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1 =1

= — i=1,i#j i=1,i# j#k
_%(3,13—2;12— 13n—8) Zn: f(xi+xj)
i=1i%j
+%(n3+2n2+n) Zn: f(xi—xj)
i=1i#)
+ %(3114 - 50 = Tn® + 13n + 12)2]((951‘)

i=1

(n €N, n>4) and also investigate the Hyers-Ulam stability of the quartic functional equation in
random normed spaces using the direct approach and the fixed point approach.
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1. Introduction

In 1940, Ulam [25] proposed the following question concerning the stability of group
homomorphisms: Under what condition does there is an additive mapping near an approximately
additive mapping between a group and a metric group? In the next year, Hyers [7, 8] answered the
problem of Ulam under the assumption that the groups are Banach spaces. A generalized version of
the theorem of Hyers for approximately linear mappings was given by Rassias [22]. Since then, the
stability problems of various functional equation have been extensively investigated by a number of
authors (see [3,6,13,14,16,17,22,24,26-28]). By regarding a large influence of Ulam, Hyers and
Rassias on the investigation of stability problems of functional equations the stability phenomenon
that was introduced and proved by Rassias [22] in the year 1978 is called the Hyers-Ulam-Rassias
stability.

Consider the functional equation

Jx+y)+ f(x=y) =2f(x) + 2f(y). (1.1)

The quadratic function f(x) = cx? is a solution of this functional Equation (1.1), and so one usually is

said the above functional equation to be quadratic [5,10-12]. The Hyers-Ulam stability problem of the
quadratic functional equation was first proved by Skof [24] for functions between a normed space and
a Banach space. Afterwards, the result was extended by Cholewa [2] and Czerwik [4].

Now, we consider the following functional equation:

JQx+y)+ fQx—y) =4f(x+y) +4f(x = y) + 24f(x) - 6f()). (1.2)

It is easy to see that the function f(x) = cx* satisfies the functional equation (1.2). Hence, it is natural
that Eq (1.2) is called a quartic functional equation and every solution of the quartic functional equation
is said to be a quartic mapping (see [15,19]).

The theory of random normed spaces (briefly, RN-spaces) is important as a generalization of
deterministic result of normed spaces and also in the study of random operator equations. The notion
of an RN-space corresponds to the situations when we do not know exactly the norm of the point and
we know only probabilities of possible values of this norm. Random theory is a setting in which
uncertainty arising from problems in various fields of science, can be modelled. It is a practical tool
for handling situations where classical theories fail to explain. Random theory has many application
in several fields, for example, population dynamics, computer programming, nonlinear dynamical
system, nonlinear operators, statistical convergence and so forth.

In 2008, Mihet and Radu [18] applied fixed point alternative method to prove the stability theorems
of the Cauchy functional equation:

Ja+y) - f)-f»=0

in random normed spaces. In 2008, Najati and Moghimi [20] obtained a stability of the functional
equation deriving from quadratic and additive function:

JRx+y) + fQx=y) +2f(x) = f(x +y) = f(x = y) = 2f(2x) = 0 (1.3)

by using the direct method. After that, Jin and Lee [9] proved the stability of the above mentioned
functional equation in random normed spaces.
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In 2011, Saadati et al. [21] proved the nonlinear stability of the quartic functional equation of the
form

16f(x +4y) + fAx—y) = 306 [9f (x + %) + o+ 2y)] +136f(x— y)
—1394f(x + y) + 425 £(y) — 1530 £(x)

in the setting of random normed spaces. Furthermore, the interdisciplinary relation among the theory
of random spaces, the theory of non-Archimedean spaces, the fixed point theory, the theory of
intuitionistic spaces and the theory of functional equations were also presented. Azadi Kenary [1]
investigated the Ulam stability of the following nonlinear function equation

FU@ = fO)+ )+ f0) = fx+y) + fx =),

in random normed spaces.
In this note, we investigate the general solution for the quartic functional equation of the form

n

(3n+4)f[2xi)+zn:f[—nxj+ i xi]:(n2+2n+1) i f(xi+xj+xk)
=1

i=1 i=1,i#j i=1,i#j#k

- %(3;13 —2n” - 13n - 8) Z (3 +x))
i=li#j
+%(n3+2n2+n) Zn: f(xi—xj)
i=1,i#j
+ %(3n4—5n3—7n2+ 13n + 12)Zn:f(x,-) (1.4)

i=1

(neN, n>4) and also investigate the Hyers-Ulam stability of the quartic functional equation in
random normed spaces by using the direct approach and the fixed point approach.

