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used to illustrate the effectiveness of the new RGN iteration method.

Keywords: generalized absolute value equations; Newton method; relaxation; globally convergence
Mathematics Subject Classification: 65F10

1. Introduction

Consider the following generalized absolute value equations (GAVE)

Ax − B|x| = b, (1.1)

where A, B ∈ Rn×n are two given matrices and b ∈ Rn is a given vector, and | · | denotes the
componentwise absolute value. Especially, if B = I, where I stands for the identity matrix, then the
GAVE (1.1) reduces to the standard absolute value equations (AVE)

Ax − |x| = b. (1.2)

The GAVE (1.1) and the AVE (1.1) arise in many scientific computing and engineering problems,
including the linear programming problems, the linear complementarity problems (LCP), the bimatrix

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2021078


1259

games, the quadratic programming and so on, see [1–4] for more details. Taking the well-known LCP
as an example: for a given matrix M ∈ Rn×n and a given vector q ∈ Rn, find two vectors z,w ∈ Rn such
that

z ≥ 0, w = Mz + q ≥ 0 and zT w = 0. (1.3)

Here and thereafter, (·)T denotes the transpose of either a vector or a matrix. By simply letting z = |x|−x
and w = |x| + x, then the LCP (1.3) can be equivalently transformed into the GAVE

(M + I)x − (M − I)|x| = q with x =
1
2

((M − I)z + q). (1.4)

In fact, the GAVE (1.4) can also be transformed into the LCP (1.3) [5, 6]. For more details of the
relation between the GAVE (1.1) and the LCP (1.3), please see [7–9].

In recent decades, much more attention has been paid to the GAVE (1.1) and the AVE (1.2). On
one hand, some sufficient conditions have been studied to guarantee the existence and uniqueness of
the solution of the GAVE (1.1) [10–14]. Rohn showed that the GAVE (1.1) is uniquely solvable for
any b ∈ Rn if σmin(A) > σmax(|B|) [10]. Wu and Li extended the results of [10], and exhibited that
the GAVE (1.1) is uniquely solvable for any b ∈ Rn if σmin(A) > σmax(B) [11, 12]. In [13], Rohn et
al. showed that the GAVE (1.1) is uniquely solvable for any b ∈ Rn if ρ(|A−1B|) < 1. Here and in the
sequel, σmin(·), σmax(·) and ρ(·) denote the minimal singular value, the maximal singular value and the
spectral radius of the corresponding matrix, respectively. On the other hand, many efficient iteration
methods, including the concave minimization algorithm [15, 16], the sign accord algorithm [17], the
optimization algorithm [18], the hybrid algorithm [19], the preconditioned AOR iterative method [20],
the Picard-HSS iteration method [21], the Newton-type method [22–24] and so on, have been studied
for solving the GAVE (1.1).

Due to the existence of the nonlinear term B|x|, the GAVE (1.1) can be regarded as a system of
nonlinear equations

F(x) = 0 with F(x) = Ax − B|x| − b. (1.5)

As a result, the well-known Newton iteration method

xk+1 = xk − F′(xk)
−1

F(xk), k = 0, 1, 2, · · · , (1.6)

can be used provided that the Jacobian matrix F′(x) of F(x) exists and is invertible. However, the
Newton iteration method (1.6) can not be used directly to solve the GAVE (1.1) since F(x) = Ax −
B|x| − b is non-differentiable. For the special case, i.e., B = I, by considering F(x) = Ax − |x| − b as a
piece-wise linear vector function, Mangasarian in [22] used the generalized Jacobian ∂|x| of |x| based
on a subgradient of its components and presented the following generalized Newton (GN) iteration
method

x(k+1) = (A − D(x(k)))−1b, k = 0, 1, 2, · · · (1.7)

to get an approximate solution of the AVE (1.2), where D(x(k)) = ∂|x| = diag(sign(x(k))) and sign(x)
stands for a vector with components equal to 1, 0, or −1 depending on whether the corresponding
component of x is positive, zero or negative. Theoretical analysis showed that the GN iteration method
(1.7) is globally linearly convergent under certain conditions [22]. Hu et al. extended the GN iteration
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scheme (1.7) to solve the GAVE (1.1) and proposed a weaker convergence condition [25]. For a general
matrix B, the specific GN iteration scheme is

x(k+1) = (A − BD(x(k)))−1b, k = 0, 1, 2, · · · . (1.8)

Recently, convergence results of the GN iteration schemes (1.7) and (1.8) have been further discussed
in [26–28]. From the GN iteration scheme (1.7) or (1.8), we can see that the coefficient matrix
A − D(xk) or A − BD(xk) is changed at each iteration step. For large problems, it is very difficult
especially if the coefficient matrix is ill-conditioned. In addition, if the generalized Jacobian matrix is
singular, then the GN iteration method fails. To remedy these, a lot of effective improvements have
been presented, such as a stable and quadratic locally convergent iteration scheme [28], the
generalized Traub’s method [29], the modified GN iteration method [24, 30], the inexact semi-smooth
Newton iteration method [31], a new two-step iterative method [32] and so on. All these
improvements greatly accelerate the convergence rate of the GN iteration method. However, when the
singular generalized Jacobian matrix happens, these newly developed iteration methods fail, too.

