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1. Introduction

Fractional order differential equations are the generalizations of the classical integer order
differential equations. The idea about the fractional order derivative was introduced at the end of the
sixteenth century (1695) when Leibniz used the notation d‘f:,, for n™ order derivative. By writing a
letter to him, L"Hospital asked the question: what would be the result if n = %? Leibniz answered in
such words, “An apparent Paradox, from which one day useful consequences will be drawn”, and this
question became the foundation of fractional calculus. Fractional calculus has become a speedily
developing area and its applications can be found in diverse fields ranging from physical sciences,
porous media, electrochemistry, economics, electromagnetics, medicine and engineering to biological
sciences. Progressively, fractional differential equations play a very important role in fields such as
thermodynamics, statistical physics, nonlinear oscillation of earthquakes, viscoelasticity, defence,
optics, control, signal processing, electrical circuits, astronomy etc. There are some outstanding
articles which provide the main theoretical tools for the qualitative analysis of this research field, and
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at the same time, shows the interconnection as well as the distinction between integral models,
classical and fractional differential equations, see [14, 16, 18,19,22,25,26,28,30]

Impulsive fractional differential equations are used to describe both physical, social sciences and
many dynamical systems such as evolution processes pharmacotherapy. There are two types of
impulsive fractional differential equations the first one is instantaneous impulsive fractional
differential equations while the other one is non-instantaneous impulsive fractional differential
equations. In last few decades, the theory of impulsive fractional differential equations are well
utilized in medicine, mechanical engineering, ecology, biology and astronomy etc. There are some
remarkable monographs [3, 6, 8, 15, 20, 23, 33, 34], considering fractional differential equations with
impulses.

The most preferable research area in the field of fractional differential equations (F DE's), which
received great attention from the researchers is the theory regarding the existence of solutions. Many
researchers developed some interesting results about the existence of solutions of different boundary
value problems (BVPs) using different fixed point theorems. For details we refer the reader
to [2,7,9-11,13,27]. Most of the time, it is quite intricate to find the exact solutions of nonlinear
differential equations, in such a situation different approximation techniques are introduced. The
difference between exact and approximate solutions is nowadays dealt with using Hyers-Ulam (HU)
type stabilities, which were first introduced in 1940 by Ulam [29] and then answered by Hyers in the
following year in the context of Banach spaces. Many researchers investigated HU type stabilities
for different problems with different approaches [12,17,31,35-37,39,40].

Zada and Dayyan [38], investigated the existence, uniqueness and Ulam’s type stability for the
implicit fractional differential equation with instantaneous impulses and Riemann-Liouville fractional
integral boundary conditions having the following form

"Z)g’(ru(a) = ¢i(o,u(0), D'u(o)) =0, o#o;e€l, O0<a<l,
Au(oj) = &ju(oj) =0, j=1,2,...,q9-1,

Mw(o)le=o + E17U(0)|r=0 = V1, NwW(o)|g=r + E27U0)|g=1 = V2,

where I = [0, T], and Dy, is a generalization of classical Caputo derivative of order a with lower
bound at 0, ¢, : I X R X R — R is a continuous function. Furthermore, u(O';T) and u(cr;.f) represent the
right-sided and left-sided limits respectively at o = o for j=1,2,...,qg - 1.

Ali et al. [4], studied a coupled system for the existence and uniqueness of solution using Riemann-
Liouville derivative

Dru(o) = ¢i(0,v(0), D*w(0)), DPV(0) = (o, u(0), Dv(0)), o €T,
D (0% = 41D W), D*'u(0h) =y D" 'u(T),
D0 = B DP(T™), DFIv(0Y) = v, DF (),

where 0 € J = [0,T], T > 0, a,8 € (1,2], and By, B2, y1, 2 # 1. D%, DP are the Riemann-Liouville
fractional derivatives and ¢, ¢, : [0, 1] X R X R — R are continuous functions.

Wang et al. [32], presented stability of the following coupled system of implicit fractional integro-
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differential equations having anti-periodic boundary conditions:

‘D(o) — ¢1(o, v(o), “Du(o)) — mf (o= s (s, v(s), D%(s))ds =0, Yo eJ,

“DPv(o) — (o, u(0), “DPv(o)) — o0 f (o —s)g(s,u(s), “DPv(s))ds =0, Yo e,

W()lr=0 = ~W()lp=r =0, D u(0)lo=0 = D" U(0) =T,

V(O)lr=0 = —V(OD)lg=r = 0, “D=V(0)lo=0 = = D*V(0) =T,

where | < @,<2,0<r, 1, <2, ¥,72>0,and J =[0,T], T > 0. ¢1,¢2, f, g : I XRXR — R are
continuous functions.

Motivated by the above work, we focus our attention on the following coupled impulsive fractional
integro-differential equations with Riemann-Liouville derivatives of the form:

D'u(o) — ¢ (o, I0), IP’v(0) =0, ocew, o % oj, j=12,...,p,
Au(o ;) — &j(u(o;)) =0, Au'(o)) - &) =0, j=1,2,...,p,
D" u(0) om0 = Ui, W) |o=r + V2T (0ot = Wy,

DPv(0) — ¢o(0, TU(0), IPv(0) =0, o cw, o#oy, k=1,2,...,q,
Av(oy) — E(v(oy)) = 0, AV (o) —E(v(oy) =0, k=1,2,...,q,

_2 —1
VD V(0) |0 = V1, o V(O)o=r + V4 TP N(O) et = V2,

(1.1)

where 1 < @, <2, ¢1,¢, : [0,T] X R X R — R being continuous functions and
Au(oj) = u(o;) —u(o)), AU (o)) =u'(o]) —u' (o))

Av(oy) = v(oy) — v(oy), AV (o) = V(o) = V' (%),

where U.(O'j-), v(o) and U.(O'J_.), v(o,) are the right limits and left limits respectively, & j,8j., &6
R — R are continuous functions, and D%, 7 are the a-order Riemann-Liouville fractional derivative
and integral operators respectively.

The remaining article is arranged as follows: In Section 2, we present some basic definitions,
theorems, and lemmas that will be used in our main results. In Section 3, we use suitable cases for the
existence and uniqueness of solution for the proposed system (1.1) using Kransnoselskii’s type fixed
point theorem. In Section 4, we discuss different kinds of stabilities in the sense of Ulam under
certain conditions. In Section 5, an example is given to support the main results.

2. Auxiliary results

In this section, we present some basics notations, definitions, and results that are used in the whole
article.
Let T > 0, w = [0, T]. The Banach space of all continuous functions from w into R is denoted by
C(w, R) with the norm
[lull = sup {[u(o)| : o € W}
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and the product of these spaces is also a Banach space with the norm
I, I = [full + [Iv]].
The piecewise continuous functions with 1 < @, < 2 are denoted as follows:
B = PCro(w,R") = {u: w — R, u(c7}),u(c;) and Au’(c7;), u'(o7;) exist for j = 1,2,..., p},
9 = PCrp(w,R") ={v:w — R, v(o}),v(oy) and Av'(07), V(o) exist fork = 1,2, ..., g},

with the norms
[ulls, = sup{lo?"*u(o)| : o € w},

IVllg, = sup{lo?Pv(o)| : o € w),
respectively. Their product ¢ = ¢ X 1, is also a Banach space with the norm ||(u, v)|ls = [[ulls, + [[VI|s,-

Definition 2.1. [/] The Riemann-Liouville fractional integral of order a > O for a functionu : R* - R
is defined as

1 o
I%wy:——ffa—mﬂmmm,
@) Jo
where I'(:) is the Euler gamma function defined by I'(a) = f e o do, a>0.
0
Definition 2.2. For a function u : R* — R, the Riemann-Liouville derivative of fractional order a > 0,

p = la] + 1, is defined as

I'(p-a)
provided that integral on the right side exists. [a] denotes the integer part of the real number a. For
more properties, the reader may refer to [1].