2. Preliminaries

In this part, we make some notations and basic definitions used in this article.

Definition 2.1. A function 7 : [0, 1] x [0,1] — [0, 1] is called a continuous triangular norm, if 7
satisfies the following condition

(a) T is commutative and associative;

(b) T is continuous;

(¢) T(a,1)=aforallac€]0,1];

(d) T(a,b) <T(c,dywhena<candb <dforalla,b,c,d e [0,1].

Typical examples of continuous r—norms are T,(a,b) = ab, T,(a,b) = min(a,b) and
T; (a,b) = max (a + b — 1,0) (The Lukasiewicz r—norm). Recall [23] that if T is a f—norm and {x,} is
a given sequence of numbers in [0, 1], then T, x,,; is defined recurrently by Ti'zlxi = x; and
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T, xi=T (Tl.":‘ll X, xn) forn > 2, T x; is defined as T;°, x,;. It is known that, for the Lukasiewicz
t—norm, the following implication holds:

lim (T2 % = 1 & > (1= x,) < .

n=1
Definition 2.2. A random normed space (briefly, RN—space ) is a triple (X, u, T'), where X is a vector
space. T is a continuous r—norm and y is a mapping from X into D™ satisfying the following conditions:
(RN1) p, () = & (¢) for all ¢ > 0 if and only if x = 0;
(RN2) ptay (1) = 1, (%) for all x € X, and alpha € R with @ # 0;
(RN3) prpy (t +5) 2 T (11, (1) . oy (5)) for all x,y € X and £, 5 > 0.

Definition 2.3. Let (X, u, T) be an RN—space.

1). A sequence {x,} in X is said to be convergent to a point x € X if, for any € > 0 and 4 > 0, there
exists a positive integer N such that u, _,(¢) > 1—Aforalln > N.

2). A sequence {x,} in X is called a Cauchy sequence if, for any € > 0 and 1 > 0, there exists a
positive integer N such that u, _, (g) > 1 —Aforalln >m > N.

3). An RN-space (X, u, T) is said to be complete, if every Cauchy sequence in X is convergent to a
point in X.

Throughout this paper, we use the following notation for a given mapping f : X — Y as

Df(xi, -, x,) = (3n+4)f(2xi)+2f(—nxj+ > x,.)
i=1 j=1 i=1,i#]

—(n2+2n+1) Zn: f(x,-+xj+xk)

i=1,i# jk
_%(3,13—2;12— 13n—8) Zn: f(xi+xj)
i=Li#j
+%(n3+2n2+n) Zn: f(xi_xj)
i=Li#j
+ % (3n4 —5n° —Tn* + 13n + 12) Zn:f(xi)

i=1

for all xy,x,,---,x, € X.
3. A solution of the n—variable quartic functional equation (1.4)

In this section we investigate the general solution of the n-variable quartic functional equation (1.4).

Theorem 3.1. Let X and Y be real vector spaces. If a mapping f : X — Y satisfies the functional
equation (1.4) for all x,,--- ,x, € X, then f : X — Y satisfies the functional equation (1.2) for all
x,yeX
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Proof. Assume that f satisfies the functional equation (1.4). Putting x; = x, = --- = x, = 0in (1.4),
we get

Bn+4)f(0) = (n*+2n+1)

4(n—4)(n— —H (-5 -
61— 20 + (n—4)(n-15) N (n—4)(n—-5)(n-06) £(0)
2 6
1, (n* = 9n + 20)
—5(3;1 —2n% - 13n - 8) {4n - 10+ ~————1 £ (0)
2
1, 5 (n - 9n + 20)
+§(n +2n +n){4n—10+f £(0)
a4 3 2
- 5(3n = 5n* = Tn’ + 130+ 12) £ (0) (3.1)
It follows from (3.1) that
f(0)=0. (3.2)
Replacing (xy, x5, -+, x,) by (x,0,---,0) in (1.4), we have
1)—ti
(n—1)—times