In this paper, by introducing a relaxation iteration parameter, we propose a relaxed generalized
Newton (RGN) iteration method to solve the GAVE (1.1). In fact, the RGN iteration method is a
generalization of the GN iteration method [22] and the Picard iteration method [13] studied recently.
The advantage of the new RGN iteration method is twofold. By introducing suitable iteration
parameter, it not only can avoid singularity of the generalized Jacobian matrix, but also improves the
convergence rate. Theoretically, we prove that the RGN iteration method is well defined and globally
linearly convergent under certain conditions. Moreover, a specific sufficient convergence condition is
presented when the coefficient matrix A is symmetric positive definite. With two numerical examples,
we show that the new proposed RGN iteration method is much more efficient than some existing
Newton-type iteration methods.

The rest of this paper is organized as follows. In Section 2, the RGN iteration method is introduced
to solve the GAVE (1.1). Convergence analyses are studied in detail in Section 3. In Section 4, two
numerical examples from the LCP (1.3) are presented to demonstrate the effectiveness of our new
method. Finally, we end this paper with some conclusions and outlook in Section 5.

2. The relaxed generalized Newton iteration method

In this section, a new relaxed generalized Newton iteration method is introduced to solve the GAVE
(1.1).

Let θ ≥ 0 be a nonnegative real parameter. Based on the Newton iteration scheme (1.6) and the
ideas studied [22, 30], a new iteration scheme is introduced to solve the GAVE (1.1)

F(xk) + (∂F(xk) + (1 − θ)BD(xk))(xk+1 − xk) = 0. (2.1)

Substituting F(xk) = Axk −B|xk| −b (1.5) and the generalized Jacobian ∂F(xk) = A−BD(xk) into (2.1),
we obtain

Axk − B|xk| − b + (A − θBD(xk))(xk+1 − xk) = 0. (2.2)

Since D(x) = diag(sign(x)) is a diagonal matrix and satisfies D(xk)xk = |xk| [22]. Then the new
iteration scheme (2.1) or (2.2) is simplified into the following final form

(A − θBD(xk))xk+1 = b + (1 − θ)B|xk|, k = 0, 1, 2, · · · . (2.3)
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Here, the iteration parameter θ can be regarded as a role of relaxation, which can avoid the singularity
problems and adjust the condition number of the coefficient matrix A − θBD(xk) so as to improve the
convergence rate of the GN iteration method (1.8). So, we call the new iteration method (2.3) the
relaxed generalized Newton (RGN) iteration method. In particular, if θ = 1, then the RGN iteration
method (2.3) reduces to the GN iteration method (1.8). If θ = 0, then the RGN iteration method (2.3)
becomes

Axk+1 = b + B|xk|, k = 0, 1, 2, · · · , (2.4)

which is known as the Picard iteration method [7, 13].
The RGN iteration method (2.3) is well defined provided that the coefficient matrix A − θBD(xk) is

nonsingular at each iteration step. The following theorem presents a sufficient condition. To this end,
we first define a set of matrices

D := {an n × n diagonal matrix with each diagonal element being 1, −1 or 0} (2.5)

since the diagonal matrix D(x) = diag(sign(x)) may change at each iteration step.

Theorem 2.1. Let A, B ∈ Rn×n, θ ≥ 0 be a nonnegative real parameter and D ∈ Rn×n be any matrix
in the set D (2.5). Let λmin(AT A) and λmax(BT B) be the smallest eigenvalue of AT A and the largest
eigenvalue of BT B, respectively. If

λmin(AT A)
λmax(BT B)

> θ2, (2.6)

then A − θBD is nonsingular and the RGN iteration method (2.3) is well defined.

Proof. We argue it by contradiction. If A − θBD is singular, then there exists a nonzero vector x such
that

(A − θBD)x = 0.

In addition, since D ∈ Rn×n is a diagonal matrix with each diagonal element being 1, −1 or 0, DT D is
a diagonal matrix, too, and each diagonal element is either 1 or 0. Thus, it holds

xT x ≥ xT DT Dx.

