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Abstract: The main purpose of this paper is to obtain some exact computational formulas or
upper bounds for hybrid mean value involving Hardy sums S3(%, p) and general Kloosterman sums
K(r,1,A; p). By applying the properties of Gauss sums and the mean value theorems of Dirichlet
L-function, we derive some new identities. As the special cases, we also deduce some exact
computational formulas for hybrid mean value involving S;(/, p) and classical Kloosterman sums
K(n, p).
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1. Introduction and main results

If h and k are integers with k > 0, the classical Dedekind sums S (4, k) are defined as

s =37 ((9)([%2)

x—[x] =1, if xis not an integer;
0, if x is an integer.

where

(%) = {

The various properties of S (h, k) were investigated by many authors, one of which is reciprocity
theorem (see Tom M. Apostol [1] or L. Carlitz [2]). That is, for all positive integers & and k with
(h, k) = 1, we have the identity

P+k+1 1

Sth,k)+ Sk, h) = W - Z
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Conrey et al. [3] studied the mean value distribution of S (%, k) and deduced the important asymptotic
formula

k 2m
VISP = £(k) (%) +O((k5 + &"1*77) log’ k).
h=1
k

where Z’ denotes the summation over all 4 such that (h, k) = 1 and
h=1

Z Jn(n) _ 4“2(2m) 4(s +4m — 1)§(s)

((4m) (s + 2m)

Moreover, X. L. He and W. P. Zhang [4] gave an interesting asymptotic formula for the Dedekind sums
with a weight of Hurwitz zeta-function as follows:

. 3logk
X ez g)senn = el ](1- )+ ol on( i)

=1

Other sums analogous to the Dedekind sums are the Hardy sums. Using the notation of Berndt and
Goldberg [5], they defined

k=1 _
Sithl = Y (=1
=1
where 4 and k are integers with k& > 0.
In 2014, H. Zhang and W. P. Zhang [6] obtained some beautiful identities involving S;(k, k) in the

forms of
-1 p-1

<

K(m, p)K(n’ P)Sl (2mﬁ’ p)’

m=1 n=1

K (m, p)I* |K(n, p)I* $(2mn, p),

—

=1 n=

3

where K(n, p) denotes the reduced form of the general Kloosterman sums attached to a Dirichlet
character A modulo & as

y ra+la
K(r LAk =) /l(a)e( . )

a=1
where e(x) = ¢”™, @ denotes the solution of the congruence x - a = 1 mod k.
Recently, H. F. Zhang and T. P. Zhang [7] extended the results in [6] to a more general situation as

-1 p-1

<
<

K(m, s, A; p)K(n, t, A; p)S1(2mn, p),

3
I
—
S
I
—_
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-1 p-1

D IKGn, 5,45 )P IK(n, 1, A )P ) (2m, p),

<

1

3
I
S

where K(n, t, A; p) denotes complex conjugate of K(n, t, A; p).

Actually there are six forms of Hardy sums (see Berndt [8] and Goldberg [9]). A natural question
is whether we can obtain similar results by replacing S; (A, k) with other forms of Hardy sums. Due
to some technical reasons, for most of other forms of Hardy sums, the answer is no! Thanks to the
important relationships among Hardy sums and Dedekind sums built by R. Sitaramachandrarao [10],
we are lucky to find the only one S3(4, p) to replace, with

k A({hi
Ss(hk) = Y (=1 ((;’))

J=1

Our starting point relies heavily on the following in [10] as:
Proposition 1. Let £ be an odd positive integer, 4 be an integer with (4, k) = 1. Then

S3(h, k) =28 (h, k) —4S 2h, k).

Then applying the properties of Gauss sums and the mean square value of Dirichlet L-functions, we
have
Theorem 1. Let p be an odd prime. Then for any Dirichlet character A mod p and any integer s, f with
(s,p) =(t,p) = 1, we have

p-1 p-1 p_—l

N . if Ay = xo;
K(m, s, A; p)K(n,t, A; p)Ss(mn, p) = p(% -1
2

. if Wy # xo,

1 n

3
I

where y is an odd Dirichlet character modulo p and y is the principal character modulo p.
Theorem 2. Let p be an odd prime with p = 1 mod 4. Then for any Dirichlet character A mod p and
any integer s, t with (s, p) = (¢, p) = 1, we have

p-1 p-1
D K, s, 4; )P IK(n, 1, 4; p) S3(mi, p)

m=1 n=1
= @, if W # xo, A # Xo;
:p(pT_l), if Ay # xo, A = X0
Spg+%ﬁ“*w3—p”+ﬁﬁ+p2—hﬁ—%n if ¢ = xo. A = xo;
Szf—3p“+hf—%p”-%n if ¢ = xo. A # Xo-