- =3 +n+2

Gn+d) f@)+n'f(~x0)+n-1)f(x) = 5 )f(x)

—_

1
) (3n* - 5% — 11n* + 5n + 8) f(x)
1
+§(n4+n3+n2—n)f(x)
1
+s (3n* = 5% = Tn® + 130 + 12) £(x) (3.3)
for all x € X. It follows from (3.3) that
f(=0=fx
for all x € X. Setting x; = x, = --- = x,, = x in (1.4), we obtain

Gn+4) f (@) +nf(x) = (n*+2n+1)

{6n_20+4(27)(n—24)(n—5) . (n—4)(n;5)(n—6)}f(x)

2 _
—%(3n3 —2n? — 13n—8) {411 10 + w}f(bc)

2 _
(n* +2n* +n) {4}1 ~ 10+ (’19—“20)}]?(0)

+
2

+

NS N =

(3n* = 50° = Tn® + 13n + 12) f (x) (3.4)
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for all x € X. It follows from (3.4) and (3.2) that
S 2x)=16f(x)
for all x € X. Setting x; = x, =--- = x, = xin (1.4), we get

(Bn+4) f (x) +nf (x) = (0 + 20+ 1)

{ 4(n? - 9n +20) (n2—9n+20)(n—6)}
6n — 20 + + f3x)

2 6

2 _
_ % (3n3 —2n* — 13n — 8) {4n 10+ 16(" 9n+20)}f(x)

2
(n2 —9n + 20)
2

+%(n3+2n2+n){4n—10+ f(0)

+ g (3n* — 5> = Tn> + 130 + 12) £ (x)
for all x € X. It follows from (3.5) and (3.2) that
f(3x) =81f(x)
for all x € X. In general for any positive m, we get
fmx) = m' f (x)

for all x € X. Replacing (xy, x,,- -+ , x,,) by {x, X,00 X, y] in (1.4), we get

(n—1)—times
BGn+d)(f((n-Dx+y)+(n-1)f(2x+y)+ f(n—Dx—-ny) =
(n2 -3n+ 2)

2
2
3n° = 27n + 60) . ((n —4(n-5)0n- 6)))f(3x)

(n2+2n+1)(3n—9+ ]f(2x+y)

(n2+2n+1)(3n—11+( 5 -

2 2

(n-1
2

(n3+2n2+n)(n—l)f(x—y)

2 _
—1(3n3—2n2— 13n—8){3n—9+w}f(2x)

(3n® - 2n* = 13n-8) f (x +)
+

+

N =N =

(3n4 -5 = Tn* + 13n + 12) (fFO)+m=1) f(x)

(3.5)

(3.6)
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for all x,y € X. It follows from (3.6) that

BGn+H(f((n-Dx+y)+nr-Df(-2x+y)+f((n—-1Dx—ny) =
2 _
(n2+2n+ 1)($)f(2x+y)
nw -5 +11ln—-6

+81(n2+2n+1)( - )f(x)

n?-3n+2

—16(3n* - 2n* — 13n - 8)(T)f(x)

(n—1)
2

+%(n3+2n2+n)(ﬂ—1)f(x_y)

(3n® - 2n* = 13n-8) f (x +)

1
+§(3n4—5n3—7n2+ 130+ 12) (f () + (n = 1) £ (x)) (3.7)
for all x,y € X. Replacing y by —y in (3.7), we get

CGn+dH(f((n=Dx-y)+-DfQx+y)+f(Ox+y =

2 _
(2 +2n+ 1)($)f(2x—y)

nw-5n*+11n-6

+81(n2+2n+1)( - )f(x)

n>-3n+2

—16(3n* - 2n - 13n—8)( : )f(x)

(n-1)
2

+ % (3n* = 5n® = 7n* + 130+ 12) (f () + (n = 1) £ (x)) (3.8)

(3n3—2n2—13n—8)f(x—y)+%(”3””2”)("‘1”(””

for all x,y € X. Adding (3.7) and (3.8), we get

(3n + 4)