Then we have the following contradiction

θ2λmax(BT B) < λmin(AT A) ≤
xT AT Ax

xT x
= θ2 xT DT BT BDx

xT x
≤ θ2 xT DT BT BDx

xT DT Dx
= θ2 wT BT Bw

wT w
≤ θ2λmax(BT B).

Therefore, A − θBD is nonsingular and the RGN iteration method (2.3) is well defined provided that
the condition (2.6) holds. �

Remark 2.1. It should be noted that the condition given in Theorem 2.1 is a theoretical generalization
of some recent works. In particular, if B = I and θ = 1, then the condition (2.6) becomes λmin(AT A) > 1,
which means that all singular values of A exceed 1 and is in good agreement with [22, Lemma 2.1]. If
only θ = 1, then the condition (2.6) is the one given in [25, Theorem 3.1]. In addition, if θ = 0, then
the condition (2.6) is equivalent to show that the matrix A is nonsingular, which clearly shows that the
Picard iteration method (2.4) is well defined.
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To better implement the new RGN iteration method (2.3) in actual computations, we present an
algorithmic version of the RGN iteration method (2.3) as follows. Here, ‖ · ‖2 denotes the Euclidean
norm of either a vector or a matrix.

Algorithm 2.1. (The RGN iteration method)

1). Choose an arbitrary initial vector x0 and a nonnegative parameter θ. Given ε and set k = 0;
2). If ‖Axk − B|xk| − b‖2 ≤ ε‖b‖2, stop;
3). Compute D(xk) = diag(sign(xk));
4). Solve the following linear system to obtain xk+1

(A − θBD(xk))xk+1 = b + (1 − θ)B|xk|;

5). Set k = k + 1. Go to Step 2.

3. Convergence analysis

In this section, we will establish the convergence theory of the RGN iteration method (2.3) for
solving the GAVE (1.1). Specially, two general convergence conditions of the RGN iteration
method (2.3) will be presented firstly. Then, a sufficient convergence condition is proposed when the
system matrix A is symmetric positive definite. In addition, as the special cases of our new RGN
iteration method (2.3), the convergence conditions of the GN iteration method (1.8) and the Picard
iteration method (2.4) can be acquired immediately.

3.1. General sufficient convergence conditions

In this subsection, we first study some sufficient convergence conditions only when the RGN
iteration method (2.3) is well defined.

Theorem 3.1. Let A, B ∈ Rn×n, θ ≥ 0 be a nonnegative real parameter and satisfy the condition (2.6).
Let D ∈ Rn×n be any matrix in the setD (2.5). If

‖(A − θBD)−1‖2‖B‖2 <
1

1 + θ
, (3.1)

then the RGN iteration method (2.3) converges linearly from any starting point to a solution x∗ of the
GAVE (1.1).

Proof. Let x∗ be a solution of the GAVE (1.1), then it satisfies

Ax∗ − B|x∗| − b = 0. (3.2)

Subtracting (3.2) from (2.3), we obtain

A(xk+1 − x∗) = θBD(xk)xk+1 + (1 − θ)B|xk| − B|x∗|

= θBD(xk)(xk+1 − x∗ + x∗) + (1 − θ)B|xk| − B|x∗|

= θBD(xk)(xk+1 − x∗) + θBD(xk)(x∗ − xk) + B(|xk| − |x∗|).
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Hence,
(A − θBD)(xk+1 − x∗) = θBD(xk)(x∗ − xk) + B(|xk| − |x∗|).

By assumptions, we have

xk+1 − x∗ = (A − θBD(xk))−1[θBD(xk)(x∗ − xk) + B(|xk| − |x∗|)]. (3.3)

Taking the Euclidean norm on both sides of (3.3), we obtain

‖xk+1 − x∗‖2 = ‖(A − θBD(xk))−1[θBD(xk)(x∗ − xk) + B(|xk| − |x∗|)]‖2
≤ ‖(A − θBD(xk))−1‖2 · ‖θBD(xk)(x∗ − xk) + B(|xk| − |x∗|)‖2
≤ ‖(A − θBD(xk))−1‖2 · (‖θBD(xk)‖2 + ‖B‖2)‖xk − x∗‖2
≤ ‖(A − θBD(xk))−1‖2 · (θ‖B‖2 + ‖B‖2)‖xk − x∗‖2
= (1 + θ)‖(A − θBD(xk))−1‖2‖B‖2‖xk − x∗‖2, (3.4)

where the inequality ‖ |xk| − |x∗| ‖2 ≤ ‖xk − x∗‖2 is used. From (3.4), we can see that the RGN iteration
method (2.3) converges linearly from any starting point to a solution x∗ of the GAVE (1.1) provided
that the condition (3.1) is satisfied. �

Theorem 3.2. Under the conditions in Theorem 3.1. Further assume that A is nonsingular. If

‖A−1‖2‖B‖2 <
1

1 + 2θ
, (3.5)

then the RGN iteration method (2.3) converges linearly from any starting point to a solution x∗ of the
GAVE (1.1).

