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Abstract: In recent years, the amount of available data is growing exponentially, and large-scale data
is becoming ubiquitous. Machine learning is a key to deriving insight from this deluge of data. In this
paper, we focus on the large-scale data analysis, especially classification data, and propose an online
conjugate gradient (CG) descent algorithm. Our algorithm draws from a recent improved Fletcher-
Reeves (IFR) CG method proposed in Jiang and Jian[13] as well as a recent approach to reduce variance
for stochastic gradient descent from Johnson and Zhang [15]. In theory, we prove that the proposed
online algorithm achieves a linear convergence rate under strong Wolfe line search when the objective
function is smooth and strongly convex. Comparison results on several benchmark classification
datasets demonstrate that our approach is promising in solving large-scale machine learning problems,
viewed from the points of area under curve (AUC) value and convergence behavior.
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1. Introduction

We first establish the key notations to make them consistent in this paper. Vectors are denoted by
boldface letters, e.g., w, and ∇ f (w) denotes the gradient of function f at point w. Superscript “T” is
the transpose operation of a vector. We use ‖w‖ as a shorthand for the l2-norm of w. Given a dataset

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2021092


1516

D = {(zi, yi)m
i=1}, where zi ∈ R

n and yi ∈ R, the focus of this paper is structural risk minimization [28],
a fundamental subject in machine learning, which is a combination of two terms

min
w∈Rn

f (w) ,
1
m

m∑
i=1

l(w; zi, yi) + r(w)︸               ︷︷               ︸
fi(w)

. (1.1)

Here, w is the optimization variable (usually called weight vector in the research area of machine
learning), l : Rn → R is the loss function associated with sample pair (zi, yi), and the regularization
function r : Rn → R is a penalty on the complexity of w.

Optimization learning algorithms for solving (1.1) mainly fall into two broad categories, namely,
online learning and batch learning. The two learning mechanisms are illustrated in Figure 1. In online
learning, data streams (either individually or in mini-batches) into the learning algorithm and updates
the prediction model. We just need to use the new (real-time) data to build a model. However, in batch
learning, the model is trained using the entire dataset. This process is also called offline learning. In
batch learning, if there is need to update the learning model based on new data, the model should be
trained from scratch all over again using both the previous data and the new data [2].
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Figure 1. Online learning vs. batch learning.

The prototypical online learning algorithm is stochastic gradient descent (SGD) method [23], which
is defined as

wk+1 = wk − ηk∇ fik(wk), (1.2)

where ηk is the learning rate (also known as stepsize in numerical optimization), and the index ik,
corresponding to the sample pair (zik , yik), is randomly chosen from {1, 2, . . . ,m}. We describe the
standard SGD method in Algorithm 1. It is observed that each iteration of SGD only involves the
computation of ∇ fik(wk) corresponding to one sample, resulting in a very cheap iteration cost. The
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1 Initial point w0.
2 for k = 0, 1, . . . do
3 Randomly pick a sample (zik , yik).
4 Compute the gradient gk ← ∇ fik(wk).
5 Choose a learning rate ηk.
6 Set the new iteration as wk+1 ← wk − ηkgk.
7 end

Algorithm 1: standard SGD Method

gradient information is obtained from only one sample at each iteration. Further, one can use a mini-
batch method, in which a small subset of all samples is randomly selected per iteration and employ the
iteration.

wk+1 = wk −
ηk

|Sk|

∑
i∈Sk⊆D

∇ fi(wk). (1.3)

where |Sk| denotes the number of elements in the set Sk.
In recent years, SGD has been widely studied in machine learning and optimization community;

see [5, 16, 19, 22, 27, 29, 32] for example. The standard SGD can quickly reach a proximate optimum
solution during the learning process, but its convergence rate may slow down when more accurate
solutions are required. Due to the variance of random sampling, with a suitably chosen ηk = O(1/k),
SGD achieves a sub-linear convergence rate of O(1/k).