(=D Hf x+ )+ fFa=h+2{f (= D) = (1= D’ F @} +2{f ) - (n = 1’ F »)))
+(-D(f2x+ )+ fCx+ )+ (f(n—Dx—ny)+ f((n— 1) x+ny))
) n’—3n+2
=(n?+2n+ 1)(7)(f(2x—y)+f(2x+y))
n*—5n*+11n-6

+162(n2+2n+1)( - )f(x)

2
342
- 32(3n° - 2% — 13n - 8) (%

- ("; D (3n® =20 = 130 = 8) (f (x =) + f (x +))

e
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+%(n3 +20% +n) (= 1) (f (x+y) + f(x =)
+(3n4—5n3 —Tn® + 13n + 12)(f(y)+(n— D f(x) (3.9)
for all x,y € X. It follows from (3.9) that

(Bn+4)

(=12 {f G+ + F =l +2{f (n= D) = (1= 1’ F @) +2{f 0) = (n = 1’ f »)})
+ (=D (fQx=y)+ fQx+y) +n* (= 1) (f (x+) + f (x =)

+2{f (n=Dx) =’ = 1P f @) +n*f () = n*(n = 1)’ F ()]

2 _
= (R +2n+ 1)(’/L;—n—l_2)(f(2x—y)+f(2x+y))

35 _5p2 4 11n -
+162(n2+2n+1)(n 5"; L 6)f(x)
2 _ 3542
~32(3n° - 2% = 130 - 8)(%)]”@)

(n—1)

(3n® =20 = 130 = 8) (f (x =) + f (x +))

+%(n3 +20% +n)(n=1)(f (x+y) + f (x =)
+(3n* = 5n® =T + 130+ 12) (f () + (n = 1) f (1)) (3.10)

for all x,y € X. It follows from (3.10) that

—2fQx+y)=2fQ2x—y) = -8f (x+y) =8f (x = y) =481 (1) + 121 () (3.11)

for all x,y € X. From (3.11), we get

Cx+y+fQRx-y)=4f(x+y) +4f (x=y) +24f (x) =6/ ()

for all x,y € X. Thus the mapping f : X — Y is quartic. O
4. Direct method

In this section, the Ulam-Hyers stability of the quartic functional equation (1.4) in RN—space is
provided. Throughout this part, let X be a linear space and (Y, u, T') be a complete RN—space.

Theorem 4.1. Let j = =1, f : X — Y be a mapping for which there exists a mapping n : X" — D*
satisfying

such that f (0) = 0 and

/JDf(xl,xz ..... Xn) (t) > n(xl,xz ..... Xn) (t) (41)
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forall x|, x5, ...,x, € X and all t > 0. Then there exists a unique quartic mapping Q : X — Y satisfying

the functional equation (1.4) and

,,,,,,

forall x € X and all t > 0. The mapping Q (x) is defined by

Mc(x) (l) = l}i_)rg/lf(zij) (t)

24k j

forall xe X and all t > 0.

Proof. Assume j = 1. Setting (xy, x3, ..., X,) by [x, X, ...,x) in (4.1), we obtain
—

n—times

03 —5n4—11n3+5n2+8n (t) 2
Mw F2x)-4(3n5=5n*~11n3+5n2+8n) f (x) 7

](l)

X, X,y X
N

n—times

for all x € X and all ¢ > 0. It follows from (4.2) and (RN2) that

pizs g, (021 ](24 (3n° = 5n* = 11n* + 5n* + 8n) 1)

X, Xy ey X
—

n—times

for all x € X and all t > 0. Replacing x by 2*x in (4.3), we have

Koty () (D) =7 2% (3n° - 51* — 11n° + 5n* + 8n) 16t
fgikm)‘f(;k) 2kx, 2kx, ..., 2% x ( ( ) )
—————
2% (3n% - 5n* = 11n° + 5n* + 8n) 16
=1 . t
X, Xy oons x] @
n n—1 Kl Ky
forall x € X and all £ > 0. It follows from L2220 — £ (x) = 3, L2 _ SO0 a4 (4.4) that

n—1 &
@
i ! > T (Mexo..0(t
HIGH - [ kZ:;‘ 2% (3n® — 5n* — 1113 + 5n% + 8n) 16] =0 (1cx0...0 ()