Proof. According to Theorem 3.1, we only need to verify the condition (3.1). Under the condition
(3.5), by the Banach perturbation lemma (see [33, Lemma 2.3.3]), we have

‖(A − θBD)−1‖2‖B‖2 ≤
‖A−1‖2‖B‖2

1 − ‖A−1‖2‖θBD‖2

≤
‖A−1‖2‖B‖2

1 − θ‖A−1‖2‖B‖2

<
1

1+2θ

1 − θ
1+2θ

=
1

1 + θ
.

Therefore, the RGN iteration method (2.3) converges linearly from any starting point to a solution x∗

of the GAVE (1.1) if the condition (3.5) is satisfied. �
As mentioned in Section 2, the well-known GN iteration method (1.8) and the Picard iteration

method (2.4) are special cases of the new RGN iteration method (2.3) when the relaxation parameter
θ is 1 and 0, respectively. By simply letting θ = 1 and 0, we can obtain the following two corollaries,
which describe the convergence conditions of the GN iteration method (1.8) and the Picard iteration
method (2.4), respectively, for solving the GAVE (1.1).
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Corollary 3.1. Let A, B ∈ Rn×n, and D ∈ Rn×n be any matrix in the setD (2.5). Assume that A − BD is
nonsingular. If

‖(A − BD)−1‖2‖B‖2 <
1
2
,

or if A is nonsingular and

‖A−1‖2‖B‖2 <
1
3
,

then the GN iteration method (1.8) converges linearly from any starting point to a solution x∗ of the
GAVE (1.1).

Corollary 3.2. Let A, B ∈ Rn×n. Assume that A is nonsingular. If

‖A−1‖2‖B‖2 < 1,

then the Picard iteration method (2.4) converges linearly from any starting point to a solution x∗ of the
GAVE (1.1).

3.2. The case of symmetric positive definite

In this subsection, we turn to discuss the convergence conditions of the RGN iteration method (2.3)
for solving the GAVE (1.1) when the system matrix A is symmetric positive definite.

Theorem 3.3. Let A ∈ Rn×n be a symmetric positive definite matrix, B ∈ Rn×n, D ∈ Rn×n be any matrix
in the set D (2.5), θ be a positive constant and satisfy (2.6). Further assume that µmin is the smallest
eigenvalue of the matrix A and ‖B‖2 = τ. If

µmin > (1 + 2θ)τ, (3.6)

then the RGN iteration method (2.3) converges linearly from any starting point to a solution x∗ of the
GAVE (1.1).

Proof. Since the matrix A is symmetric positive definite, it is easy to check that

‖A−1‖2‖B‖2 ≤
τ

µmin
.

If µmin and τ further satisfy the condition (3.6), we have

‖A−1‖2‖B‖2 ≤
τ

µmin
<

1
1 + 2θ

.

Therefore, by Theorem 3.2, we obtain that the RGN iteration method (2.3) converges linearly from any
starting point to a solution x∗ of the GAVE (1.1). This completes the proof. �

In Theorem 3.3, by setting θ = 1 and 0, we have the following two corollaries to guarantee the
convergence of the GN iteration method (1.8) and the Picard iteration method (2.4) for solving the
GAVE (1.1), respectively.
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Corollary 3.3. Let A ∈ Rn×n be a symmetric positive definite matrix and µmin be its smallest eigenvalue.
Let B ∈ Rn×n and ‖B‖2 = τ. Let D ∈ Rn×n be any matrix in the setD (2.5). If

µmin > 3τ,

then the GN iteration method (1.8) converges linearly from any starting point to a solution x∗ of the
GAVE (1.1).

Corollary 3.4. Let A ∈ Rn×n be a symmetric positive definite matrix and µmin be its smallest eigenvalue.
Let B ∈ Rn×n and ‖B‖2 = τ. If

µmin > τ,

then the Picard iteration method (2.4) converges linearly from any starting point to a solution x∗ of the
GAVE (1.1).