1 Initial point w0, update frequency T , learning rate η.
2 for k = 0, 1, . . . do
3 Compute the batch gradient uk ← ∇ f (wk).
4 Initialize x0 ← wk.
5 for t = 0, 1, . . . ,T − 1 do
6 Randomly select it ∈ {1, 2, . . . ,m}.
7 Compute the gradient gt ← ∇ fit(xt) − ∇ fit(x0) + uk.
8 Set the new iteration as xt+1 ← xt − ηgt.
9 end

10 Option 1: wk+1 ← xT .
11 Option 2: wk+1 ← xt for randomly chosen t ∈ {1, . . . ,T }.
12 end

Algorithm 2: SVRG Method

In order to improve the convergence of SGD, Johnson and Zhang [15] proposed a stochastic
variance reduced gradient (SVRG) method to reduce the variance of random sampling. The
description of SVRG is in Algorithm 2. As argued by Bottou et al. [3], for the first epochs, SGD is
more efficient, but once the iterations approach the solution the benefits of the fast convergence rate of
SVRG can be observed. In [21], Nguyen et al. introduced a stochastic recursive gradient algorithm
(SARAH). Different from SVRG, SARAH employs a simple recursive approach to update stochastic
gradient and uses more stable gradient estimates than SVRG. But the choice of the learning rate η
depends on a Lipschitz constant of the objective function. Without explicit knowledge of this
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constant, η is typically chosen by experimentation in both SVRG and SARAH. By incorporating the
idea of variance reduction, Moritz et al. [20] proposed a stochastic L-BFGS method and proved a
linear rate of convergence. In [26], Tan et al. used the well-known Barzilai-Borwein (BB) method [1]
to automatically compute the learning rate for SVRG, and established a linear convergence rate.
Recently, based on the BB method, an improved SVRG, named stochastic two-point stepsize gradient
method, has been proposed by Shao et al. [25], which also achieves a linear convergence rate for
smooth and strongly convex functions. Liu et al. [17] used the BB approach to adaptively compute
the learning rate for SARAH. In [14], Jin et al. proposed a stochastic CG method with variance
reduction, which converges more quickly than SVRG. Actually, the idea of stochastic CG has been
studied before. Schraudolph and Graepel [24] combined the idea of CG with stochastic setting to
optimize unconstrained quadratic problems, and the resulting algorithms converge orders of
magnitude faster than ordinary SGD. In [30], Xu and Dai employed CG to accelerate the convergence
of stochastic approximation algorithm, Robbins-Monro method. Jiang and Wilford [12] proposed a
stochastic CG method for the approximation of functions, which performs the CG steps by using an
inner product that is based on stochastic sampling.

Motivated by this, we propose in this paper a new online variance reduced CG method and prove
that the proposed method converges linearly for strongly convex and smooth objective functions. The
remainder of this paper is organized as follows. In Section 2, we give a brief introduction of the
IFR CG method used in batch optimization. And then, we present the proposed method along with
the theoretical analysis in Section 3. Numerical experiments are reported in Section 4. Finally, we
conclude this paper in Section 5.

2. Brief introduction of IFR CG

Due to the low memory requirement and strong convergence property, CG method is a very efficient
batch algorithm, and it is still one of the most active research fields of optimization [6, 7, 11, 13, 18, 31].
Take (1.1) as an example. Suppose that f is differentiable, then given an initial point w0, a CG method
generates a sequence {wk} by using the recurrence

wk+1 = wk + αkdk, (2.1)

where αk is the stepsize usually obtained by a line search, and the search direction dk is computed by

dk = −∇ f (wk) + βkdk−1,d0 = −∇ f (w0). (2.2)

βk is the CG update parameter. Different choices of βk yield different CG methods. Some well-known
formulas for βk are βHS

k , βFR
k , βPR

k , βCD
k , βLS

k , and βDY
k , see the comprehensive review [10] for details.

