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1. Introduction 

Fractional calculus plays a substantial role in different branches of physics, fluid mechanics, 

diffusive transport, electrical networks, electromagnetic theory, biological sciences and groundwater 

problems etc. [1–4]. Many researchers have modelled several physical phenomena using the 

fractional-order differential equations. As we know that, solving a linear differential equation is 

easier than that of nonlinear differential equations; therefore, numerous methods have been 

recommended for solving such type of equations. Some of the numerical and analytical methods for 

solving linear and nonlinear FDE are, Finite Element Method(FEM), time-space spectral method, 

compact numerical method [7,18,19], Adomian Decomposition Method (ADM) [5,6], Variational 

Iteration Method (VIM) [8–9], Homotopy Analysis Method (HAM) [10] and HPM [11]. Each of the 

above methods has its own advantages and disadvantages. 

Daftardar-Gejji and Jafari presented a powerful method, namely called the new iterative method 

which works without any small or large parameter in the equation like other perturbation methods. 

The proposed method has been used in literature for the solution of different nonlinear differential 

equations [12,13]. 

In the present work, NIM has been extended to the solution of fractional order Roseau-Hyman 

equation and system of Inhomogeneous fractional order partial differential equations. The fractional 

order Roseau-Hyman equation has the following form [14–16]. 

3 2
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where, q is the parameter describes order the fractional derivative such that 0  q  1, t  time, and r  

represents spatial coordinate. Eq (1) has appeared in the study of the formation of patterns in liquid 

drops. 

The system of inhomogeneous fractional order partial differential equations has the following 

form [17]. 
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The whole paper is divided into six sections. The introduction and literature survey are given in 

section 1, while section 2 is devoted to the basic definitions from the fractional calculus. The third 

section contains the fundamental theory of a new iterative method for general fractional order PDE’s. 

In section 4, the proposed method is tested upon fractional order Roseau-Hyman equation and system 

of inhomogeneous fractional order partial differential equations. In section 5, the listed results are 

compared with HPM, VIM, LVIM, and LADM solution, which show the precision of the planned 

method. The conclusions of the paper are presented in the last section. 
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2. Preliminaries 

To investigate our problems with the help of NIM, we need some basic definitions from 

fractional calculus. 

Definition 1. The Riemann-Liouville’s (R-L) fractional integral is defined as 
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where Γ denotes the gamma function, 

       
 

 

  

                          

Definition 2. “The Riemann-Liouville fractional derivative of function ( )f t f with order α is defined 

as” 
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where n  is a positive integer which satisfies 1n n   .” 

Definition 3. Fractional derivative of order   in the Caputo sense, is defined as:“ 

For             and        
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Definition 4. If , 1n n n     and , 1,f C
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Remarks: Basic properties of fractional integration are, when                             and 
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3. New iterative method 

The new iterative method is presented for fractional order partial differential equation as 

follows: 

Let us consider fractional order PDE’s 

    

     , , ,D r r f                              (7) 

subject to the initial condition 

  ,0 ( ),r g m                                  (8) 

where   denotes nonlinear functions of  . According to the fundamental idea of NIM, and using 

Eq (8) above Eq (7) takes the form 
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Assuming that the solution of Eq (7) has series form 
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4. Convergence 

Let   is the series solution achieved by NIM and E the error of the solution of (8). Clearly E, 

satisfies (8), so, we can write 

                                                   (14) 

“The recurrence relation is given as, 
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Thus, 1 0nE   , as n , “which proves the convergence of the new iterative method. 

5. Numerical examples 

To illustrate efficiency and precision of the NIM, the following fractional order differential 

equations are taken as test examples. All computational work has been done with the help of 

Mathematica 10. 