(% 1 d g 7 —a—1
D'u(o) = —— (E) fo (o —m)P~ " u(n)dn,

Lemma 2.1. [1] Let u be any function, and let « > 0, then the Riemann-Liouville fractional derivative
for the Homogeneous differential equation

DUu(o) =0, a>0,

has a solution

2

uo) =10 + 0+ cp_la'“_"_1 +c,0 ",

and for non-homogeneous differential equation
Du(o) = ¢i1(0), a>0,
has a solution
I°D%u(o) = I%(0) + 10 + 02 + - + c,,_lo'“_p_1 +c,077,
where p = [a] + 1 and c;,i = 1,2,..., p, are real constants.

Theorem 2.1. (Altman [5]) Let A # 0 be a convex and closed subset of Banach space . Consider two
operators 31, 3, such that

(1) 31(u,v) + Jp(u,v) € A;

(2) 3 is a contractive operator;

(3) 3, is a compact and continuous operator.

Then there exists (u, v) € A such that 3,(u, v) + 3,(u, v) = (u, v) € 9.
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2.1. Ulam’s Stabilities and Remarks

The following definitions and remarks are taken from [21,24].

Definition 2.3. The given system (1.1) is HU stable if there exists Ny g = max{Ny, N3} > 0 such that,
for k = max{k, , kg} > 0 and for every solution (¢, () € ¥ of the inequality

[DE0) — ¢i(0, IE(0), TPL(0))] < Koy T € w,
|As(0j) = Ej(¢(T )| < Kkay j=1,2,...,p,
A (o)) = EE(T DI S kay J=1,2,...,p,
1DPL(0) = a0, T°E(0), TPL(0)| < k5, 0 € w,
AL (o) =SSl < kg, k=1,2,...,q,
1AL (o) = E () < kg, k=1,2,....,q,

(2.1

there exists a solution (u, v) € ¢ with

”(u’ V) - (é‘:’ g)”ﬁ < Mz,ﬁK’ g € w.

Definition 2.4. The given system (1.1) is generalized HU stable if there exists N’ € CR*,R") with
N’(0) = 0 such that, for any approximate solution (¢£,() € 9 of inequality (2.1), there exists a solution
(u, v) € 9 of (1.1) satisfying

I(w, v) = (€, Dlly < N'(x), 0 €w.
Definition 2.5. The given system (1.1) is HUR stable with respect to Y, g = max{i,, Yg} with Y,z €
C(w,R) if there exists a constant Ny, 4, = max{Ny, , Ny} > 0 such that, for any k = max{«,,, kg} > 0
and for any approximate solution (¢,() € % of the inequality

1DE) = ¢1(0, I°E(0), TPL(0))] < Yol Okay 0 € 0,
|Aé(0)) = EHE(T N < Yol0)Ke, j=1.2,...,p,
1A (o)) = EE(T I S Yol0)ka, j=1,2,...,p,
1DPL(0) = o0, I°E(0), TPL())] < Yip(0)kp, 0 € w,
|AL(01) = E(L (T < Yg(o)kg, k=1,2,....q,
1AL (0k) = E (LTI < Yok, k=1,2,....4,

(2.2)

there exists a solution (u, v) € ¢ with

I, v) = (&, Dlls < Ny, yptbap(k, o€ w.

Definition 2.6. The given system (1.1) is generalized HUR stable with respect to Y5 = max{y,, Yz}
with Y5 € C(w,R) if there exists a constant Ny, , = max{Ny,, Ny} > 0 such that, for any
approximate solution (¢, () € 9 of inequality (2.2), there exists a solution (u, v) € ¢ of (1.1) satisfying

”(u’ V) - (67 5)”19 < N{//a,w‘gwa,ﬁ(o-), g € w.

Remark 2.1. Let (¢,() € 9 be a solution of inequalities (2.1) if there exist functions RKy,, L4, € C(w,R)
depending on &, { respectively such that
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(1) 184, (0)] < ko |89, (D) < kg, 0 € w;

(2)

3. Existence and uniqueness

D E(0) = ¢1(0, T°E(0), TPL(0)) + K4, (0),
A )) = EJET)) + Ko j= 1,200,
AE () = ENE@)) + Rppy = 1,2,..0,p,
DPLo) = ¢a(t, T°E(0), TPL(0)) + Ly, (0),
Al(o) = E((o) + Ly k=1,2,...,q,
A (o) = ELL()) + L4yn k=1,2,....4.

(2.3)

In this section, we discuss the existence and uniqueness of solution of the proposed system (1.1).

Theorem 3.1. Let o, € (1,2] and ¢, be any linear and continuous function. The fractional impulsive

differential equation

Du(o) = ¢1(o, I*u(o), IPv(0)), o ew, oc#oj, j=1,2,...,p,
Auo) = Eu(@), AW = E@)), j=1,2...,p, 3.1)

VD 2U(0 ) g0 = Uy, u()o=t + 2T u(0) |yt = o,

has a solution

AIMS Mathematics
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O'a_lllz B O'a71u1 + oy
Tl Tville—-1)  vil(a@-1) F( )

a—1pl—a T o? 1Pl —a
o T f (T—n)"‘lqﬁl(ﬂ,I"u(n),]ﬂv(n))dﬂ— —T f (T — )" u(n)dr

f (o =)o (r, T%u(n), IPv(n))dn

a—1

[((a —1) = (@ - )To7") o1& (o))

T
a o ( B 0_1)0— ¢ 7! a-2 (o1 B
+ (T - 0'1)0'1 & (u(oy)) + H—Df (o —m)*" " 1 (m, T%u(m), I” v(r))dn
- 0
((@=1)=(@=-2To7 ot o
+ (o1 — ) ¢y (r, T%u(r), IP V(n))dﬂ],
I'(a) 0
o €][0,0],
o lu, oy, o2y,

— a-1 (1 7é]
T Tvlf(a—1)+vlr(01—1) @ )f (c—m)*" ¢(m, I%u(m), I" v(rr))dr

(y ITI @ (y ITI @
f (T — 7)* ¢, (rr, T%u(n), Iﬁv(n))dn— - f (T — ) u(n)dr

u(o) =

- Z[ ((@=1) = (@ - 2)To3") o2 E;(u(o )

(3.2)

=1
T 2-a oy o
+ (T - O'j) 0'?‘”8;(11(0']')) + % f(rjl (O‘j - 71) ? o1 (m, Tu(r), TP v(n))dn
-1 —(a-2)To:")or po; .
+ (@-b (ar(a)) 77); fa ; (o —n) L0 (r, T ), Iﬁv(n))dn]
+ Z ((a -1 - (a- 2)0'0']_-1) 0'“_20'3_“8j(u(0'j))
=1
(0’ O'J) o 20'2 @ o v
+ (0' _ O_j) O_a—zo-ﬁ—agj(u(aj)) + Ta_D f (O'j - 77) ¢1(m, Tu(rn), TP v(n))dn
-D-(a-2 o202 oy o
e F(Z‘T’ b | Rt Iau(n),fﬂv(n»dn],
oce(cjoml; z=12,...,p
Proof. Consider
D*u(o) = ¢y(o, T%(0), IPv(0)), o cw, ac(l,2]. 3.3)
For o € [0, 0'1] Lemma 2.1 gives
u(o) = f (o = 1) Ly (r, T™u(rr), TPv(n))dr + a10™" + a2,
I(@) ) (3.4)
(o) = f (0 — 1) 2, (r, T*u(n), TPv(m))dr + ai(a@ — 1)o7 + ay(a — 2)0* .
F(a -1 Jo
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Again, for o € (0, 0,], Lemma 2.1 gives

u(o) = % f U(O' — 1) Y (r, T™u(r), TPv(n))dr + bio®™ " + byo® 2,

1 (3.5)

I'a-1)

u' (o) = f U(a’ — m)*72¢, (r, T*u(r), IPv(m))dr + by (@ — 1o + by(a — 2)07>.