Here, we focus on βFR
k proposed by Fletcher and Reeves [8], which takes the form of

βFR
k =

‖∇ f (wk)‖2

‖∇ f (wk−1)‖2
. (2.3)

Another important issue related to the performance of CG is the line search, which requires sufficient
accuracy to ensure dk satisfies the descent condition ∇ f (wk)T dk < 0, ∀ k. A common criteria for line
search is the Wolfe line search{

f (wk + αkdk) − f (wk) ≤ c1αk∇ f (wk)T dk,

∇ f (wk + αkdk)T dk ≥ c2∇ f (wk)T dk,
(2.4)
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where 0 < c1 < c2 < 1. In the strong Wolfe line search, the second condition in (2.4) is replaced by

|∇ f (wk + αkdk)T dk| ≤ −c2∇ f (wk)T dk. (2.5)

It has been shown that the strong Wolfe line search for βFR
k may not yield a descent direction unless

c2 ≤ 1/2 [4]. In practice, it is often most efficient to choose c2 close to 1. Hence, the constraint
c2 ≤ 1/2, needed to ensure descent, is a significant restriction in the choice of parameter c2 in the
Wolfe line search. Note that Gilbert and Nocedal [9] gave the convergent scope τk ∈ [−1, 1] for τkβ

FR
k .

Based on this, Jiang and Jian[13] considered τk = −
|∇ f (wk)T dk−1 |

∇ f (wk−1)T dk−1
and introduced an improved FR (IFR)

formula

βIFR
k = −

|∇ f (wk)T dk−1|

∇ f (wk−1)T dk−1
× βFR

k . (2.6)

The following lemma shows that the search directions yielded by IFR CG are all sufficient descent,
and the IFR CG method is globally convergent under the strong Wolfe line search.

Lemma 1 (Theorem 3 [13]). Suppose that f (w) is differentiable, ∇ f (w) is Lipschitz continuous, and
0 < c2 <

√
2/2, then it holds that

−1
1 − c2

2

≤
∇ f (wk)T dk

‖∇ f (wk)‖2
≤

2c2
2 − 1

1 − c2
2

. (2.7)

Further, IFR CG is globally convergent by the way of lim infk→∞ ‖∇ f (wk)‖ = 0.

3. Proposed method and theoretical analysis

3.1. SIFR CG method

Based on the theories mentioned above, we now describe the core of the proposed online CG
algorithm, called stochastic improved Fletcher-Reeves conjugate gradient (SIFR CG for short)
method, for solving (1.1) in detail and provide the pseudo-code.

SIFR CG operates in cycles. At the beginning of each cycle, an iteration point wk is available at
which the method computes a batch gradient uk ← ∇ f (wk). Then, after initializing x0 ← wk, g0 ← hk,
and d0 ← −g0, a set of T inner iterations indexed by t with an update xt+1 ← xt + αtdt are performed,
where αt is chosen according to the strong Wolfe line search. We define the subsampled function fS(w)
as:

fS(w) =
1
|S|

∑
i∈Sk

fi(w). (3.1)

where |Sk| denotes the number of elements in the set S k.The search direction dt is computed by −gt +

βtdt−1, where gt+1 ← ∇ fS(xt+1) − ∇ fS(wk) + uk, and S is chosen randomly. The pseudo-code of SIFR
CG is given in Algorithm 3.

There are a couple of things to note about this algorithm.

Remark 1. To mitigate the effects of some outliers in the training data, we restrict αt and βt by adding
some additional constraints.

Remark 2. For convenience, we use the condition |gT
t+1dt| ≤ −c2gT

t dt in the theoretical analysis.

Remark 3. The following experiments are carried out using wk+1 ← xT .
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1 Initial point w0, update frequency T , strong Wolfe line search parameters c1 and c2, αmin > 0,
αmax > 0, threshold parameter ε > 0.

2 Compute the initial batch gradient and initialize h0 ← ∇ f (w0).
3 for k = 0, 1, . . . do
4 Compute the batch gradient uk ← ∇ f (wk).
5 Initialize x0 ← wk.
6 Initialize g0 ← hk.
7 Initialize d0 ← −g0.
8 for t = 0, 1, . . . ,T − 1 do
9 Randomly choose a subset S ⊆ D.

10 Determine the learning rate αt satisfying the strong Wolfe line search{
fS(xt + αtdt) − fS(xt) ≤ c1αt∇ fS(xt)T dt,

|∇ fS(xt + αtdt)T dt| ≤ −c2∇ fS(xt)T dt.
(3.2)

Set αt ← min(αmax,max(αt, αmin)).
11 Set the new iteration as xt+1 ← xt + αtdt.
12 Compute the variance reduced gradient gt+1 ← ∇ fS(xt+1) − ∇ fS(wk) + uk.