Theorem 3. Let p be an odd prime with p = 3 mod 8. Then for any Dirichlet character 4 mod p and
any integer s, t with (s, p) = (¢, p) = 1, we have

-1
\K(m, s, 2; p)I* |K(n, 1, A; p)I* Ss(mi, p)

p—1

<

S
Il
—

m=1
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_ pp-1) _6 2h2’ if Wy # x0, Ax # x0;
_ p(pz— 1) ~6pi, if ¢ # xo0, W = Xxo;
<pi+ %P“ —4p? —pP+5p 4 pt—2pt - %l” 6p’hy, if Ay = xo, Ax = xo;
<p’-3p*+3p’ ‘%P _%P+6p3h2 if Ay = xo, Ax # X,

where h,, denotes the class number of the quadratic field Q ( V- p).
Theorem 4. Let p be an odd prime with p = 7 mod 8. Then for any Dirichlet character 4 mod p and
any integer s, t with (s, p) = (¢, p) = 1, we have

p-1 p-1
|K(m, 5, 2; p)I* |K(n, 1, 4; p)* S3(m, p)
m=1 n=1
2
-1 DY 3
_P (p ) +2p2hfv’ if Ay # xo0, A # Xx0;
~1 e B
_prp-1 +2ph2, if Ay # x0, ¥ = x0;
1 ;1 % p]
<pl+ §P4 —4pi —pP+5p 4+ pP—2pi - P+ 2p°h;, if Ay = xo, X = X0
1 1 W 3
3p5—3p4+3p3_§P2_§P+2p3h§, if v = xo, A # Xo-

Taking A = Ay, s =t = 1 in Theorems 1-4, we immediately deduce the following results.
Corollary 1. Let p be an odd prime. Then we have the identity

p-1 p-1
_ (p-1
K(m, p)K(n. p)Sy(min, p) = .
m=1 n=1
Corollary 2. Let p be an odd prime. Then we have
2
-1
pp=b if p= 1 mod 4;
ke (p-1)
IKm, ) 1K, P S3(mit,p) = § E2EZ=2 — 6p%2, i p = 3 mod 8;
m=1 n=1 2
-1
% +2p°K2, if p =7 mod 8.

2. Some Lemmas

To prove the Theorems, we need the following Lemmas.
Lemma 1. Let k > 2 be an integer. Then for any integer a with (a, k) = 1, we have the identity

S(a, k) = x(@)|L(1L, )P,
n’k ;l,; ¢(d) X;d
x(-1)=-1

where L(1, y) denotes the Dirichlet L-function corresponding to Dirichlet character y mod d.

AIMS Mathematics Volume 6, Issue 2, 1596-1606.



1600

Proof. See Lemma 2 of [11].
Lemma 2. Let p be an odd prime, s be any integer with (s, p) = 1. Then for any non-principal
character y mod p and any Dirichlet character A mod p, we have

| pr, iy = xo
D, lf/l/\/ ?EX().

p-1
> x(m)K(m, s, 2; p)
m=1

Proof. See Lemma 2 of reference [7].
Lemma 3. Let p be an odd prime, s be any integer with (s, p) = 1. Then for any non-principal
character y mod p and any Dirichlet character A mod p, we have

rle(@)|, if D¢ # xo. A # Xo:
(@), if ¢ # xo. A = Xo:
p|r(d)+ -1, if W = xo, A = xo;
p|-7(¢) () + (0= D[, if T = xo. A # xo,

p-1
> xm) K m, 5,5 p)P

m=1

P
where 7(y) = Z x(a)e (f) denotes the classical Gauss sums.
p
a=1
Proof. See Lemma 1 of reference [7].
Lemma 4. Let p be an odd prime, then we have

2 (p-1P(p-2)
2 0P = 35—

X mod p
x(=D=-1

7 (p-DAp-5)
D, X@) I = 5

x mod p
x(=D=—1

Proof. See Lemma 5 of reference [6].
3. Proof of Theorems

Now we come to prove our Theorems.

Firstly, we prove Theorem 1. Applying Proposition 1 and Lemma 1, we obtain
-1 p-1

K(m, s, 1; p)K(n, t, A; p)Ss(mn, p)

S
bS]

1

3
I
S
I}

o) p-1 p-1
= o 2 D KK s,z;p>-Zx(ﬁ)l«n,t,ﬂ;py|L<1,x>|2

xmodp m=1 n=
x(=hH=-1

4 p—1 p—1 B
Ty 2 AR DK 8 p) - 3 KT p) (L 0F
x mod p m=1 n=1
x(=D=-1
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2

p-1
> xmKm, 5, p)| 1L

m=1

2p
T 2(p-1) 2,

x mod p
x(=D=-1
2

4p 2
_ 2 L(1, .
TR sz,d,,)‘() IL(L )|
x(=D=-1

p-1
> x(mK(m, 5, 2; p)
m=1

Then from Lemma 2 and Lemma 4, if 1y = y,, we have

-1
K(m, s, 1; p)K(n, t, A; p)Ss(mn, p)