Hence it follows that

a=2

1 1
u(o)) = —f (o1 — Jr)"_lqbl(ﬂ, T%(n), IPv(n))dnr + alo'cl’_1 + a0,
(@) Jo
u(o?) = bo? ! + byt 2,

u'(o)) = _ f K (o1 — ) 2p1(zr, T™u(n), IPv(m))dr + ay (@ — Do + ax(a — )07,
e -1) Jo

W (o) = bi(a@— 1)ai™ + by(a - 2)09 7.
Using

Au(oy) = u(oy) —u(o)) = E(u(o)),
AU (o) = U/ (o)) —uw (o)) = Ej(u(oy)),

we obtain

2—-a gl
by =a; — (a = 2)0 & (u(o)) + o “El(u(or)) + % f (o1 — )% ¢ (r, T%u(n), IPv(n))dn
- 0

-2 1-a 0|
_laz2o " f (1 = )" i, Tu(), TPv(m))d,
I'@) 0

3-a o
b2 =ax + (@ =~ Do "B (ulo) ~ o] E (o) ~ ol f (0 = " gy, T°u(m), PPu(m))dn
0

(@ — Dot~

i ”! _ a1 @ B
(a) fo (o1 =" ¢ (, IMu(m), v (m)dr.

Substituting the values of by, b, in (3.5), we get
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u(o) =a;0°" + a0 + ((a -1 - (- 2)00;1) 202 (u(o))

+(o— o) 2o E (o)) + —— fﬂ (o — 1) ¢ (nr, T*u(r), IPv(r))dr

()
((a -1)—(a—2)o0; )0‘” 2o
+ f (o1 — ) ¢ (m, T*u(m), TPv(m))dr
I'(a)
(0_ _ O_l)o_a 2 2 a

f (o, — )72 ¢ (r, T%u(), IPv(n))dn,

T(a-1)

(o) =ar(@ - Do + ax(@ = 20" + (@ = (@ = 2) (o7 = o7') " 207" Er (u(e)
+ ((a — 1) = (@ =20 o) oo} (u(o))

fg (0 — 1) 2¢(rr, T*u(n), TPv(n))dr
F(a

a-2 22—«

((af— 1) - (@ =2)0! 0'1 oo
+ f (o1 —
I'a-1)

(@—-1)a-2) (0_—1 _ O_ll)o.ar 202

Y22 ¢y (mr, Tu(n), IPv(rr))dn

Similarly, for o € (0}, 0411,

Z

u(e) =10 + a0 + Y (@ = 1) = (@ = 2o} o0t (u(o )

j=1

+ Z o - 0'])0'" 208 (o)) + = (0' ) ¢y (xr, T*u(n), IPv(m))dr

+ f 1 (o1 — ) ¢y (r, T%u(r), IPv(n))dn.
['(@) 0

F( )
0' oi)o® 0'2 7 o
+ Z F(ja m f (O-j - 7r) ? ¢, (rr, T*u(n), IPv(r))dr
(a ~- 1)~ (a-2)o0; ) 0'“‘20'?‘“ 7 o1
+ Z o - f (0j=n)" ¢i(r. Iu(r), IPv(m)dm.  (3.6)

Finally, after applying conditions v; D 2u(c)|s—o = Uy, and g u(o)|g=1 + V27 'u(0)|y=1 = W, to (3.6)

and finding the values of a; and a,, we obtain Eq (2.2).
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Corollary 1. In view of Theorem 3.1, our coupled system (1.1) has the following solution:

0.a—1 u O.a—l u O_a—Zul 1 o .
— —+ + - @ 7-Z-a ’Iﬁ d
T Tvla-1)  wl(a-1) r(a)fo (=)™ hnlem, L ul), L))
O_(y—lTl—a

T 1 vzo_(y—lTl—a T 5
- W fm (T — 1) ', (r, Tu(r), 7P v(n))dnm — m ) (T — m)* “u(mr)drn

a—1

- [((a - 1) = (@ =2)To") o "Ei(ue) + (T = 1) o] “E; (u(e)
_ 2—-a oa|

+ % ﬁ (o1 — 1) % ¢y (r, T%u(n), IPv(n))dn

(=1 - (@-2T07!

2—a o
) il f (o1 —m)* ' ¢y (m, Tu(r), TP V(ﬂ))dﬂ],
['(a) 0

(oaNS [0’ 0—1],

+

O_(t—l w O.a—l u 0_(2—2 u 1

— 7 _ -l @ B
Tt Ty T 1) + s Ta—1) + @) L (c—m)*" ¢1(m, I%u(m), IF v(rr))dn
O.a—lTl—a

T Vzo_a—]Tl—a T
- f (T — )% ¢, (m, Tu(n), TP v(n))dn — ——— f (T — m)*u(n)dr
L@ Jo. ml@=1) Jo (3.7)

u(o) =

a-1 _Z
O'T Z; [((a -1 - (a— 2)1]_"0-]—_1) 0'3_“8j(u(0'j)) i (T _ 0'j) 0‘3_“8j(u(0'j))
=

(T-c))i

7 f "V (o - 7r)“_2 &\ (r, T7u(n), IPv(r))dn
T(a-1) / ne ’

D e P o
(@-1) <ar (a)> o) f (o) - 7) lczslor,ﬂu(:r),Iﬁv(”))d”]

Tj-1

+

D)

J=1

(= 1) = (@-2)007") o7 (u0)) + (o - o)) 07" E(u(or)))

I a-2 2—«
(0' 0']) (o O'j

i a2
T(a—1) f (o) =) " g1, T utm), IP(m)dr
((04 -1 —(a- 2)0'0']‘.1) oo

T(a) f K (o) - 7r)a_1 &, (r, Tu(m), jﬁv(n))dn],

Tj-1

+

o€, z=12,...,p.

and
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Oﬁ_1V2 _ oﬁ‘lvl 4 O'ﬁ_le
Tt TwvIB-1) wIE-1)
—11-8 T 11—
Oﬁr £) f (T = 1~ o, Tu(), TPv(n))dr — V“Oﬁ T f (T - 2 v(m)dn
oP1
- —[((,8— 1) = (8= 2)Toy") o P& (o) + (T = ) o7y P&} (V(or1)

+ F(lﬁ) fo 0(0' — ¥ o (r, T%u(m), P v(m))dn

T

(le(,l;r—l—)f;] fl (o1 = 7V 7% $o(m, Tu(m), IPv(m))dn
(6-D-E-2T07)oT [ |
_ - ’Ia ,.Z-ﬁ d ’
+ T (B) ; (o1 = ¥ o (m, Tu(rm), TP v(rr)) ﬂ]
QS [O’O-l]»

O'ﬂ_lVQ _ O'ﬂ_lvl + O'ﬁ_ZVI
Tt Tyl -1)  wI(B-1) F(ﬁ)

ot A ., . 5 vao I
G fa Z (T — Y §a(mr, I u(r), TP v(m))dm — WTE-D

1z
T Z [((ﬁ -D-6- Z)T‘T;l) o7 PE(W(oD) + (T — o) o PEN(V(ay))

k=1
(T-oo, ” (o

f (o = ¥ o(m, Tu(n), TPv(rr))dn

j; (T — n)f2 v(7r)d7r(3.8)

(o — 172 ¢o(m, T%u(m), IPv(n))dn

F(,B - 1) Ok-1
~ )= B-2To;") oo ? o
(s (ﬂr(ﬁ)> ;') f (o — 7f! @(mﬁu(n),fﬂv(”))d”]

= 1) = (8- Dooy') o 2o PE(o) + (0 = o) 0P 20 PE (Vo)