13 Compute conjugate parameter βt+1 ← −
|gT

t+1dt |

gT
t dt
×
‖gt+1‖

2

‖gt‖
2 .

14 if βt+1 > ε then
15 set βt+1 ← 0.
16 end
17 Update the search direction dt+1 ← −gt+1 + βt+1dt.
18 end
19 Set hk+1 ← gT .
20 Choose t randomly from {1, . . . ,T } and set wk+1 ← xt.
21 end

Algorithm 3: SIFR CG Method

3.2. Theoretical analysis

In this section we analyze the convergence property of the proposed method SIFR CG. Our analysis
makes use of the following assumptions.

Assumption 1. ∀ i, fi : Rn → R is twice continuously differentiable.

Assumption 2. ∀ w ∈ Rn and S ⊆ D, there exist two positive constants φ and ϕ such that φI ≤
∇2 fS(x) ≤ ϕI, where I denotes the identity matrix, and ∇2 fS(x) is the Hessian matrix of f at point x.

For Algorithm 3, we immediately have the following result.

Theorem 1. Suppose that Assumptions 1 and 2 hold, and let ξ > 0 be an upper bound on −gT
t dt/|gT

t+1dt|,
then, ∀ t, we have

‖dt‖
2 ≤ ρ(t)‖g0‖

2, (3.3)

where ρ(t) = (ξ + 4
3 ) (εξ)t−(ε2)t

ξ−ε
+ (ε2)t.

AIMS Mathematics Volume 6, Issue 2, 1515–1537.
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Proof. It follows from the lines 14–16 in Algorithm 3 that βt+1 ≤ ε, therefore,

‖gt‖
2/‖gt−1‖

2 ≤ −εgT
t dt/|gT

t+1dt| ≤ εξ. (3.4)

From the definition of dt, we have

‖dt‖
2 = ‖ − gt + βtdt−1‖

2 = ‖gt‖
2 − 2βtgT

t dt−1 + β2
t ‖dt−1‖

2

≤ ε(ξ +
2c2

1 − c2
2

)‖gt−1‖
2 + ε2‖dt−1‖

2.
(3.5)

The last inequality follows from Lemma 1 and Remark 2. Using 0 < c2 < 1/2, it follows that

‖dt‖
2 ≤ ε(ξ +

4
3

)‖gt−1‖
2 + ε2‖dt−1‖

2

≤ ε(ξ +
4
3

)[‖gt−1‖
2 + ε2‖gt−2‖

2 + . . . + (ε2)t−1‖g0‖
2] + (ε2)t‖g0‖

2.

(3.6)

The second inequality follows from d0 = g0. Observing (3.4), we immediately get ‖gt‖
2 ≤ (εξ)t‖g0‖

2,
and (3.6) can be rewritten as

‖dt‖
2 ≤ ε(ξ +

4
3

)[(εξ)t−1‖g0‖
2 + ε2(εξ)t−2‖g0‖

2 + . . . + (ε2)t−1‖g0‖
2] + (ε2)t‖g0‖

2

=
[
(ξ +

4
3

)
(εξ)t − (ε2)t

ξ − ε
+ (ε2)t

]
‖g0‖

2,

(3.7)

which completes the proof. �

The following two lemmas show a lower bound on ‖∇ f (x)‖2 and an upper bound on the variance
reduced gradient estimates gt, respectively.

Lemma 2 (Lemma 5 [20], Lemma 1 [14]). Let w∗ be the unique minimizer of f , and suppose that f is
strongly convex with parameter σ, then, ∀ x, we have ‖∇ f (x)‖2 ≥ 2σ[ f (x) − f (w∗)].

Lemma 3 (Lemma 6 [20], Lemma 2 [14]). Let w∗ be the unique minimizer of f , uk = ∇ f (wk), and
gt = ∇ fS(xt − ∇ fS(wk) + uk, then by taking an expectation w.r.t. S, we have E[‖gt‖

2] ≤ 4ϕ[ f (xt) −
f (w∗) + f (wk) − f (w∗)].

Based on the above theoretical basis, we now state our main result in the following theorem.