-1

S
]

1

2 2 4 2

3
I
S
I}

x mod p x mod p
x(=hH=-1 x(=1)=—1
o 2pr P (p-D(p-2) 4p* 7w (p-1*(p-5)
TR(p-1) 12 P> S m(p-1) 24 P>
p—1
=

While if Ay # xo, we have

p-1 p-1
Z K(m, s, X; p)K(n, 1, 4; p)Ss(m, p)
m=1 n=1
2P3 2 4193 2
= IL(L I = ———— X(2)|L(1, y)|
m(p—-1) szodp m(p-1) szod,,
x(-D=-1 x(=D=—1
_ 2 7 p-D@e-2 4 7 (p-D@-9
(p-1) 12 p? (p—-1) 24 p?
_pp-1D
—

This completes the proof of Theorem 1.
Then we prove Theorem 2. From Proposition 1 and Lemma 1, we obtain

p-1 p-1
IK(m, s, 4; p)I* [K(n, 1, 2; p)* S3(mit, p)
m=1 n=1
2p = ’
= 3" D> xm)|KGm, s, 4 )| IL(L )P
a (p_ l) xmodp [m=1
x(=D=-1
4p ol ’
YRR X2 | ) x(m)|K(m, s, 2; p)P| 1L,
m(p-1) X;p ;

x(-hH=-1
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Since p = 1 mod 4, and notice that ‘ ( )‘ 4/p. From Lemma 3 and Lemma 4, if X # Xos
Ax # xo, we have

-1

|K(m, s, 4; p)I* |K(n, 1, 4; p)I* Sy(mi, p)

-1

S
S

1l
1l
—_

n n

2p* 4p’
o 2 H0F - o 3 XL F

x mod p x mod p
x(==-1 X(=1=-1
B 2pt  (p-1D*(p-2) 4p* ™ (p-1*p-5)
S m(p-1) 12 p? m(p-1) 24 p?
_Pp-1
—

Similarly, if Ay # xo, Ay = xo, we have
-1
IK(m, 5, 4; ) |K(n, 1, 4; p)* S3(mm, p) =

p-1

B

pp=1)
—.

S
Il
—_

m=1

If Ay = xo, A¥ = xo, We can obtain

p-1
> xm) [K(m, s, 4; p)P
m=1

:pz[(ReT( )+(P—1)) (ImT()?Z))Z]

[p+2(p—1)Re‘r( )+(p )]

So we have
p—-1 p-1
IK(m, s, 2; p)* |K(n, 1, 2 p)* S5(mm, p)
m=1 n=1
S > [p+2p - DRe (V) + (p = ] IL(L P
m(p-1) 4 ’
x(=D=-1
4 3
i Z X@)[p+2(p - DRe 7 (¥’) + (p - D] IL(L, )
x(=D=-1
_2P°lp+(p—17] p
ST Z L OF + -5 Z Re (v (¢*)) 1L xF
x(=D==1 x(=D==1
4p? -1y P’ 3
— [fz:p(f 5 0 S voranr -2 5 ) XQRe (v(¥)) L1 0P
;2“?‘:“”1 ;('?‘;if.
- D@P*-p+1
_prp Xg p+1) . z:& DL

Xx(=1=-1
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3

—87% > x@Re (x () IL(L P

x mod p
x(=D=-1

Noting that x < |x| holds for any real number x, we have

p-1 p-1

Z [K(m, 5, 4; p)P [K (., 4; p)P” S5, p)

n=1

p-1 p-1
< |K(m, 5, 2; ) |1K(n, 1, 2; p)I* S3(mn, p)

m=1 n=1

(P-DP’-p+1) 4
<He D op 2 L > I+ 5 ik > P
el frliiesd
_Pp=D@—pt) 4t 7 (p-D(p-2) 8p 7 (p-D(p-2)
2 7 12 p? 12 p?
1 v 1
= p +§p4—4p% —pP+5pE + pt-2pt - 3P
Similarly, if Ay = xo, Ax # xo, We have
g 1, 1
2 2 \Kn s, & p)F 1K (.1, 43 p)F S3(mit, p) < p* = 3p* +3p° = 2p” = 2.

m=1 n=1

This completes the proof of Theorem 2.