+ ; ((ﬁ
(o —0%) O'ﬁ‘za'i s

-1 et

((B -H)-@B- 2)0'0',;1) 0"3‘20',%_'8 Tk

+ F(ﬂ) . (O'k - 7'[)'8_1 ¢2(7T, I“u(ﬂ), IBV(ﬂ'))dT[:|,

oc€(nLowls z=12,...,q

(o — P2 & (, Tu(n), TP v(r))dn

Now, for transformation of the given system (1.1) into a fixed point problem, let the operators

91,9,

¥ — ¥ be define as follows:

J1(u, v)(o) = (B (u(0)), 37" (v(0))),
Io(u, v)(0) = (F5(u, v)(0), 35 (u, v)(0)),
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Jiu(0) =
O.a—l W O.a—l u N 0.a—2u1 vzo_a—l Tl - T
mTet Tvile—-1) vill@-1) wl@-1) J,

T (@ 1)@= 20 ") 2 ) + (T - o) 2 futer)

J=1

(T — 1) >u(n)dr

+ Z (@ = 1) = (@ =200} ) 2058 (u(e) + (0 - o)) 2 Eu(e)]

J=1
S =] ol z=laenp (3.9)
37 (v(o) =
O"B_IVZ oﬁ‘lvl 0"3‘2v1 V40'ﬁ_lT1_‘B T 0
BT AT ey v
R ) )
-2 (B- D~ B-2T0") oi P Euw(@) + (T~ 5 07 FE (v
k=1
(-1 - B- 200 ) P20 ) + (0 - ) 0?2 E ()]
k=1
o€(0Kols z=1,2,...,q,
and
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Jy(u, v)(0) =
T(a )f (o — )y (xr, Tu(n), Py (n))dr

oz 1rl—a
- T f (T — 1) ' (r, T(n), TPv(n))dn
I'()

AN (T o-f) o -2 a
T 1[ F(oz—l)] [;1("1‘”) ¢1(r, T*u(n), IPv(n)dn

— D)= (@=2)To:") o2 (o a-
((CY ) (C;(a/)) 7 )O-J Ll(aj_ﬂ) 1¢1(yr,I“u(ﬂ),fﬁV(7T))d7T]

-

+

#Z

0. 0_] 0.a 20.2 @

T(a-1) f 1 (o - ”)H ¢1(, T*u(n), IPv(n)dn

J

((a’ -1)-(a- 2)0’0']. )o‘“ 20'2 @ o oel
Jo(u, v)(o) = ocge(,oml; z=12,...,p,

3 **(u v)(o) =

(3.10)

) f (o — 1 o (n, T%(n), TPv(n))dn

lTl—ﬂ 5
- T - I I d
F(,B) f &( o~ o (m, Tu(m), TPv(m))dr

S[(T - o f
- (0 — 172 ¢o(mr, T%u(m), IPv(n))dn
T kz:; [ TB-1) g ?

Tk-1

(B-1-B-2To')o P
+ x70 f (o = 7 o, T*u(m), T v(n))dn]

z _ -2
+ kZ: . 1?—(,];3 i-'Bl)o-k j‘:’k ! (04 = 072 o, T(m), IPv(m))dm
L (B-D-6-2007") o

2
Q) O-k f (o — )P ! ¢y (mr, T(m), I 'BV(ﬂ'))dﬂ]

oc€(0rols z=1,2,...,q

For additional analysis, the following hypothesis needs to hold:

(H;) e For o € w there exist bounded functions o, 7, v € 1 such that
[$1(0m, x1(0), x2(0))| < 0(07) + T(0)|x1(0)] + V() x2(0)]
with 0, = sup,, 0(0), T1 = sup,, 7(0), and v; = sup__, v(o) < 1.
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e Similarly, for o € w there exist bounded functions o, 7%, v* € ¥ such that
g2, x1(0), x2(0))| < 07 (0) + T () |x1 ()] + V' (0)|x2 ()]

with 0, = sup,, 0"(0), T2 = sup,, 7" (o), and v, = sup,.., V' (o) < 1.

(Hy) 8j,87 : R — R are continuous and there exist constants Gg, Ge:, Gi» G ég, @\8*, éé, 5’8 >0
such that, for any (u, v) € 9,

&) < Gelul + G, E:V)| < Gelvl + G
E:(W)| < Ge:lul + G, E:(V)| < Ge: IV + G

where z =1,2,...,p.

(H3;) e Forall xi, x,, x], x; € R and for each o € w, there exist constants L, > 0,0 < L;l < 1 such
that
610, X1, x2) — P10, x1, X < Ly X1 — x| + Ly |x2 — x5

e Similarly, for all x;, x,, x], x; € R and for each o € w, there exist constants L;, > 0, 0 <
L;’;z < 1 such that

|20, X1, X2) = ¢ (0, X7, X)) < Ly, lx1 = X7+ L 1x; = X5,

(Hy) &,8; : R — R are continuous and there exist constants Lg, Lg-, L, L. such that, for any
(u,v), (u*,v*) € 9,

18.(u(0)) - E(u ()] < Lelu—u’l, 18.(v(0)) = E(v (o)l < Lglv — V7,
IE:(u(0) - E.(W ()| < Lelu—u’],  [E V() - ENV (] < Lg|v—V.

Here we use Kransnoselskii’s fixed point theorem to show that the operator J; + J, has at least one
fixed point. Therefore, we choose a closed ball

9, = {(u, v) € 3, ]Iw, V)| < 7 Jlull < g and |v]| < %} c ¥,
where . .
. G+ G| +01G3 + 0,55
“1=(G1+ G, +G:Ga+ GG

Theorem 3.2. If hypotheses (H,)—(H4) are hold, then the given system (1.1) has at least one solution.

Proof. 1) For any (u, v) € 9,, we have
131w, v) + Ta(u, V)lly < [1TTWls, + 1IT7 Wy, + 135, Vls, + 1357w, v)lls,- (3.11)
From (3.9), we get

Vo o |T1‘“|

o, u; ‘_'_
villa—-1)] wl'(a—-1)

lTa—l

T
| T (u(o)| < ‘,u f(; |(T - 7r)a—2| lu(m)| dre

o '
+ +
Tvil'(a - 1)
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(@=D=-(@=2)007") - = (@) = (@=2T07") o2 [6 ()|

+ Z (0' - O'j) - % (T - O'j) |O'§_a| 8;(11(0'1'))| ;
=1
zj: L2,....p. (3.12)
This implies that
15 Wil s|ﬂgff_l s 1)‘+ Vlr(a_l)‘ MZF'( ')n !
+za - Do?||1 - %‘ (Gellull + Gp) + z|o2™°| % - 1‘ (Ge Ul + G5.)
<G + Gallull. (3.13)

Similarly, we can obtain

137 Wy, < G| + GlIvll, (3.14)
where
G1 = Gl = Do 1_%‘”% o] %_1‘+ et Tvlr(a—1>'+ vlr«vl—l)"
Gy = 2Gs(a - 1)|0'§_"| 1- %‘ + 2Ge |o-§_“| %— | ,uizl“l( X for z=1,2,...,p, and
61 = Gp = Dl [1 = 7|+ Gl | - 1| + |- |+ [ l)\ ol
= 2Gs(B - 1)|o?>?| ‘1 - %‘ +2Ge: || '% - 1' + #Vz“rlg), for z=1,2,....q

Also, we have
| 2—a

I'(a)

el -
+fj:1[ Ta-1) fc (¢

+ ‘((a - —(a- Z)To'j‘,l)‘ ‘0-3—(1 fo_j
I'(a) o

|la

I'(a)

o> 35, v)| < | f (o = m)* 1||y(7r)|d7r+ | f (T = )| ly(o)l dn

- 7)"" [yl dn

s ==) e dn]

o] -
+ ]Z:l: [ I“(oz]— 1) fo;'l
J@-n- <ar—( j;w} e [ Nes=a) v dn]

)