Theorem 2. Suppose that Assumptions 1 and 2 hold, and let x∗ be the unique minimizer of f , then, ∀
k, we have

E[ f (wk) − f (w∗)] ≤ θkE[ f (w0) − f (w∗)]. (3.8)

Here, the convergence rate θ is given by

θ =
1 +

8ϕεαmaxT
3 + 4ϕ2α2

maxΛ

2σαminT − 8ϕεαmaxT
3

< 1 (3.9)

with Λ =
ξ+4/3
ξ−ε
×

1−(ξε)T

1−ξε −
ε+4/3
ξ−ε
×

1−(ε2)T

1−ε2 , assuming that we choose 8ϕεαmax < 3σαmin and that we choose
T large enough to satisfy

T >
3 + 12ϕ2α2

maxΛ

6σαmin − 16ϕεαmax
. (3.10)

AIMS Mathematics Volume 6, Issue 2, 1515–1537.



1522

Proof. Using the Lipschitz continuity of ∇ f , which follows from Assumption 2, we have

f (xt+1) ≤ f (xt) + ∇ f (xt)T (xt+1 − xt) +
ϕ

2
‖xt+1 − xt‖

2

= f (xt) + αt∇ f (xt)T dt +
ϕα2

t

2
‖dt‖

2.

(3.11)

Taking expectations of (3.11) and using Lemma 2 gives

E[ f (xt+1)] ≤ E[ f (xt)] + αtE[∇ f (xt)T dt] +
ϕα2

t

2
E[‖dt‖

2]

≤ E[ f (xt)] + αt

(
− 2σE[ f (xt) − f (w∗)] + βtE[gT

t dt−1]
)

+
ϕα2

t

2
E[‖dt‖

2]

≤ E[ f (xt)] + αt

(
− 2σE[ f (xt) − f (w∗)] + βt

c2

1 − c2
2

E[‖gt−1‖
2]
)

+
ϕα2

t

2
E[‖dt‖

2]

≤ E[ f (xt)] + αt

(
− 2σE[ f (xt) − f (w∗)] +

2βt

3
E[‖gt−1‖

2]
)

+
ϕα2

t

2
E[‖dt‖

2].

(3.12)

Using Theorem 1 and Lemma 3, (3.12) becomes

E[ f (xt+1)]

≤ E[ f (xt)] − 2σαtE[ f (xt) − f (w∗)] +
8ϕαtβt

3

(
E[ f (xt−1) − f (w∗)] + E[ f (wk) − f (w∗)]

)
+
ϕα2

t

2
× 4ϕρ(t)

(
E[ f (x0 − f (w∗)] + E[ f (wk) − f (w∗)]

)
≤ E[ f (xt)] − 2σαminE[ f (xt) − f (w∗)]

+
8ϕεαmax

3

(
E[ f (xt−1) − f (w∗)] + E[ f (wk) − f (w∗)]

)
+ 4ϕ2α2

maxρ(t)E[ f (wk) − f (w∗)].

(3.13)

By summing (3.13) over t = 0, 1, . . . ,T − 1, we obtain

E[ f (xT )] ≤ E[ f (x0)] − 2σαmin

T−1∑
t=0

E[ f (xt) − f (w∗)]

+
8ϕεαmax

3

T−2∑
t=0

(
E[ f (xt) − f (w∗)] + E[ f (wk) − f (w∗)]

)
+ 4ϕ2α2

max

T−1∑
t=0

ρ(t)E[ f (wk) − f (w∗)].

(3.14)

Rearranging (3.14) gives

0 ≤ E[ f (wk)] − E[ f (xT )] − 2σαminTE[ f (wk+1) − f (w∗)]

+
8ϕεαmaxT

3
E[ f (wk+1) − f (w∗)] +

8ϕεαmaxT
3

E[ f (wk) − f (w∗)]

+ 4ϕ2α2
max

T−1∑
t=0

ρ(t)E[ f (wk) − f (w∗)].

(3.15)
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Further, we have

0 ≤ E[ f (wk)] − E[ f (w∗)] +
(8ϕεαmaxT

3
+ 4ϕ2α2

max

T−1∑
t=0

ρ(t)
)
E[ f (wk) − f (w∗)]

+
(8ϕεαmaxT

3
− 2σαminT

)
E[ f (wk+1) − f (w∗)]

=
(
1 +

8ϕεαmaxT
3

+ 4ϕ2α2
max

T−1∑
t=0

ρ(t)
)
E[ f (wk) − f (w∗)]

+
(8ϕεαmaxT

3
− 2σαminT

)
E[ f (wk+1) − f (w∗)].