®,
X, X, ey X

n—times

n

1) > t
on =
H '/(24,;‘) =f(x) n n—1 ‘
XX 0 XY a
—— || &, 2%(3n5-5n*-11n3+5n2+8n)2*
n—times k=0

AIMS Mathematics
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4.3)

4.4)

(4.5)
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for all x € X and all # > 0. Replacing x by 2"x in (4.5), we get

t
My _semy (£) 217 p - (4.6)
24(n+m) 24m X. X x Z ak
NG Pt 2%(3n5-5n*-11n3+5n2+8n)16
n—times -
Since . 1 L2294 is a Cauch i
n — - — 1 asmn — oo, {5521 is a Cauchy sequence in
o
)C, X, ceey X ,Em 24k(3n575n471ln3+5nz+8n)l6
N’
n—times

(Y,u, T). Since (Y, u, T) is a complete RN-space, this sequence converges to some point C (x) € Y. Fix
x € X and put m = 0 in (4.6). Then we have

t

n >
/’lf(z X)*f(x) (t) = 77

24n n—-1

X, Xy ey X
—

> o
Sl 2% (33 =5t~ 1103 +5n2+8n) 16

n—times

and so, for every 6 > 0, we get

24n 24n_ F(x)

Koo (E+0) 2 T {p, e (8) s pt s (t)) 4.7

t

2 T Ryt (0),1

n—1
Xy Xy eeey X

Z ok
S0 2 (3> =5n* = 1103 +5n2+8n) 16

n—times

Taking the limit as n — oo and using (4.7), we have

fc-foo (1 +6) 2 1 ((3n° = 5n* = 110° + 507 + 8n) (2* - @) ). (4.8)

X, Xy ey X
N—

n—times

Since ¢ is arbitrary, by taking 6 — 0 in (4.8), we have

Lot—reo (B) =1 ]((3n5 = 5n* = 11n* + 5n” + 8n) (2* - @)1). (4.9)

X, Xy eeey X
—

n—times

Replacing (xy, x2, ..., x,,) by (2"x1,2" x5, ..., 2"x,) in (4.1), respectively, we obtain

for all x1, x5, ..., x, € X and for all £ > 0. Since

. 0 o HAk+i+1)j _
,}1_{2 T (’IziT’,z(;;t,...,zig' (2 1) =1,
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we conclude that Q fulfils (1.1). To prove the uniqueness of the quartic mapping Q, assume that there
exists another quartic mapping D from X to Y, which satisfies (4.9). Fix x € X. Clearly, Q (2"x) =
240 (x) and D (2"x) = 2*'D (x) for all x € X. It follows from (4.9) that

How-pe () = M o pery (1)

24n 24n
. t t
Hoen(1) 2 min{i oeny sem | 5 | Hoem e | 5 }
2 1

24n 24n 2 24n 24n 2

(24" (3n5 —5nt =11 + 5% + 8n) (24 - a) t)
2022

21

X2 =X

n—times

>
21 o

[24" (3n° - 5n* = 110° + 5% + 8n) (24 - a) t]

X, Xy ey X
—

n—times

24 (3n°=5n*~11n*+5n%+8n) (2% —a)t

a

Since lim ( = o0, we get
n—oo
. 24 (3% =5n*—11n3+5n2+8n) (24 —a )t
x,%,0,...,0 n = L.
lim 7,0, " 1
n—oo

Therefore, it follows that pigy-p) (f) = 1 for all £ > 0 and so Q (x) = D (x).
This completes the proof. O

The following corollary is an immediate consequence of Theorem 4.1, concerning the stability of
(1.4).

Corollary 4.2. Let Q and U be nonnegative real numbers. Let f : X — Y satisfy the inequality

na (1),
na gl llx11° ()

X15X2 50005 1) 2 ‘ n
o O 2 g FL i) o,

o (q ll© + zl ||xi||"”) )

forall xy, x>, x3, ..., X, € X and all t > 0, then there exists a unique quartic mapping Q : X — Y such
that

Q t
IGO\(SMS—5n4—11n3+5n2+8n) ( )

Q© ), U+4
|4|(3n5 —Sp4—11n3 4502 +8n) |24 U |
_ t) > 4
Hy-oe () n QY ), O+ -
|4|(3n5 —sut—11n3 +5n2+8n) |24-2'1U |

4
(4 DQYI|"V (t) > U # n

|4|(3n5 —Sp4 1103 +5n2 +8n) |24 U |

forall xe X and all t > 0.
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5. Fixed point method

In this section, we prove the Ulam-Hyers stability of the functional equation (1.4) in random normed
spaces by the using fixed point method.