(0' = ﬂ)a—z‘ ly(m)| dre
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for z=1,2,...,p. (3.15)
Now by (H;)

ly(o)l = I¢1(0, T*u(o), TPv(0)))
<o(o) + T(O‘)II“u(O')l + v IPv(0)|

< o(o) + T(a)ﬁ f (o = 0| u(@)ldr + v(o) —

Now, taking sup_.,, on both sides, we get

) fo ’ (o = 2| v(m)ldr.

|| [ul| o[ [vl
< . 3.16
||Y||—01+Tlr(a+1)+U1F(ﬂ+1) ( )

Now taking sup_,, of (3.15) and using (3.16) in (3.15), we get

ol loliv || (o = o.)°] o T=2| |(T - o)
T(a+1) v rB+1) T+ 1) T+ 1)

zlo [o22| [I(T = o)l (o = o)™ '((a -D-(a- 2)Tcr;1)| (o = 21)"]
T [ () ¥ T(a+1) ]

||52(u V)llg, (01 + T

2o —o)l|oe||(o. - o)™ 2 \(<a -D-(a- 2>wz‘)\ o2
" () * T+ 1)
lllulGs . 1o?lIvIIGs

(o - Uz-l)"l)

SOGFTTLT TUTEE D
<01G3 + G3Gall(u, v)|. (3.17)
Similarly,
135w, v)lls, < 0:G5 + G3GAlI(u, V)|l (3.18)
where

lo?| (o = el 1ol T2 (T - o)

T T+ T@+D
zlol|o2|[ (T = o)l (o, = =)™ ‘((a - -(a-2)To; 1)' (o, — o-1)°
T (@) " T@+1) ]
P e | Gt (@= D= @=200")|[o>] (0.~ 1))
T(a) T+ 1) ’
z=12,...,p,
G - B ) Gl I S
T TB+1) r@B+1)
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zlol o2 [I(T — ol - |(B-D-@-2T07)
+ +

|(O-z - Uz—l)ﬁ|
T ) I'Ge+1D ]

el — ol o2 . — | 2= D= B =200 )||o? || - oV
" I'®) " rB+1) ’
z=12,...,q,
G4 = max {Tl F(lj-+|1)’vll"(lioill)} and
G, = max {T il U o] }
4 Ta+1) °T@B+1)

Putting (3.13), (3.14), (3.17) and (3.18) in (3.11), we get

1310, v) + o, V)il < Gi + Gallull + G| + GolIVIl + 01G3 + G3Gall(u, V)]l + 0G5 + G3G4lI(u, V)|
<G+ G| +01Gs + 0G5+ (Go + G; + G3Ga + G3GYI(, V)|

<r

Hence, [|3,(u, v) + 2 (u, v)lly € ,.
2) Next, for any o € w, (u,v),(£,{) € ¥

131(u, v) = 31(&, Olly <N1T7 () = T1Ellg, + 137°(V) = I Ello,

Tl—a T
‘% fo (T = m)" | Ju(x) = &) de

+ ZZ: (-1 =-(@-200}") - = ((@- 1) - (@-2)Tc}")
j=1

(oa
T
x |05 |85 (u(o ) — E(é(0 )|
+2, (‘T“TJ)‘%(T—(’J)

j=1

[valT' 7]
+ _—
2B = 1)

+ > |B-D=-B-2007") - Z(B- 1 - B-2T07)
k=1
X |2 P E(V(op)) — Ex(L(0)]

k4
)
k=1

< (z(a — Do

2_
|O-j “

Eu(o)) - EiE(@))

T
fo (T = 77| () = L)l dn

_ﬁl

(-0 - % (T - o121 81 (v()) - ELL ()

|vallor]

|/xl|r(a>) =<1

|vallor]
L. +

l2IT(B)

3—a|

(o8
.Lg-l-Z|O'Z %—1£g*+

L
T

o ag
+ (z(,B — Dlo>* ‘1 -7 Let o ‘% -1

)IIV-(II
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<L(o1 +0)ll(u—&,v =2

Here £ = max{Lg, Le-, Ly, L.},

_ o _ vallor]
= -1 2-a 1 - =+ S| P t— =L2,...,p,
o1 = o= D = ap| 4 2ol g = 1+ ry !
and
— -1 2—4| 1 _z + 3-p z_ 1| + |V4||O-| R = 1,2,..., .
0 =z(B - Dlo T Zlo T 12T (B) < g

Therefore, J; is a contractive operator.
3) Now, for the continuity and compactness of J,, we make a sequence T = (uy, V) in 13, such that
(u,, vg) = (u,v) for s = oo in ¥,. Thus, we have

132(us, vi) = Ta(u, v)lls
<35 (us, vi) = T3, V)lls, + (1357 (ug, vi) = T3 (W, vlls,
<(1:¢1 lo?||[u, — ul| . L [oPllv, - V||)(|0'2“’ (o =0, o] |T1“’ (T - 0,)°]
“\ T+ r@+1) Ta+1) T(@+1)

z|o| |0'§“’
+
T

(T -0l — o)y |(@= 1= @=2T07")[ 1. = )]
[ (@) " Ta+1) ]

2l = ooz [ o] 2@ =1 =@~ 2007 o] o - (rz_1>“|)
+ +

(@) T+ 1)
Lploluy -l Ly lo?llve = vIl(|o? ] |0 = o] o [T]|(T - 0|
( Ta+1)  T@+D )( TG+ TG+ 1)
2ollo? (@ = ol | |(B= D= B=2)T07)| [0 - oV
T [ X7 ¥ TG+ 1) ]
o= ol .| 2|(B= D =B =200 Jo ][0 - oY
* T(B) * TG+ 1) )

< Lololus —ull L lo?lvs — Vi) - (Lol —ul Lo, 1071V, — vl
=73 T(a+1) r@B+1) 3 T(a+1) T'@B+1) '

This implies [|J,(u,, v,) — Jo(u, v)|ly — 0 as s — oo, therefore J, is continuous.
Next, we show that J, is uniformly bounded on #,. From (3.17) and (3.18), we have

13200, V)lly < 135, Vlls, + 1357, v)lls,

< 01G3 + 02G5 + (G3Gs + G3G)II, V)|

<r
Thus, J, is uniformly bounded on #,.
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For equicontinuity, suppose 11,17, € w with n7; < 1, and for any (u, v) € ¥, C ¥ where 9, is clearly
bounded, we have

1950, v)(11) = T30, V)12l
= max o (932, V)(m) — T3, V)(72)
o“liall -l )(IUZ‘"
Ui
Ta+1) 'T@B+1)

(71 — )" = (2 — o))
T(a + 1)

S(Ol + T

|O_2—a| |na—l _ na—l| |Tl—a| |(T -0 )al o o ’(nar—l _ ng—l)‘
¥ @+ Z +['("‘ S ]
(0= o) za=D]o>||o? |0, = o) ])

(@) T(a + 1)

3—a
o;

[Z |O.2—a

This implies that
135, v)(71) = I35, v)(m)lly, — 0 as mi — na.

In the same way, we have

135" (u, v)(71) = 35w, VI)llg, = O as 1 — .
Hence
182w, v)(1) = B, vI)Ils — O as 1 — 1.

Thus, J, is equicontinuous. So J, is relatively compact on J,. Hence, by the Arzela—Ascoli
Theorem, J, is compact on #,. Thus all the condition of Theorem 2.1 are satisfied. So the given
system (1.1) has at least one solution. O

Theorem 3.3. Let hypotheses (H3), (H4) be satisfied with

(Ay Ly, + Ay Ly)o? N (AL + A4£§,22)|0'ﬁ | -
Ia+1) rBe+1) ’

Ay + Az + (3.19)

then the given system (1.1) has unique solution.