(3.16)

The second inequality follows from f (w∗) ≤ f (xT ). Note that
∑T−1

t=0 ρ(t) =
ξ+4/3
ξ−ε
×

1−(ξε)T

1−ξε −
ε+4/3
ξ−ε
×

1−(ε2)T

1−ε2

and denote this result by Λ, then we have

E[ f (wk+1) − f (w∗)] ≤ θE[ f (wk) − f (w∗)], (3.17)

on condition that αmax/αmin < 0.75σ/(ϕε), where θ =
1+

8ϕεαmaxT
3 +4ϕ2α2

maxΛ

2σαminT− 8ϕεαmaxT
3

. Since we chose T to
satisfy (3.10), it follows that the rate θ is less than one. Thus, we get the result as desired. �

4. Comparative experiments

To show the efficiency and effectiveness of the proposed method, we compare it with SVRG [15]
(a stochastic learning algorithm) and IFR CG [13] (a batch learning algorithm) on five classification
datasets, as shown in Table 1. These datasets are obtained from the LIBSVM database ∗. All
experiments are implemented using the Armadillo C++ library on a PC (Core i9-9900X
CPU@3.50GHz, 64 GB of memory) with Ubuntu 18.04.1 operating system.

Table 1. Summary of the benchmark datasets.

datasets m n

a9a 32561 123
w8a 49749 300
ijcnn1 49990 22
susy 5000000 18
higgs 11000000 28

*Note: m and n represent the number of samples and features of the data set respectively.

∗http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets

AIMS Mathematics Volume 6, Issue 2, 1515–1537.
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4.1. Problem setup

We evaluate these methods on three popular machine learning problems, including
• l2-logistic regression

min
w∈Rn

1
m

m∑
i=1

log(1 + e−yiwT zi) + λ‖w‖2, (4.1)

• l1-SVM

min
w∈Rn

1
m

m∑
i=1

max(0, 1 − yiwT zi) + λ‖w‖2, (4.2)

• l2-SVM

min
w∈Rn

1
m

m∑
i=1

max(0, 1 − yiwT zi)2 + λ‖w‖2, (4.3)

where λ > 0 is the regularization parameter.
We set λ = {0.01, 0.001, 0.0001} and set |S| =

√
m during the whole experiments. We set the

number of iterations of the outer loop to 25, and set the inner loop index T to 30 and 50, respectively.
For SVRG, we set η = {0.1, 0.05, 0.001, 0.005, 0.01, 0.05}. For IFR CG and SIFR CG, we set c1 = 10−4

and c2 = 0.1. Additionally, in SIFR CG, we set αmax = 1/αmin = 105 and ε = 10. We randomly divide
each dataset into three parts, 1/3 for test, 1/5 for validation, and the rest for training. After finding
the optimal parameters that maximize the AUC values on validation set, we employ the corresponding
model to the test set.

4.2. Experimental results

We first adopt the the cross validation technique to obtain the optimal parameters for each learning
model, and the cross validation results are summarize in Tables 2 and 3. We can see that for different
learning models and different datasets, the optimal parameters are often data-dependent and should be
tuned correspondingly.

After getting the optimal learning rates for SVRG and the optimal regularization parameters for all
the methods, we report the changing curves of AUC values on each test datasets obtained by different
method with increasing computational cost in Figures 2−5. In order to fairly compare the performance
of different methods, all the x-axes represent the computational cost that is measured by the number
of gradient computations divided by m, and all the y-axes represent the AUC value. In general, the
closer the AUC is to 1, the higher the accuracy of the method is. Figures 2−5 show the changing
results when T = 30, T = 40, T = 50, and T = 60, respectively. Firstly, we can see from the four
figures that the proposed method SIFR CG significantly outperforms SVRG and IFR CG on the whole
test datssets. That is, the classification accuracy of our method is the highest. Secondly, SVRG and
IFR CG have their own advantages and disadvantages on different datasets, therefore, they are hard
to differentiate. Thirdly, unlike SVRG and IFR CG, we find that the role of increasing the number of
loops to improve the performance of SIFR CG is less obvious. In other words, the SIFR CG method
takes fewer iterations to get the optimal solution.
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Table 2. Summary of the optimal parameters for each method obtained by cross validation
on different datasets and different learning problems.

