, On differentiable area-preserving maps of the plane, Bull. Braz. Math. Soc. New Series,
41 (2010), 73–82.

28. P. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds,
Ann. Math., 146 (1997), 647–691.

29. P. Rabier, On the Malgrange condition for complex polynomials of two variables, Manuscr. Math.,
109 (2002), 493–509.

30. B. Smyth, F. Xavier, Injectivity of local diffeomorphisms from nearly spectral conditions, J. Diff.
Equat., 130 (1996), 406–414.

31. W. Zhao, New proofs for the Abhyankar-Gurjar inversion formula and the equivalence of the
Jacobian conjecture and the vanishing conjecture, Proc. Amer. Math. Soc., 139 (2011), 3141–3154.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 6, Issue 2, 1624–1633.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Half-Reeb component
	Half-Reeb component and W-condition
	The proof of Theorems ?? and ??
	The proof of Theorems ?? and ?? 