-1
Next we turn to prove Theorem 3. Since p = 3 mod 4, note that (—) =x2(-1)=-
p

w-h _ _
L(1,x,) = \/_p, and T(/\_/%) = —1. From Lemma 3 and Lemma 4, if Ay # xo, Ax # X0, we have
14
p-1 p-1
IK(m, s, 4; p)I* 1K (n,, 2; p)I* S3(mn, p)
m=1 n=1
2 21’?4 2 2P3 2
IL(L )P = 5——— (1L x2)l’ + 55— (1, x2)|
T R(p-1) Z w(p—1) YR -1 ?
x(=D=-1
4194 4173 2
- X)L )P + ————x2(2) IL(1, x2)I* - ———Xx2(2)|L(1, x2)|
nZ(p ) Z 2(p- 1" e -nt ’
x(=1)=-1
2
(p-1) 2 4
=== ” Ll + @)L
2
p(p—-1) 212 212
= =2’k + 4P’ 1_9 :
Similarly, if Ay # xo, Ay = xo, we have
SAS (p-1) 2
D 2 K, s.2: )P IKGn, 1, 45 p)P Sy(mi, p) = o= — 21} + 4, (_) '
p
m=1 n=1
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If Ay = xo, Ay = xo, We can obtain

Ple (@) + - 1[ = p?[1+ 200~ DRe T (B) + (0 - 1.

So we have

-1 p-1

\K(m, s, 2; p)I* |K(n, 1, A; p)I* S3(mn, p)

<
S

Il
—
S
Il
—_

2p°

=D 2 [P 2= DReT () + (- 1P ]ILAL

x mod p
x(=DH=-1
2p? 2

p+2(p—DRe7(33) + (p — | IL(L x2)|

n2(p —1)[

2 3
ﬂz(pp 51120 - DRe 7(B) + (0 = 1[I0 xo)F

4 3

n(p

x mod p
x(=D=-1
3

4
7r2(pp 1 [P + 2(]? — 1)Re T()?g) =+ (p — 1)2])(2(2) |L(1’X2)|2
_L

e
p(p—l)(g —p+1) Z Re

3
1+2(p - DRe T()?é) +(p- 1)2])(2(2) IL(1, o)

IL(l pols

x mod p
x(=D=-1

2
Z x@Re (7 (7)) ILA P 2p2hf,+4p2h[2,(l—)).
x mod p
x(=DH=-1

Similarly, if 2x = xo. Ax # xo. we have

-1
\K(m, 5, 2; p)*IK (n, t, ; p)[*S3(mn, p)

p-1

=

S
I
—_

m=1

_pp-D@p’-2p+ 1)
2

4
p Z Re T(X )T(/l)())|L(1’X)|

x mod p
x(=D=-1

8p3 _ 5
+Le Y x@Re ((@)r(0) LA 0P - 2p° R +4p3h;(;).

x mod p
x(=DH=-1

Combining the fact that

2_(_1)$_ 1, if p=+1modS8§;
p B ] -1, if p=+3 mod 8§,

_1) D x@[p+2(p - DRe 7 (V) + (p - 1] IL(L, 0P
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we deduce that if p = 3 mod 8, then

p-1 p-1

ZZ |K(m, s, 4; p)F |K(n,1, 2; p)* Ss(m, p)
m=1 n=
-1 _ _
M —6ph2, i A # oo X # X
-1 _ _
I% —6ph,  if Ay # xo0, A = Xo.

If Ay = x0, Ax = xo, We have

p-1 p-1
|K(m, s, 2; p)I* |[K(n, t, A; p)* S3(mn, p)
m=1 n=1
(p— 1) +D
= 2P ’; £ ZRe )IL(L )P
Z x@Re (7 (7)) IL(L )P - 6p°2.
;(“:‘:fz
Then
p—1 p-1

D D IKm, 5,4 PP IK(n,1, 4 ) Sy(mi, p)

m=1 n=1

P =D -pt ) 4P x Z Re (7 (*))IL(L )P

2

x mod p
X(=D=-1

3
+8ﬂiz Z; x@Re (7 (7)) IL(L)P| + 6p°2
x(=D=-1

o 1 7 s 31
:pz+—p4—4p2—p3+5p2+p2—2pz—§P+61’2h;2r

2
Similarly, if 2y = xo, Ay # xo, we have

-1 p-1

S
S

2

=
I

—_
1l

—_

mn n

This completes the proof of Theorem 3.

Theorem 4 can be derived by the same method. This completes the proof of our Theorems.

4. Conclusions

| |
\K(m, s, 2; p)PIK (n, 1, 2; p)S3(mi, p) < p°> = 3p* +3p> = =p* = —p+ 6p°h..

In this paper, we obtain some exact computational formulas or upper bounds for hybrid mean
value involving Hardy sums and Kloosterman sums (both classical Kloosterman sums and general

AIMS Mathematics Volume 6, Issue 2, 1596-1606.



1606

Kloosterman sums) by applying the properties of Gauss sums and the mean value of Dirichlet
L-function. But in some cases, unluckily, it is difficult to get the exact formula. So how to get the
exact formula in all cases remains open.
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