4. Numerical experiments

In this section, we present some numerical examples arising from two types of LCP (1.3) to show
the effectiveness of the RGN iteration method (2.6), and demonstrate the advantages of the new RGN
iteration method over the well-known Lemke’s method, the Picard iteration method (2.4), the GN
iteration method (1.8) and the modified GN iteration (MGN) method [30] from aspects of the iteration
counts (denoted by “IT”) and the elapsed CPU times (denoted by “CPU”). The first LCP comes from
[4], which have been studied for standard test problem by many researchers. The second LCP arising
from the practical traffic single bottleneck models [34], which are usually solved by the well-known
Lemke’s method. Note that the Lemke’s method is one of the most efficient direct methods for solving
the LCP (1.3).

In our experiments, the initial guess vector is the zero vector. All runs are terminated once

RES(x(k)) :=
‖Ax(k) − B|x(k)| − b‖2

‖b‖2
≤ 10−7

or if the prescribed iteration number kmax = 5000 is exceeded. At each iteration step of the RGN
iteration method, the Picard iteration method, the GN iteration method and the MGN iteration
method, we need to solve a system of linear equations with the coefficient matrix A − θBD, A, A − BD
and A + I − BD respectively. Here, these systems of linear equations are solved by the sparse LU
factorization when these coefficient matrices are nonsymmetric and by the sparse Cholesky
factorization when these coefficient matrices are symmetric positive definite. To efficiently implement
the RGN iteration method, we need to choose the relaxation iteration parameter θ in advance. The
convergence rates of all parameter dependent iteration methods heavily depend on the particular
choice of the iteration parameter. The analytic determination of the value θ which results in the fastest
convergence of the RGN iteration method appears to be quite a difficult problem. Here, the relaxation
iteration parameter θ used in the new RGN iteration method is chosen to be the experimentally
optimal one θexp, which leads to the smallest iteration step. In the following tables, “-” means that the
corresponding iteration method does not converge to the approximate solution within kmax iteration
steps or even diverges. All computations are run in MATLAB (version R2014a) in double precision,
Intel(R) Core(TM) (i5-3337U CPU, 8G RAM) Windows 8 system. Here, we use the Matlab codes
presented in https://ww2.mathworks.cn/matlabcentral/fileexchange/41485 to test the Lemke’s method.
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Example 4.1. ( [4]) Consider the LCP (1.3), in which M ∈ Rn×n is given by M = M̂ + µI ∈ Rn×n and
q ∈ Rn is given by q = −Mz(∗), where

M̂ = Tridiag(−I, S ,−I) =



S −I 0 · · · 0 0
−I S −I · · · 0 0
0 −I S · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · S −I
0 0 0 · · · −I S


∈ Rn×n

is a block-tridiagonal matrix,

S = Tridiag(−1, 4,−1) =



4 −1 0 · · · 0 0
−1 4 −1 · · · 0 0
0 −1 4 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 4 −1
0 0 0 · · · −1 4


∈ Rm×m

is a tridiagonal matrix, and

z(∗) = (1.2, 1.2, 1.2, · · · , 1.2, · · · )T ∈ Rn

is the unique solution of the LCP (1.3). Here n = m2. From the discussion presented in Section 1, we
can see that the LCP (1.3) can be equivalently expressed as the GAVE (1.1), where A = M + I and
B = M − I. The exact solution of the GAVE (1.1) is

x(∗) = (−0.6,−0.6,−0.6, · · · ,−0.6, · · · )T ∈ Rn.

For the first example, we take two cases of the parameter µ, i.e., µ = 0 and µ = −1, in actual
computations. For each parameter µ, four increasing sizes, i.e., m = 30, 60, 90, 120, are considered.
The corresponding dimensions for each problem are n = 900, 3600, 8100, 14400, respectively. Note
that for the case µ = 0, both the matrices M and A are symmetric positive definite, while for the case
µ = −1, the matrix M is symmetric indefinite and the matrix A is symmetric positive definite. In Tables
1 and 2, we list the numerical results of different methods for µ = 0 and µ = −1, respectively.
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Table 1. Numerical results for Example 4.1 with µ = 0.

Method
m

30 60 90 120

Lemke’s
IT 900 3600 - -
CPU 35.1067 2537.5000 - -

Picard
IT 318 1134 2397 4080
CPU 0.0589 0.9686 4.1924 12.8770
RES 9.7418e-8 9.9368e-8 9.9926e-8 9.9875e-8

GN
IT 2 2 2 2
CPU 0.0267 0.2281 1.0153 3.9991
RES 1.2664e-15 1.8294e-15 2.2163e-15 2.6124e-15

MGN
IT 325 1140 2404 4086
CPU 2.6393 108.7958 1004.0956 4909.9687
RES 9.7488e-8 9.9906e-8 9.9553e-8 9.9875e-8

RGN

θexp 1 1 1 1
IT 2 2 2 2
CPU 0.0267 0.2281 1.0153 3.9991
RES 1.2664e-15 1.8294e-15 2.2163e-15 2.6124e-15

Table 2. Numerical results for Example 4.1 with µ = −1.