Theorem 5.1. Let f : X — Y be a mapping for which there exists a mapping n : X" — D" with the
condition

. k _
im 75, sty s, (51' t) =1

k— o0

forall xy, x5, x3, ..., x, € X and all t > 0, where

and satisfy the functional inequality

KD f(x1,x2,0%0) (t) 2 My 2,k (t)

for all xi, x5, x3,....,x, € X and all t > 0. If there exists L = L (i) such that the function x — S (x,t) =

n ((3115 —5n* =111 + 5n% + 8n) t) has the property that
X x X
7 50
—times
1
Bx,1) < L5—4,3 (6ix, 1) (5.1

forall x € X and t > 0, then there exists a unique quartic mapping Q : X — Y satisfying the functional

equation (1.4) and
1-i

L
HO(~f(x) (1 — Lt) > B (x,1)

forall xe X and t > 0.

Proof. Let d be a general metric on € such that
d(p.q) = inf {k € (0,00) /u(p0-gey (kt) 2 B(x, 1), x € X,1 > 0}.

It is easy to see that (€, d) is complete. Define T : Q — Q by Tp(x) = 6%[9 (6;x) for all x € X. Now
assume that for p, g € Q, we have d (p,q) < K. Then l

Hip(o—q0x (k1) = B (x, 1)

K

5—:) > B(x, 1)

= d(Tp(x),Tq(x)) < KL

=d(Tp,Tq) < Ld(p,q) (5.2)

= H(p(x)-q(x) (
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for all p,g € Q. Therefore, T is a strictly contractive mapping on Q with Lipschitz constant L. It
follows from (5.2) that

S —snd_ 113 +5n2+8n (1) > () (5.3)
NWJ‘OX)—Af(ﬁrP—Sn“—I1n3+5n2+8n)f(x) g XXy o X
—_—

n—times

for all x € X. It follows from (5.3) that

pien o, ()21 ((32° = 5n* = 11n* + 50 + 8n) 161) (5.4)

Xy Xy eeey X
—

n—times

for all x € X. By using (5.1) for the case i = 0, it reduce to
Hiea_py (02 LB (x,)
for all x € X. Hence we obtain
d(ursp) S L=L"" < oo (5.5)
for all x € X. Replacing x by 5 in (5.4), we get

N Oy ((37° = 5n* = 11n° + 50 + 8n) 16¢)
X

X

) 57 ceey E

[
n

—times

N =

for all x € X. By using (5.1) for the case i = 1, it reduce to
Hies(3)-rt0 O 2 BOLD = Urpo-peo () 2 B (X, 1)
for all x € X. Hence we get
d(prss) <L=L""<oo (5.6)
for all x € X. From (5.5) and (5.6), we can conclude
d(,qu,f) <L=L"<

for all x € X.
The remaining proof is similar to the proof of Theorem 4.1. So Q is a unique fixed point of 7 in the
set such that

1-i

L
H(f(0-0(x)) (m ) > B(x,1)

for all x € X and ¢ > 0. This completes the proof of the theorem. O

From Theorem 4.1, we obtain the following corollary concerning the stability for the functional
equation (1.4).
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Corollary 5.2. Suppose that a mapping f : X — Y satisfies the inequality

na (1),
na Z]l llx1° ()

X15X250005X, t Z d
ot W21 g (q ||x,~||”) .

Mo (I_T1 Il + ; ||xi||"U) 0,

forall xy, x,,...,x, € X and all t > 0, where Q, U are constants with 0 > 0. Then there exists a unique
quartic mapping Q : X — Y such that

) (2)

|60|(3n5—5n4—1ln3+5n2+8n)
Q© ), U+4

|4\(3n5—5n4—l1n3+5)12+8n)|24—20|
_ 1) = 4
Ho-ow (1) 0 o . Ut
|4\(3n5 —sut 113 +5;12+8n)|24—2”U|

(n+1)QIx|"Y (t) ) O # 1

|4\(3n5 —suf 113 +5)12+8n)|24—2" U|

forall x € X and allt > 0.