Proof. First we define an operator ¢ = (¢1,¢2) : & — &, 1.e., p(u,v)(0) = (p1(u,Vv), p(u, v))(o),
where

o lu, oy, o2y, 1 - .
’ _ _ + ¥ — )" , Tu(n), IPv(m))d
PIVO) = — e S T r@f@((’ 1) ¢y (. Tu(r), IPv(n))dr
O.cx—lTl—a VZO.&—lTl—a

T T
f (T — )y (r, T*u(r), TPv(n))dm — f (T — ) *u(n)dr
o 0

[(@) ml@—1)
a—1 <
T2 [((“ — 1) = (@ = 2To7") 2 (o) + (T - o) o378 o)
<
T -0 0'2._” T o
% f (o =) g, T*u(m), TPv(m))dn

Tj-1
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and

- = (a-2)To;)o>" (o
+ ((a/ ) (Ci*(a/)) 7 )0-" IT . (0’ = 7r) : o1 (m, T%(mr), I 'BV(JT))dﬂ]
+ 2 1 (@=-1=(@=-2007") 22 8 (u(o)) + (0 - o) 7 20FE (o))

J=1
(O’ 0.]) ov 20_2 @

T(a-1) ] fg Jl (o —”)a_sz’l("’ I*u(n), IPv(m))dn

-

—1)=— ] -1 -2 2-a J a—
e-n-w@ F(Z:)W] Jo 2] f" (o7 —7) 1<z>1<7r,f"‘u(7r),»Z"g"(”))d”]’

Tj-1

for z=1,2,...,p,

O"B_IVQ O"B_IVI oﬁ_zvl

1
— _ @ B
@r(u, v)(0) = o T TG0 ot T T e f (o — 1) ' $o(m, Tu(r), IPv(n))dn

i T 1n1-4
_ Oﬁr(;l; fg (T - mf"" palor, Tu(), IPv(m))dr - Viorﬁ(ﬂ? 0 f (/s

Pl <
- 2 [ (B-1) - (8= 2)T0}") o PEv(0) + (T = o) o *E;(v(0y)

k=1
T — 2-p o
(ng—i);k f (0~ 0 o, T°u(m), TP (m))d
—)-B-)To ) oo o

N (-1 (ﬁr(ﬁ)) ') f (o =70 o, T "u(ﬂ),fﬁV(”))dﬂ]

+kz;: ((,B

— 1) = (B-2o0r) oo PEW(o) + (0 = o) P PE V(o)

_ 2 2B
T [ - nf o Tt i
N (B-D-@ r(g”k) i f (o — ! @(mf“u(n),fﬁv(ﬂ))dﬂ],

for z=1,2,...,q.

In view of Theorem 3.2, we have

|07 (01w, V) = 1€, )]

(Lol || I = &2)°] ol T | (T = 0.)°]
\r@B+1)

T(a+ 1) T(a+ 1)

el [o2|[I(T - ol (2 - o) !| (@ = D= (@ = 2)Te ")
T [ (@) " T+ 1)

(o2 = Gz-l)"l]

AIMS Mathematics Volume 6, Issue 2, 1561-1595.
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el — oo [0 — o] z|((@= D= @= 20! |2 (o - o]
: : Jo-a

T(@) T(a + 1)

L[ Lol (Iaz-‘l (0 -0l o [T=e| |(T - o)
T@+1) Ta+1) Ta+1)

zlol |o 22| (T = o)l (o = =)™ 7| '((a -D-(a- 2)Ta;1)| (o; = 2-1)°
T [ [(a) ’ [(a +1) ]
z|(o = o)) |0'§“’| |(0'z — 0'2_1)“_1| 2 ‘((af - —(a- 2)00;1)‘ |0'§_a| (o, — o-1)
" T(a) " Ta+ 1) )
— 2-a _ z 3—-a z _ |V2||O-| _
+ (z(a/ Do |1 T‘.Eg + zlo 7 T 1| Le + |p1|F(cy)) lu— &

Taking sup,,,, we get

ALyl AL 0P
I'a+1) Ir'B+1)
for z=1,2,...,p,

|
lle1(u, v) = 1€, Dlls, S(Al + )Il(u, v) = (& Ol

where

|vallor]

g 1
i |C(@)’

T
e i = o) Lol [T (T = 02)°]
- T(a+1) T(a+1)
zlo [o27| [I(T = o)l (o = o)™ '((a -D-(a- Z)Tagl)‘ l(o; = 072-1)"
T [ (@) i T+ 1) ]

o 3—a
1-— 30

Ay =z(a = Do T Ls+zlo

Lg +

2

z|(o = o) |0'§‘“| |(0'Z — O'Z_l)“_1| Z ‘((CY -D—(a- 2)00';1)‘ |<T§_“| (o, — 01
" T(a) - Ta+1) :
for z=1,2,...,p.

Similarly,
ALyl DaLy o)
) - ) { S A + + s — s
llp2(u, v) = @2 (€, DI, ( e+ TTE+D lI(u, v) = (& DIl
for z=1,2,...,q,

where

A =28 -1 Z—ﬂ‘l_g‘ - 3_/3'2_1 - |V4||0'|’

2 =dp = DA =g Lo+ Aol = 1 Lo+ 1 D)

B | G O [ G

= TG+ 1) TG+ 1)
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zlof o2 [I(T ol -] [(B-1-B-2T07)|(0. - ffz—ﬂﬁl]
+ +

T 'y re+1
2l - oo [ o] 2|1 = @200 |0 - o]

’ ') * TB+1) ’

for z=1,2,...,q.
Hence

MLy + M Llo?|  (BaLy + ALy )0
- 9 <A+ A3+ + V) = (& Il
lle(u, v) = @(&, Dl ( 1+ A3 Tt D) TG+ 1) I(u, v) = (& Dl

This implies that the operator ¢ is a contraction. Therefore, (1.1) has a unique solution. O

4. Ulam’s stability analysis

In this section, we study different kinds of stabilities, like HU, generalized HU, HUR, and
generalized HUR stability of the proposed system.

Theorem 4.1. If assumptions (H3), (H4) and inequality (3.19) are satisfied and
8oL 10P1\ [ A4 Ly, |0
T(B+1) T(a+1)
ALy o] As LY 0P|
(e - (o )

then the unique solution of the coupled system (1.1) is HU stable and consequently generalized HU
stable.

F=1-

> 0,

Proof. Let (£,0) € ¥ is a solution of inequality (2.1), and let (u, v) € ¥} be the unique solution of the
coupled system given by

Du(o) - ¢i(0, I*u(0), IPv(0) =0, cew, o+, j=1,2,...,p,
Au(o;) = &(u(o)) =0, Au'(o)) —E(u(c)) =0, j=12,....p,

2 -1
ViDu(0)|g=0 = Uy, W) |g=T + V2L U(0)|g=T = U,

4.1
DPv(o) — ¢o(o, T*u(o), IPv(0) =0, cew, o+ oy, k=1,2,... ,q, 1)
Av(oy) — E(v(oy)) =0, AV (o) - E(v(o) =0, k=1,2,...,q,
ViDP P (Olgeo = Vi, oV (O)leet + V4T V(O)por = V.
By Remark 2.1 we have

Do) = ¢i(0, TE(0), TPL(0)) + Ky, (0),

Ag(O'J) = Sj(f(O'J)) + R,/,lj, ] = l, 2, e Py

AE' (o)) = Sj-(f(aj)) +8,, j=12,....p, 42)

DPL(0) = ¢a(0, I°E(0), TPL(0) + L4, (0),
Al(o) = E(d(0i)) + Ly k=1,2,....4¢,
AL (0h) = EL(0) + Ly k=1,2,...,4.
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By Corollary 1, the solution of problem (4.2) is
é‘:(o—) _O_a—luz O_Q—lu] O_Q—Zul VZO_(I—ITI—Q

LTl Tvla—1)  wla-1)  ml@—-1)
F( )f (0 —m)* (g1 (m, T°E(m), TPL () + Ky, (m))dr

oY ITI 7
I'(a)