Method
m

30 60 90 120

Lemke’s
IT 116 236 296 296
CPU 1.5217 12.8138 41.6554 86.0441

Picard
IT - - - -
CPU - - - -
RES - - - -

GN
IT 17 17 17 16
CPU 0.0943 1.2698 5.7498 17.7465
RES 3.7830e-17 6.9307e-8 4.5695e-8 8.9227e-8

MGN
IT 17 16 16 16
CPU 0.0921 1.2537 5.4685 17.1072
RES 4.1276e-8 8.9075e-8 7.8098e-8 7.4129e-8

RGN

θexp 0.9970 0.9990 0.9993 0.9996
IT 5 5 5 5
CPU 0.0457 0.4612 2.1202 6.0750
RES 4.7405e-8 1.1536e-9 5.3963e-10 8.9285e-11

From Tables 1 and 2, we can see that the GN iteration method and the new RGN iteration method
perform much better than the other three computational methods in terms of both iteration steps and
elapsed CPU times. For the case µ = 0, the Lemke’s method can not converge to a satisfactory solution
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for large problems. Although the Picard iteration method and the MGN iteration method converge, the
numerical results show that the convergence rates of these two iteration methods are very slow. We have
also noticed that the iteration steps of the Picard iteration step and the MGN iteration step are almost
the same, but the elapsed CPU times show that the MGN iteration method costs much more expensive
than the Picard iteration method. The reason is that the coefficient matrix of the MGN iteration method
is changed at each iteration step. The best choice of the relaxation iteration parameter in the RGN
iteration method is θexp = 1, which means that the GN iteration method is the best one. For the case
µ = −1, the Lemke’s method computes the exact solution for all test problems, but the iteration steps
and the elapsed CPU times show that this method is not competitive in actual computations. The Picard
iteration method diverges. This is because the matrix M is indefinite and the convergence conditions
in Corollary 3.2 and Corollary 3.4 can not be satisfied. Among the GN iteration method, the MGN
iteration method and the RGN iteration method, we can see from the numerical results that the new
RGN iteration method is the best one.

Example 4.2. ( [4]) Consider the LCP (1.3), in which M = M̂ + +µI ∈ Rn×n and q = −Mz(∗). Different
from Example 4.1, we assume that the matrix M̂ in the second example is nonsymmetric, i.e.,

M̂ = Tridiag(−I, S ,−I) =



S −0.5I 0 · · · 0 0
−1.5I S −0.5I · · · 0 0

0 −1.5I S · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · S −0.5I
0 0 0 · · · −1.5I S


∈ Rn×n

is a block-tridiagonal matrix,

S = Tridiag(−1, 4,−1) =



4 −1 0 · · · 0 0
−1 4 −1 · · · 0 0
0 −1 4 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 4 −1
0 0 0 · · · −1 4


∈ Rm×m

is a tridiagonal matrix, and

z(∗) = (1.2, 1.2, 1.2, · · · , 1.2, · · · )T ∈ Rn

is the unique solution of the LCP (1.3).

Similar to Example 4.1, the second example can also be equivalently expressed as the GAVE (1.1).
Note that Example 4.2 has the same exact solution as that of Example 4.1. For the second example,
we still take two parameters for µ, i.e., µ = 0 and µ = −1. For each parameter µ, we consider
four increasing sizes, i.e., m = 30, 60, 90, 120. Thus, the total dimensions for each problem are n =

900, 3600, 8100, 14400, respectively. Different from Example 4.1, both the matrices M and A are
nonsymmetric positive definite for the case µ = 0. For the case µ = −1, the matrix M is nonsymmetric
indefinite and the matrix A is nonsymmetric positive definite.
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Table 3. Numerical results for Example 4.2 with µ = 0.