Proof. Set
na (1),
o 2. Ix1° (@),

X15X250005X; t 2 2
Hofts.oo () ng(g ||xl-||”) 0.

o (q xl® + 21 ||xi||"“) )

for all x1, x5, ..., x, € X and all > 0. Then

7795;”‘ (t) 5
o 3, ol [O88 " (p),

4k _ n
ottt (1) = g (H ||x,-||”6§“‘”“)") 0,
i=1

Mo ([11 [lallPa O + z ||xl-||"“) GF
— 1 as k>

I 1 as k — o

] - 1 as k>
— 1 as k — oo.
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But we have B(x,1) = 1| .1 (% (?an5 —5n* = 11n® + 50% + Sn) t) has the property Lz:3(6;x, 1) for
— i

n—times

all x e X and ¢ > 0. Now

t
3n575n47;‘1£313+5n2+8n ( )
4Q|Ix0 (t)
240 (3n5 —snt-1123 +5n2+8n)
Bx 1) = n 400 (®)
240(3/15 —s5nt—11n3 +5n2+8n)

40| (t) y

210 (3n5 —5ud—11n3+5n2 +8n)

Ns74B(x) (1)
Ns9-44(x) (1)
T59-48(x) (2)
N1 0-4B(x) ).

1
Lgﬁ (6i-x9 t) =

By (4.1), we prove the following eight cases:
L=2%ifi=0and L=2%if i=1
L=2V"%for U<4ifi=0and L=2*7 for U>4 if i=1

4 4
L=27U"%for U<-if i=0 and L=2%"Y for U>— if i=1
n n

4 4
L=2"%for U<—-ifi=0and L=2*"0 for U>- ifi=1
n n

Casel: L=2"%ifi=0

1
Hfo-00) (D) = LE'B 0ix, 1) (1) 2 77( o ](f)-

60( 3n3=5n*—11n3 +5nz+8n)

Case2: L=2%ifi=1

1
Hrw-ow (1) 2 L3 (0, 1) (1) 2 77( . J(z).

i —60(3n5 —sut—11n3 +5n2+8n)

Case3: L=2V*forU<4ifi=0

1
Hro-000 (1) = L(gﬁ Gix, 1) () > 77[ - ](f)-

i 4(371575}1471 1n3+5n2+8n)(2472u)

Case4: L=2PforU>4ifi=1

1
Hiw-ow (1) 2 LB (6, 1) (1) 2 77[ - )(t).

4(311575.1471 1113+5n2+8n)(20—24)

Case 5: L =2""*for U < %ifi:O

1
Ho-0e () 2 L(gﬁ (6ix,1) (1) > 77( — J(l)-

4(3n5-5ud 1153 +5n248n ) (24-210)
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Case6:L:24‘"Uf0rU>j—‘lifi:1

1

1
Hr-ow (1) = Léjﬂ (6ix, 1) (1) = 77( — )(I) -

~4(3n5-snA-11n3+5n2+8n) (210 -24)

Case7: L = 2" for U < %ifi:O

1
Hrw-ow (1) = Ld_‘.‘ﬁ (6ix, 1) (1) 2 77[ s D0 )(1)-

4(3n5 —snt-11n3 +5n2+8n) (24 72"0)

Case8:L=2"YforU>2ifi=1

1
Hpe-ow (D) 2 L3 (0ix, 1) (1) 2 77( o )(t) :

~4(3n5-snA-11n3 450280 ) (21024 )

Hence the proof is complete. O
6. Conclusion

In this note we investigated the general solution for the quartic functional equation (1.4) and also
investigated the Hyers-Ulam stability of the quartic functional equation (1.4) in random normed space
using the direct approach and the fixed point approach. This work can be applied to study the stability
in various spaces such as intuitionistic random normed spaces, quasi-Banach spaces and fuzzy
normed spaces. Moreover, the results can be applied to investigate quartic homomorphisms and
quratic derivations in Banach algebras, random normed algebras, fuzzy Banach algebras and
C*-ternary algebras.
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