T
f (T - n)**&(n)dn

f (T = 1)1 (m, T*E(m), IPL(m)) + Ky, (m))dm

a-1 2

- UT Z [((a/ = 1) = (@ =T} ) o7 (EE@)) + K,) + (T = 07)) 7T EE@)) + Kyy)
j=1

(T O-J) 0-3 ¢ 7i a2
CTe-1) f (o =) (@1, T°E0), TP £(00) + Ry, ()i
((@-1D-(@-2T0;") o>

’ | (o= 1Tt 2P + S i

> [((a/ - 1) = (@ =200} ) "o EHET)) + Ky,) + (07— 7)) T PETIENET ) + Kyy)
j=1

(0- O']) ov 20.2 @
[(a-1)
(-1 =(@-2)00;") o202 o, .
" T(a) f (O'J' - 77) (¢1(m, T°&(m), TP {(7)) + K, ()|,

z=12,....p, (4.3)

f j (o) - ﬂ)a_2 (@1(, T°E(n), IPL(m)) + K, (m))dr

j—

and
oP 1v2 P v, . 0Py, v I TR
Tf” 1 Tvd“(ﬁ -1) wlEB-1) wlE-1)

f (0 = 1 (o, TE(m), IPL(m)) + L4, (m))de

{(0) =

T
(T — 7V (m)dn

T
oB-1T1-8
- TG f (T =m0 ($olm, (), TPL (7)) + Ly, (1))
oG, ) ]
-2, [((,6’ = 1) = (B=2T0;") o G (@) + L) + (T = 00) 0, (G0 + L)
k=1
T - > o
(r(g—k_);f)" f (0 = 1P (Galow, TE(r), TPL()) + Ly ()i
B-1)—(B-)To ") oo o
+ ( B ) f (o =7 ($a, T°E(m), TPL(m)) + L (m))dw

— 1) = (B-200;") o FEL(00) + L) + (0 = 02) P20 P EHL(0)) + L)

+Z ((ﬁ
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2 o
i iﬁl) f(, = G I, P + L)
((,3—1)—(3 o0y ‘) ’ |

+ F(B) f‘o (O'k - ﬂ)ﬂ_ (¢2(7‘[, Iaf(ﬂ),jﬂg(ﬂ')) + 2¢2(7T))d7'( ’
z=1,2,...,q. 4.4)

We consider

| 2—a

['(a)

(o) — E(0))] < f (o = m)* Y| 11 (G, Tu(r), TPV () — ¢y (o, TG, TPL (o))l

Tl a
@( ) |f (T = 1|61 Gr. T%u(), TPv () — ¢ (o, T°Em), TPL (m)lde
Tl @
% f (T =" lue) — £l

(@-1-@-2)00]") - = (@1 - (@-2)Tc7")

X |crH| & (o)) — &)

(o)~ L(r-0)

o]

Ei(u(o)) - (&)

T 0'1 ||0'2 &

Iffl
Z[ T -1)
xf’

(@ =D = @=2T0;")| o2

[(a)
x f ’

-

+Z

x f (o = 7)™ |1, 770, PPve)) = 1, T ), TP LGNk

(o= )" |1, T7uGm), TPu(m) = 9, T ECm), TPl

(o7 = )" | 1, TouG), Poot) = G, T, P4 e

‘0' 0'j '|0’2 o

[a-1)

(@@= D= @=-200;")|lcF
I'(@)

+
Y a-1
X |(O'j - 7T)
-1
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L [ Sy R TN
r( ) " M@ Jo, ”
+ > (@=-1=(@-2)00;") - %((a— 1) = (@ = 2Ta7") 10571 R, |
j=1
+) (”‘“f)‘%(T“’f) 17571,
j=1
z (T =o;)| |03 j .
+%Z[‘( F(cyszl)] ()= 7)""| |8, )]
j=1 0 j-1
(@-1)—(@-2T|o}'|| o5 o o
|a ar(a,) |O-J ”‘O-j j:i (O_J'_H) 1 |R¢1(7T)|d7r]
o=0j)l|o; -« o o
S e
(@-1)=(@=-2oa;') o3 o o
* '(“ ar(a)(fgj )| 'UJ f; ‘(‘71_”) 1||R¢1(7r)|a’7r].

As in Theorem 3.3, we get

Ao Ly 0] AL o)
Il — €lly, s(A1 T )|| u— &y, + (rcs+1> )|| v =y,

o | O vallor]
||= + Ko
T |11 ()

L

T| T 4%

(Az +z(a = Do

z=1,2,....p,
and

Ay Ly, |0 AL 0P|
v = Iy, _( R )||u—§||ﬁ2+(A3+ e )|| v =y,

+ (A4 +2(8 = Dlo> | ‘1 - %‘ +zlo 7P| '% -~ 1‘ +

Vallo] )K
lf@ )™
z=12,...,q.

From (4.5) and (4.6), we have

ALy ||
T(B+1)

u- - vV —
o=l = — P =2l
B T(a+1)
_ 2—a _ o 3-a allol
(A2+z(a Dio2| |1 = & + zlo?| |2 - 1|+|mlm))
= a
[y Ly o9
- (Al * T )

4.5)

(4.6)
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and

(A4£¢2 o] )

[vallo]

lu2lT(B)

I'(a+1)
IV =l - =&l
1 - (Ag + l)
3 T(B+1)
2— 3+
(A4 + 28 = DIo2 1|1 = | + 210712 — 1] +
- Ay Ly ||
- (As + W)

respectively. Let

2oLy lo|
T(B+1)

(A2 + 2(a = Dio? |1 = &| +zlo?||2 - 1] +

vallor] )
|t1 IT(@)

2|+ 2l Pl - 1] +

2

[vallo| )
|p2T(B)

P, = , P, =
! 1 A A2L¢1 |o@| 2 1 A A2L¢l ||
G Bl vrorsy 31t T
A4 Ly, |0 _
( F(ail) ) (A4 +z(6 — l)lof '8| |1 -
Ps = oy @ P = ML o]
1—(As + —2— 1= [As + 222
3 T(B+1) 3 TB+1)

Then the last two inequalities can be written in a matrix form as follows:

[ 1 —7)1] [||U—§||ﬁl] < |:7)2Ka/:|
P31 [|IIV="Llls,| ~ |Paks

[uu—fnﬁl] 3
v = Zllp, | =

IR
H| —

where

it}
T PZK(Y
P4Kﬁ ’

Ay Ly, |0

ALy I
[(B+1)

F=1-

T(a+1) )
> 0.

DLy, lo| AsLy |oF|
1= (e o 55

From system (4.7) we have

P1Pak,
<502Ka+ 1Pakg

u-— < ,
lu — &lly, = =
PrPsky  Pakp
[lv—={lly, < 7 + F
which implies that
Poky  PiPaks  PoPik,  Pakg
[lu—é&lly, + IIv = Llls, < + 7 + F + F

?’
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P1P4 + PrP3

Pa
= — + 7, then

If k = max{k,, kg} and N,z = % +
ll(w, v) = (&, Dlls < Nogk.
Thus system (1.1) is HU stable. Also, if

1w, v) = (€ Dlly < NopN' (1),

with N’(0) = 0, then the given system (1.1) is generalized HU stable. O

For the next result, we assume the following:

(Hs) Let there exists two nondecreasing functions w,, wz € C(w, R") such that

T'wo (o) < Lowo(0) and T ﬁW/g(O') < Lywg(o), where L,, Lz > 0. 4.8)

Theorem 4.2. If assumptions (H3)—(Hs) and inequality (3.19) are satisfied and

DLy 1071\ ( Ay Ly, |0
F o1 T(3+1) T(a+1) 0
=1- >
ALy, |0 ALy P ’
O

then the unique solution of the given system (1.1) is HUR stable and accordingly generalized HUR
stable.

Proof. With the help of Definitions 2.5 and 2.6, we can achieve our result doing the same steps as in
Theorem 4.1. O

5. Example

Here we present a specific example, as follows.
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Example 5.1. Let

_4
D5u(0)le=0 =

_3
D v(0)lg=0 = V1,

6

From system (5.1), we see that @ = 3,

and uy, up, vy, v € R.