Method
m

30 60 90 120

Lemke’s
IT 900 3600 - -
CPU 37.4746 2680.6527 - -

Picard
IT 47 47 66 84
CPU 0.0801 0.5793 2.4141 8.6564
RES 7.8841e-8 9.7605e-8 5.1331e-8 5.0082e-8

GN
IT 2 2 2 2
CPU 0.0315 0.2400 1.1082 4.4723
RES 1.2977e-15 1.9780e-15 2.3953e-15 2.8208e-15

MGN
IT 42 66 87 107
CPU 1.5449 9.7049 89.1371 223.3420
RES 9.5719e-8 6.7966e-8 7.7690e-8 8.4657e-8

RGN

θexp 1 1 1 1
IT 2 2 2 2
CPU 0.0315 0.2400 1.1082 4.4723
RES 1.2977e-15 1.9780e-15 2.3953e-15 2.8208e-15

Table 4. Numerical results for Example 4.2 with µ = −1.

Method
m

30 60 90 120

Lemke’s
IT 75 135 195 255
CPU 0.8728 9.3958 39.9455 81.1532

Picard
IT - - - -
CPU - - - -
RES - - - -

GN
IT 18 18 18 18
CPU 0.1870 1.8350 5.8001 20.9968
RES 1.7803e-16 1.8059e-16 1.8148e-16 1.8211e-16

MGN
IT 47 44 43 42
CPU 0.8859 6.6168 32.7976 116.8199
RES 8.8063e-8 9.7329e-8 8.4501e-8 8.2862e-8

RGN

θexp 0.9998 0.9997 0.9999 0.9999
IT 9 9 8 8
CPU 0.1302 1.2335 3.1282 12.2499
RES 2.2628e-10 2.4845e-10 9.8938e-8 7.3902e-8

Tables 3 and 4 list the corresponding numerical results of different methods for µ = 0 and µ =

−1, respectively. These numerical results further confirm the observations obtained from Tables 1
and 2, i.e., the GN iteration method and the new RGN iteration method are superior to other three

AIMS Mathematics Volume 6, Issue 2, 1258–1275.



1270

computational methods in terms of computing efficiency. For the case µ = 0, the Lemke’s method
converge very slow for small problems and do not converge within the given maximum iteration step for
large problems. The other four computational methods are convergent. However, the Picard iteration
method and the MGN iteration method converge very slow. The GN iteration method and the new
RGN iteration method have the same computational results and converge very fast. That means the
GN iteration method is the best one. Most important, the iteration steps of both the GN iteration
method and the new proposed RGN iteration method are constant as the problem sizes grow. For the
case µ = −1, the Lemke’s method performs much better than itself for the case µ = 0. However, the
computational results show that the Lemke’s method is still not competitive in real applications. The
Picard iteration method is still divergent. The reason is the same as that in Example 4.1. The GN
iteration method, the MGN iteration method and the proposed RGN iteration method converge faster
than the Lemke’s method. From these numerical results, we see again that the RGN iteration method
performs best among the three Newton-based iteration methods.

Example 4.3. ( [34]) The second example comes from the single bottleneck model with both the
homogeneous commuters and the heterogeneous commuters. The dynamic equilibrium conditions for
the single bottleneck model can be transformed into the LCP (1.3), in which the system matrix M and
the vector q have the following specific structure

M =


0 M1 M2 −MT

3
−MT

1 S 0 0
0 M1 I 0

M3 0 0 0

 and q =


q1

s1
q2

q3

 ,
where the submatrices M1 ∈ R

(ΥG)×Υ, M2 ∈ R
(ΥG)×(ΥG), M3 ∈ R

G×(ΥG), S ∈ RΥ×Υ are

M1 =


I
...

I

 ,M2 =


β1+γ1
α1+γ1

I 0
. . .

0 βg+γg

αg+γg
I

 ,M3 =


1

α1+γ1
1T 0

...

0 1
αg+γg

1T

 , S =


s 0

−s . . .
. . .

. . .

0 −s s

 ,
the subvectors are

q1 =
[
−

α1
α1+γ1

(τ∗1 − τ) · · · − αg

αg+γg
(τ∗g − τ)

]
∈ RΥG,

q2 =
[
−(τ∗1 − τ) · · · −(τ∗g − τ)

]
∈ RΥG,

and
q3 =

[
−

N1
α1+γ1

· · · −
Ng

αg+γg

]
∈ RG.