l2-logistic T = 30 T = 40
regression SVRG IFR CG SIFR CG SVRG IFR CG SIFR CG

a9a λ = .1, η = .01 λ = .1 λ = .005 λ = .1, η = .01 λ = .1 λ = .005
w8a λ = .1, η = .1 λ = .1 λ = .005 λ = .1, η = .1 λ = .1 λ = .008
ijcnn1 λ = .05, η = .1 λ = .05 λ = .005 λ = .05, η = .1 λ = .05 λ = .005
susy λ = .005, η = .1 λ = .005 λ = .005 λ = .005, η = .1 λ = .005 λ = .005
higgs λ = .05, η = .1 λ = .05 λ = .005 λ = .05, η = .1 λ = .05 λ = .005

l1-SVM
T = 30 T = 40

SVRG IFR CG SIFR CG SVRG IFR CG SIFR CG

a9a λ = .1, η = .01 λ = .05 λ = .008 λ = .1, η = .01 λ = .05 λ = .008
w8a λ = .1, η = .0001 λ = .05 λ = .1 λ = .1, η = .01 λ = .05 λ = .1
ijcnn1 λ = .1, η = .001 λ = .05 λ = .008 λ = .1, η = .0001 λ = .05 λ = .05
susy λ = .008, η = .05 λ = .1 λ = .005 λ = .1, η = .01 λ = .1 λ = .005
higgs λ = .008, η = .1 λ = .1 λ = .005 λ = .05, η = .05 λ = .1 λ = .005

l2-SVM
T = 30 T = 40

SVRG IFR CG SIFR CG SVRG IFR CG SIFR CG

a9a λ = .01, η = .01 λ = .1 λ = .05 λ = .005, η = .01 λ = .1 λ = .05
w8a λ = .1, η = .001 λ = .1 λ = .1 λ = .1, η = .001 λ = .1 λ = .05
ijcnn1 λ = .1, η = .05 λ = .1 λ = .05 λ = .1, η = .05 λ = .1 λ = .05
susy λ = .005, η = .05 λ = .005 λ = .005 λ = .005, η = .05 λ = .005 λ = .005
higgs λ = .1, η = .01 λ = .1 λ = .005 λ = .1, η = .01 λ = .1 λ = .005
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Table 3. Summary of the optimal parameters for each method obtained by cross validation
on different datasets and different learning problems (cont.).

l2-logistic T = 50 T = 60
regression SVRG IFR CG SIFR CG SVRG IFR CG SIFR CG

a9a λ = .1, η = .01 λ = .1 λ = .005 λ = .1, η = .01 λ = .1 λ = .005
w8a λ = .1, η = .1 λ = .1 λ = .005 λ = .1, η = .1 λ = .1 λ = .005
ijcnn1 λ = .05, η = .1 λ = .05 λ = .005 λ = .05, η = .1 λ = .05 λ = .005
susy λ = .005, η = .1 λ = .005 λ = .005 λ = .005, η = .1 λ = .005 λ = .005
higgs λ = .01, η = .1 λ = .05 λ = .005 λ = .008, η = .1 λ = .05 λ = .005

l1-SVM
T = 50 T = 60

SVRG IFR CG SIFR CG SVRG IFR CG SIFR CG

a9a λ = .1, η = .01 λ = .05 λ = .1 λ = .1, η = .01 λ = .05 λ = .01
w8a λ = .1, η = .01 λ = .05 λ = .01 λ = .1, η = .01 λ = .05 λ = .05
ijcnn1 λ = .1, η = .0001 λ = .05 λ = .005 λ = .1, η = .001 λ = .05 λ = .008
susy λ = .1, η = .01 λ = .1 λ = .005 λ = .1, η = .01 λ = .1 λ = .005
higgs λ = .05, η = .05 λ = .1 λ = .005 λ = .008, η = .05 λ = .1 λ = .005