85
s B o cos(u(o)) — v(o) sin(o) B uo)
Divio) 05 95+ ul)
3\ 31\ V)
AV(E) =& (V(i)) T 70+ Ve

3
AV (%) iy (V(é)) _ el
2 2] 70+ v3)

Dhue) - 2+Jsu(o:)+ﬁv(<f) P
80e7+90(1 + Iu(or) + I3 v(o)) 2
3\ 3 )
A”(i) =& (u(z)) 70+ )l
A3 (3N WG
Au (5) =8 (”(2)) " 70+ )l

1
~50U(0)|ge + ==L U)o = U,

(5.1)
0'¢§
2’

1
—50V(0)| e + gﬁv«rnm = v,.

3
T=e o =53

Set
2+ ISu(o) + Tivio)
¢1(O-’ u’ V) = 6 5 b
80e7 (1 + I5u(o) + T3v(0))
o010, V) o cos(u(o)) — v(o) sin(o) u(o)
o,u, V)= - .
? 95 95 + u(o)
Now, for all u,u*, v, v* € R, and o € [0, e], we obtain
|¢1(O-a u, V) - ¢1(0-a u,v )l - 80€9O|u —u | + 80690' -

and

1 1
lgpo(o, u, v) — ¢y (o, U™, V)| = —|u—u’| + 9—5|V— V.

95
These satisfy condition (H3z) with L, = .l:;;l

Set
3)) _ lu) (3
& (”(5)) 70+ ) & (”(5
3 ) (3
& (V(E)) BT E (V(z

AIMS Mathematics

_ 1 R I
~ 809 £¢2 - ‘£¢2 — 95°

)
)

lui3)|
70 + |u()l’
vl
S 70+ vl
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Then we have

e o e
g A e A

These satisfy condition (Hy) with Lg = Ly = Lg = L. = 71_0_
From Theorem 3.3, we use the inequality and get

(oL + MLp)lo] (oL, + ALy lo!

~ 0.976847 < 1
T+ 1) T@+1) ? =5

A+ Az +

hence (5.1) has a unique solution, so (5.1) has a solution (u, v) € ¥. The solution of (5.1) is given by
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O'%Uz 0'%111 0'_%111
L Lt 1
—-50es  el'(5)  I(3)

1 L
+F(6) f'(O'—JT)5¢1(7T,_Z- u(ﬂ'),—[ﬁv(ﬂ'))dﬂ'

1 1 11
gse s gse s

_ @ 8 85
F(g) %(e 7r) o1 (m, T%u(m), I v(rr))dm + SOF( )

90 D - )
. % fo : (% _ n) 1 (m, Tu(n), IPv(m))dn

G+edE))E) s
A ) [

I 2 ”)5 $1(m. I7u(m), I ﬂv(n»d”],

2
3
O'E[O,E],

0'% u, 0'% u; 0'_%111
T Lt 1
—50es  el'(3) T(3)

(e - 77)_% u(m)dn

+ r(lg) f; (o — )3y (m, Tu(r), IPv(n))dn

oses (¢ 1 2+ TSu(n) + Tiv(n) 50'%6 5o
( ) — 6 (€ - ﬂ')s 6 5 T+ 1
uo) = re Ji 80e™90(1 + I5u(nm) + I3 v(m)) S0I(3) Jo

S CREENEREEREORCE

4
5

4

_3 5
( 2)( ) ‘fo (__ﬂ) 1 (m, Tu(), I v(m))dn
5

2
1\ /3\% 1
((§)+e(§)(§) )(5) f‘z(g )5 o T, PPty ]
+ Py > ’
I . \2 n| ¢ (m, Iu(n), IF v(m))dn
1 A\ 3\ s [ (3 3\(3\° _s.( (3
o (6 e 3 I [ e O A G [ R U )
EEAVE P s
L zr)(;)) — (g‘”) 1, I u(r), I via)dn
((§)+0'(‘5—‘)(%)_1)(§)50-‘§ S5 0\
F(g) fO (E_ﬂ') ¢1(7T,Ia/u(7r),]-'gv(ﬂ'))dﬂ'],
3
3
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and

1 1 -3
g4V g4V g 4V

= — +
~50ei  eI'(3)  T(d)

1 o N .
+ B, f (o = 1) (mr, T%u(n), IPv(n))dn

F(Z) %(e—ﬂ) ¢2(m, Tu(m), IPv(m))dr + 8;()1“( ¥ f(e_ﬂ) Tv(m)dr

) <GIG)JE) & (3D 306 i l3)

_ay () -2
+ % fo (% _n) ¢o(m, Tu(r), TP v(n))dn
4

REIECION) |

(— - 77) ¢o(m, Tu(r), TP v(zr))a’n]

O'%Vz O'%Vl O'_%Vl
—50ei  eI(3)  I(3)

1 , )
+F(5)f (o — 1)y (m, T"u(r), TP v(rr))dn

_O_%e_% _ @ 8 B 85 Tiet e
V(o) = F(%) %(e 7r) ¢ (m, I%u(m), IP v(mr))dr _501_( )

24 S - )

- 71)_4 ¢>(mr, T*u(n), TP v(rr))dn

(+@E)E) 5y |
P

f 2(% ) ¢o(m, T%u(r), TP v(n))dn
0

%) e, (V(g)) + (ff - %)‘T 3 (2)2 8*( (;))

C3 () o ~3
i)l f (g‘”) (i, T"u(m), TPv(m)dn
0

( - n)_% v(m)dr

[+ @)t mp
rQ3) fo (5‘”) ¢2<ﬂ’f”‘u<ﬂ>,fﬂv<n>>dn],
<3
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0.10 - i
L — V() 7
u(o)
0.05 i
0.00 - i
=005F T
0.0 0.5 1.0 15 2.0 25

Figure 1. The graph of the solution in case (i).

005FT T T — — — — ——
0.00 - =
-0.05+- =
L o) 1
L — V(o) il
-0.10+ =
o
0.0 0.5 10 15 2.0 25

Figure 2. The graph of the solution in case (ii).

(l) lfwe take ¢1(O_,Iau(o_)’]',8v(o_)) — W’ (]52(0',_[&11(0'),]'3‘,(0-)) — O-COS(O-;; sin(O') _ %’

&1 (u(%)) =& (u(%)) =& (V(%)) =& (V(%)) = %, and u(o) = v(o) = o then with the constant

values uy = vy = u, = v, = 2, the graph of the solution is shown in Figure 1.

15°

(ii) If we take ¢\(c, T°u(c), TPW(cr)) = 8‘3—;190, $o(0r, T*u(or), TPV(0r)) = ‘729; L 5= & (u(3)) =
& (u(%)) =& (V(%)) = &} (V(%)) = %, and u(o) = v(o) = o then with the constant values

u =vy = —%, u, = v, = =2, the graph of the solution is shown in Figure 2.

From Theorem 4.1, we use the inequality and get
8oL 1P\ [ A4 Ly, |0
T(B+1) T(a+1)
Ay Ly 10 ALy loP|
[1 - (Al + l"(a-li—l) )][1 - (A3 + T(3+1)
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thus, the given system (5.1) is HU stable and also generalized HU stable. Likewise, we can justify
the condition of Theorems 3.2 and 4.2.

6. Conclusion

In this article, we used the Kransnoselskii’s fixed point theorem and acquired the necessary cases
for the existence and uniqueness of solution for the given fractional integro-differential Eqs (1.1).
Furthermore, under specific assumptions and conditions, we proved different kinds of Ulam’s stability
of system (1.1). The concept of Ulam’s stability is very important because it gives a relationship
between approximate and exact solutions, so our results may be very helpful in approximation theory
and numerical analysis. The mentioned stability is rarely investigated for impulsive fractional integro-
differential equations. Finally, we illustrated the main results by giving a suitable example.
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