5.1. Fractional order Roseau-Hyman equation 

First, we consider time fractional Roseau-Hyman equation given as 

3 2

3 2
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Subject to initial condition 
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For special case 1q  , exact solution for Eq (17) can be found in [14] and   is an arbitrary constant 
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By applying 
qI to both sides Eq (17), we get the equivalent integral form of (16) is 
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The nonlinear term is 
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Using NIM formulation discussed in section 3, we get the approximations as 
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The expression for the solution of ( , )r t is given as 
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For 1.0q  , the seventh order NIM solution for Roseau-Hyman equation is 
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Similarly for 0.7q  , the seventh order NIM solution is 
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5.2. Fractional Order inhomogeneous system 

Consider time fractional inhomogeneous system given as [17] 
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With initial condition as 
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For 1q  , exact solution for system (23) is [17] 
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By applying 
qI to both sides of Eq (24), we get the equivalent integral form of (23) given as 
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Here nonlinear terms are in Eq (25) 
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Using NIM formulation discussed in section 3, we get the approximations as 
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The expression for the solution of ( , )r t and ( , )r t is given as 
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6. Results and discussion 

We implemented NIM for finding the approximate solutions of Roseau-Hyman and fractional 

order inhomogeneous partial differential equations. The results obtained by NIM for Roseau-Hyman 

and fractional order inhomogeneous partial differential equations with VIM, HPM and LADM in the 

form of tables and figures in section 3. 

Table 1 shows the approximate solution obtain by NIM for Roseau-Hyman equation at different 

values of q Table 2 shows the comparison of absolute errors of NIM with VIM and HPM for 

Roseau-Hyman equation. Table 3 shows the numerical solution obtained by the proposed method for 

γ(r,t) and γ(r,t) inhomogeneous partial differential equations at q=0.5. Similarly Table 4 shows the 

residuals obtain by the NIM γ(r,t) and ψ(r,t) inhomogeneous partial differential equations at q=0.5. It 

is clear that for the fractional order inhomogeneous system, NIM has the same solution like LADM 

and LVIM, mention in [17]. That is why, we listed only NIM solution as well as residual obtain by 

NIM in Tables 3 and 4. 
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Table 1. NIM Solution for Eq (17) at different values of q at  = 1.0. 

 

r  

 

t  

Solution  

q=0.7 

Solution  

q=0.9 

Solution  

q=1.0 

Exact 

q=1 

 

π/4 

 

0.2 −1.302026382 −1.296886512 −1.294567416 −1.294567416 

0.4 −1.316024885 −1.315094415 −1.313795239 −1.313795239 

1.0 −1.320505052 −1.325168954 −1.326557167 −1.326557168 

 

π/2 

 

0.2 −1.177509671 −1.165865484 −1.161042461 −1.161042461 

0.4 −1.216132042 −1.208017039 −1.203223634 −1.203223634 

1.0 −1.241129500 −1.241413136 −1.240043707 −1.240043707 

 

3π/4 

 

0.2 −0.975221742 −0.958845962 −0.952253273 −0.952253273 

0.4 −1.032588076 −1.018523975 −1.010966095 −1.010966095 

1.0 −1.074297190 −1.070157378 −1.066238790 −1.066238790 

 

π 

0.2 −0.725959101 −0.707344790 −0.699986113 −0.699986113 

0.4 −0.793335893 −0.775463826 −0.766292088 −0.766292088 

1.0 −0.845406828 −0.837473817 −0.831602639 −0.831602639 

Table 2. Comparison of absolute errors obtained by NIM with HPM and VIM for, q=1.0 

at  = 1.0 for Eq (17). 