l2-SVM
T = 50 T = 60

SVRG IFR CG SIFR CG SVRG IFR CG SIFR CG

a9a λ = .1, η = .005 λ = .1 λ = .1 λ = .1, η = .005 λ = .1 λ = .05
w8a λ = .1, η = .001 λ = .1 λ = .1 λ = .1, η = .001 λ = .1 λ = .05
ijcnn1 λ = .1, η = .05 λ = .1 λ = .01 λ = .05, η = .05 λ = .1 λ = .1
susy λ = .005, η = .05 λ = .005 λ = .005 λ = .005, η = .05 λ = .005 λ = .005
higgs λ = .1, η = .01 λ = .1 λ = .005 λ = .1, η = .01 λ = .1 λ = .005
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Figure 2. Changing curves of AUC values between different methods on the test data when
T = 30.
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Figure 3. Changing curves of AUC values between different methods on the test data when
T = 40.
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Figure 4. Changing curves of AUC values between different methods on the test data when
T = 50.
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Figure 5. Changing curves of AUC values between different methods on the test data when
T = 60.
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Additionally, Figures 6−17 show the convergence behaviors and the corresponding average
computing time (the numbers of iterations of the outer loop is set to 25) of the three methods on each
training dataset. In the convergence behavior figures (see Figures 6, 7, 9, 10, 12, 13, 15 and 16), all
the x-axes also represent the computational cost that is measured by the number of gradient
computations divided by m, and all the y-axes represent the logarithm of objective function value
(base 10). We see that the convergence rate of the SVRG is not as fast as the other two methods
because SVRG is sensitive to the learning rate. However, for all test environments, the proposed
method SIFR CG has the fastest convergence speed and reaches the smallest objective function value,
which is consistent with the AUC results shown in Figures 2−5. In the average computing time
figures (see Figures 8, 11, 14, and 17), all the x-axes are in logarithmic time (base 10). We can see
that SVRG has the least computing time on these datasets. On the contrary, IFR CG employs the
entire dataset to conduct the line search to select the learning rate at each iteration, resulting in a
heavy computing burden. The computing time of SIFR CG is between SVRG and IFR CG, and it can
be observed that the computing time of SIFR CG is close to IFR CG when the dataset is small and is
close to SVRG when the data is large.

Overall, preliminary experiments show that the proposed method SIFR CG not only has better
learning performance, but converges speedily. And The advantage of SIFR CG is more obvious on
large-scale datasets.
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Figure 6. Convergence behaviors of different methods on the training data when λ = 10−2

and T = 30.
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Figure 7. Convergence behaviors of different methods on the training data when λ = 10−4

and T = 30.
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Figure 8. Average computing time of different methods on the test data when T = 30.
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Figure 9. Convergence behaviors of different methods on the training data when λ = 10−2

and T = 40.
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Figure 10. Convergence behaviors of different methods on the training data when λ = 10−4

and T = 40.

AIMS Mathematics Volume 6, Issue 2, 1515–1537.



1532

101 102 103

a9a

w8a

ijcnn1

susy

higgs

l2 logistic regression

100 101 102 103

l1 SVM

101 102 103

l2 SVM

SVRG IFR CG SIFR CG

Figure 11. Average computing time of different methods on the test data when T = 40.
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Figure 12. Convergence behaviors of different methods on the training data when λ = 10−2

and T = 50.
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Figure 13. Convergence behaviors of different methods on the training data when λ = 10−4

and T = 50.
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Figure 14. Average computing time of different methods on the test data when T = 50.
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Figure 15. Convergence behaviors of different methods on the training data when λ = 10−2

and T = 60.
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Figure 16. Convergence behaviors of different methods on the training data when λ = 10−4

and T = 60.
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Figure 17. Average computing time of different methods on the test data when T = 60.

5. Conclusions

In this paper, we proposed a stochastic Fletcher-Reeves conjugate gradient algorithm and proved a
linear rate of convergence in the strongly convex case. Comparative experiments on several benchmark
datasets demonstrate that the proposed algorithm performs well on large-scale smooth and nonsmooth
machine learning problems.

There are several interesting issues to study in future work. For example, we can replace the Wolfe
line search by a nonmonotone line search to find the optimal solution faster or propose more effective
conjugate gradient update parameters.
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