Here, τ ∈ T = [0, 1, 2, · · · ,Υ] and g ∈ G = [1, 2, · · · ,G] are the indexes for the time interval and
the user group, respectively. When G = 1 and G > 1, then the LCP (1.3) can be used to study the
homogeneous case and the heterogeneous case, respectively. s denotes the bottleneck capacity with
units given by number of vehicles per time interval and Ng denotes the number of individuals in group
g. αg, βg and γg are the unit costs (or value) of the travel time, arriving early to work and arriving late
to work in group g, respectively. τ∗g is the preferred arrival time in group g. 1 stands for a vector of all
ones.
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For the second example, the total dimension is n = 2ΥG + Υ + G. It is proved in [34] that the
system matrix M is a copositive matrix and the LCP (1.3) has a unique solution. In [34], the authors
used the Lemke’s method to solve such problems and simulate the single bottleneck model for both the
homogeneous case (G = 1) and the heterogenous case (G = 3). In addition, they took the total demand
N = 25, the bottleneck capacity s = 3 for time unit and the preferred arrival time τ∗ = 7. The time
duration is 10 time units. For the homogeneous case, i.e., G = 1, the unit costs are taken as α = 2,
β = 1 and γ = 4 for per time unit. For the heterogeneous case, i.e., G = 3, the unit costs are taken as
α : β : γ rations = 2 : 1 : 4 and τ∗g = 6, 7, 8 for groups 1 − 3, respectively. For more detailed selection
of these parameters, please see [34]. Here, the corresponding LCP is further equivalently transformed
into the GAVE (1.1), where A = M + I and B = M − I. Then the Picard iteration method, the GN
iteration method, the MGN iteration method and the new RGN iteration method are applied to solve
the GAVE.

Numerical results of different computational methods are listed in Tables 5 and 6 for G = 1 and
G = 3, respectively. From these two tables, we can see that the Lemke’s method is successfully applied
to solve the single bottleneck model, but the elapsed CPU times indicate that the Lemke’s method
costs very expensive. The GN iteration method fails to solve the test problems. This is because the
singularity of the coefficient matrix A − BD(xk) occurs in implementing the GN iteration method. The
Picard iteration method and the MGN iteration method can only be applied to some small problems.
For large problems, these two iteration methods fail to converge within the prescribed largest iteration
number. Our new RGN iteration method can be successfully applied to solve all the test problems and
costs very cheap. Therefore, the new RGN iteration method is a powerful computational method to
solve the GAVE (1.1).

Table 5. Numerical results for Example 4.3 with homogeneous case (G = 1).

Method
Υ

10 60 360 720

Lemke’s
IT 41 239 1313 2559
CPU 0.0064 0.1036 35.5910 337.6484

Picard
IT 396 - - -
CPU 0.0174 - - -
RES 9.0472e-8 - - -

GN
IT - - - -
CPU - - - -
RES - - - -

MGN
IT 168 311 - -
CPU 0.0452 0.2032 - -
RES 9.9551e-8 9.2794e-8 - -

RGN

θexp 0.9998 0.9910 0.9991 0.9997
IT 10 28 28 30
CPU 0.0050 0.0332 0.3459 1.4890
RES 5.5293e-7 4.1419e-7 4.5825e-7 9.7686e-8
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Table 6. Numerical results for Example 4.3 with heterogeneous case (G = 3).

Method
Υ

10 60 360 720

Lemke’s
IT 65 386 2084 3220
CPU 0.0138 0.8541 277.3680 1191.3000

Picard
IT - - - -
CPU - - - -
RES - - - -

GN
IT - - - -
CPU - - - -
RES - - - -

MGN
IT 170 140 2943 -
CPU 0.0432 0.3254 109.9264 -
RES 9.5758e-8 9.0419e-8 9.0338e-8 -

RGN

θexp 0.9330 0.9900 0.9980 0.9992
IT 23 35 60 79
CPU 0.1969 0.4008 2.8071 12.6720
RES 6.6725e-7 1.1437e-7 3.8152e-7 7.3033e-9

5. Conclusion

In this paper, by introducing a relaxation iteration parameter, a new relaxed generalized Newton
(RGN) iteration method is proposed to solve the generalized absolute value equations. We have
proved that the RGN iteration method is well defined and converges globally under certain conditions.
Two numerical examples, both arising from the well-known LCP problem, are used to illustrate the
efficiency of the new computational method. Numerical results show that the RGN iteration method
converges and has much better computing efficiency than some existing methods provided that
suitable relaxation iteration parameters are chosen.

Just like most of the parameter-based iteration methods, the choice of the iteration parameter is an
open and a challenging problem. Here, the RGN iteration method is proved to be only linearly
convergent. In some recent works, the GN iteration method has been modified to be a globally and
quadratically iteration method under very strong conditions. Therefore, how to improve the RGN
iteration method needs further-in-depth studies. In addition, the generalized absolute value equations
with general nonlinear term, which arise in nonlinear complementarity problems [35], implicit
complementarity problems [36, 37], quasi complementarity problems [38, 39], are of great interesting.
Future work should focus on estimating the quasi-optimal value of the relaxation iteration parameter,
finding globally and quadratically convergent RGN iteration method, extending to solve more
applications and so on.
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