r = π r = 3π/2 

t  HPM [14] VIM[14] NIM HPM [14] VIM[14] NIM 

0.1 1.0000 1110  5.0000 1010  2.2204 1610  1.0000 1110  2.0000 1010  5.5511 1710  

0.2 1.7360 910  5.0000 1010  4.2188 1610  1.2378 910  3.0000 1010  4.7185 1610  

0.3 1.3182 810  5.0000 1010  1.4099 1610  9.4375 910  3.0000 1010  1.1491 1410  

0.4 5.5542 810  1.0000 1010  1.8807×10−15 3.9925 810  9.0000 1010  1.1549 1310  

0.5 1.6948 710  4.0000 1010  1.4008 1410  1.2233 710  1.9000 910  6.8706 1310  

0.6 4.2165 710  7.0000 1010  7.226 1410  3.0561 710  6.1000 910  2.9458 1210  

0.7 9.1117 710  1.2000 910  2.8266 1310  6.6309 710  1.8300 810  1.0081 1110  

0.8 1.7761 610  2.1000 910  9.4025 1310  1.2978 610  3.9300 810  2.9252 1110  

0.9 3.1998 610  4.0000 910  2.7141 1210  2.3474 610  8.2200 810  7.4833 1110  

1.0 5.4173 610  8.6000 910  7.0042 1210  3.9903 610  1.5230 710  1.7332 1010  

Table 3. The approximate solution obtained by the NIM, for Eq (24) at q=0.5. 

  q=0.5 q=0.5 

t  r  NIM Solution γ(r,t) NIM Solution ψ(r,t) Residual γ(r,t) Residual ψ(r,t) 

 

 

 

0.05 

−4 

−3 

−2 

−1 

0 

1 

2 

1.0240330988 

1.0655328735 

1.1775819155 

1.4827176940 

2.3121627361 

4.5668281215 

10.695644068 

−0.9855237049 

−0.9606493501 

−0.8930338435 

−0.7092355840 

−0.2096210694 

1.14847226845 

4.84015425729 

−3.08085 610  

−8.37462 610  

−2.27646 510  

−6.18806 510  

−1.68209 410  

−4.57239 410  

−1.24290 310  

−3.08085 610  

−8.37462 610  

−2.27646 510  

−6.18806 510  

−1.68209 410  

−4.57239 410  

−1.24290 310  

 

0.1 

 

−4 

−3 

−2 

1.0272304344 

1.0740199950 

1.2012072075 

−0.9867467269 

−0.9639739783 

−0.9020711198 

−1.74279 510  

−4.73740 510  

−1.28776 410  

−1.74279 510  

−4.73740 510  

−1.28776 410  
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  q=0.5 q=0.5 

t  r  NIM Solution γ(r,t) NIM Solution ψ(r,t) Residual γ(r,t) Residual ψ(r,t) 

 

0.1 

−1 

0 

1 

2 

1.5469378961 

2.4867313443 

5.0413547970 

11.985541307 

−0.7338017046 

−0.2763980109 

0.9669564137 

4.3467356902 

−3.50049 410  

−9.51533 410  

−2.58653 310  

−7.03093 310  

−3.50049 410  

−9.51533 410  

−2.58653 310  

−7.03093 310  

Table 4. Absolute errors obtained by 5
th

 order approximate solution of NIM for Eq (24) at q=1.0. 

t  r  NIM Solution γ(r,t) NIM Solution ψ(r,t) Absolute Error γ(r,t) Absolute Error ψ(r,t) 

 

 

 

0.005 

−4 

−3 

−2 

−1 

0 

1 

2 

1.0192547017 

1.0522339705 

1.1422740715 

1.3867410234 

2.0512710963 

3.8576511180 

8.7679011063 

−0.9825776253 

−0.9526410756 

−0.8712655064 

−0.6500622508 

−0.0487705754 

1.5857096593 

6.0286887558 

2.886×10−15 

7.771×10−15 

2.131 1410  

1.563 1410  

4.241 1310  

1.151 1310  

1.138 1210  

2.664×10−15 

7.660×10−15 

2.098 1410  

5.662 1410  

1.540 1310  

4.187 1310  

1.139 1210  

 

 

 

0.1 

−4 

−3 

−2 

−1 

0 

1 

2 

1.0202419114 

1.0552322005 

1.1495686192 

1.4065696597 

2.1051709180 

4.0041660238 

9.1661699124 

−0.9834273245 

−0.9549507976 

−0.8775435717 

−0.6671289162 

−0.0951625819 

1.4596031112 

5.6858944442 

3.679 1310  

1.000 1210  

2.718 1210  

7.391 1210  

2.009 1110  

5.461 1110  

1.484 1010  

3.588 1310  

9.755 1310  

2.651 1210  

7.209 1210  

1.959 1110  

5.326 1110  

1.447 1010  

Figures 1–4 show the 3D plots obtain by NIM for γ(r,t) and exact solution for γ(r,t)
 

of 

Roseau-Hyman equation respectively. Figures 5 and 6 shows the 2D plot of exact verses NIM 

solution and convergence of NIM for different values of q for ψ(r,t)
 
respectively. Similarly, Figures 

7 and 8 show, 2D graph for residual obtained by the NIM for Roseau-Hyman equation for q=0.5 and 

0.7 respectively. 

Figures 9–12 show the 3D plots obtain by NIM for γ(r,t) and exact solution of inhomogeneous 

partial differential equations respectively at different values of q. Figures 13 and 14 show the 2D plot 

of exact verses NIM solution and convergence of NIM for different values of q for γ(r,t) part of 

inhomogeneous partial differential equation respectively. 

 

Figure 1. NIM solution for Eq (17) at q =0.5. 
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Figure 2. NIM solution for Eq (17) at q =0.9. 

 

Figure 3. NIM solution for Eq (17) at q =1.0.  

 

Figure 4. NIM solution for Eq (17) at q= 1.0. 
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Figure 5. NIM solution verses exact solution for Eq (17) at t=0.1. 

 

Figure 6. NIM solution for Eq (17) for different values of q at t=0.1. 

 

Figure 7. Residual obtained by NIM for Eq (17) t=0.1. 
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Figure 8. Residual obtained by NIM for Eq (17) t=0.1. 

 

Figure 9. NIM Solution of γ(r,t) for Eq (24) when q= 0.5. 

 

Figure 10. NIM Solution of γ(r,t) for Eq (24) when q= 0.7. 
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Figure 11. NIM Solution of γ(r,t) for Eq. (24) 

 

Figure 12. Exact Solution of γ(r,t) for Eq (24). 

 

Figure 13. NIM solution of γ(r,t) verses exact solution for Eq (24) at t=0.1. 
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Figure 14. NIM solution of γ(r,t) for Eq (24) for different values of q at t=0.1. 

 

Figure 15. NIM Solution of ψ(r,t) for Eq (24) when q= 0.5. 

 

Figure 16. NIM Solution of ψ(r,t) for Eq (24) when q= 0.5. 
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Figure 17. NIM Solution of ψ(r,t) for Eq (24) when q= 1.0. 

 

Figure 18. Exact Solution of ψ(r,t) when q= 1.0. 

 

Figure 19. NIM solution of ψ(r,t) verses exact solution for Eq (24) at t=0.1. 
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Figure 20. NIM solution of ψ(r,t) for Eq (24) for different values of q, at t=0.1. 

Figures 15–18 show the 3D plots obtain by NIM for ψ(r,t) and exact solution of inhomogeneous 

partial differential equations respectively at different values of q. Figures. 19 and 20 shows the 2D 

plot of exact verses NIM solution and convergence of NIM for different values of q for ψ(r,t) part of 

inhomogeneous partial differential equation respectively. 

From the numerical values and graphs, it is clear that NIM is very powerful tool for solution of 

coupled fractional order system of partial differential equations. The accuracy of the NIM can further 

be increased by taking higher order approximations. 

7. Conclusion 

In the current article, we presented some FDE’s arising in modern sciences. A novel and classy 

technique which is identified as NIM, is applied for fractional order problems. For pertinence and 

unwavering quality of the proposed method, the fractional order Roseau-Hyman equation and the 

system of fractional order non-homogeneous equations. It has been explored through graphical and 

tabulated results that the current method gives a precise and meriting investigation about the physical 

occurring of the problems. Also, the current method is favored when contrasted with other technique 

in light of its better pace of convergence. This course rouses the scientists towards the execution of 

the present method for other non-linear FDE’s. 
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